95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

Data Structures and Algorithms for Information Processing

 Project 4
Due: Wednesday, October 21, 2009
Topics: Graphs, Graph Coloring, Hashing, Greedy Algorithms, Heuristics, XML

Graph Coloring and Hashing

A coloring of a graph is an assignment of a color to each vertex of the graph so that no two vertices connected by an edge have the same color. The problem of coloring of graphs has been studied for many decades. Unfortunately, coloring an arbitrary graph with as few colors as possible is one of a large class of problems called “NP-complete problems”, for which all known solutions are essentially of the type “try all possibilities”. In the case of the coloring problem, “try all possibilities” means to try all assignments of colors to vertices at first one color, then two colors, then three, and so on. It is generally believed that no algorithm to solve this problem can be substantially more efficient than this most obvious approach
.

While finding an optimal solution may require too much computer time, we may be able to get a ‘close to optimal’ solution in a reasonable amount of time.

Consider two ways we could color the graph below.

1) Color 1 Red, Color 2 Red, Color 3 and 4 Blue, Color 5 Yellow.

2) Color 1 and 3 and 4 Blue, Color 5 and 2 Red.

While both are legal colorings, only the second is optimal.

The following algorithm uses a greedy heuristic to color a graph. This algorithm does not necessarily produce optimal solutions.

Procedure greedy(G : Graph, newclr : Set)

// greedy assigns to newclr a set of vertices of G that may be given the same color

newclr = empty set

for each uncolored vertex v of G do

if v is not adjacent to any vertex in newclr

mark v colored

add v to newclr

This program is a refinement of the greedy algorithm on page one.

Procedure greedy (G : Graph, newclr : LIST)

// greedy assigns to newclr those vertices that may be given the same color

bool found

int v,w

newclr = emptyset

v = first uncolored vertex in G

while v <> null

found = false

w = first vertex in newclr

while w <> null

if there is an edge between v and w in G then

found = true

w = next vertex in newclr

if found == false

mark v colored

add v to newclr

v = next uncolored vertex in G

An application of graph coloring

Write a program that reads a data file containing a list of student class schedules. The name of the data file will be entered on the command line. The output of your program will be (a) a two dimensional matrix that represents the graph and (b) a final exam schedule. The format of the input file will always be as follows:

<student name> <N> <course name 1> <course name 2> … <course name N> <return>

<student name> <K> <course name 1> <course name 2> … <course nameK> <return>

:

:

Each student’s name is in the form <last name>,<first name> with no intervening space characters . The course names are all 6 characters in length and are separated from each other by spaces. Each course name refers to a single section of the course and for each course, only one section is offered. (It’s a small school.)

The number after the student’s name represents the number of courses the student is taking. There is no need to validate the file. We will assume that it has already been validated.

There is a maximum of 40 students on the file. No student may take more than 5 courses. There is a maximum of 20 different courses offered each term.

Your program must build a graph from the data on the file. Process the graph with the greedy algorithm shown above and display a schedule of final exams. Final exams must be scheduled in such a way that no student has a conflict. For example, if Sue is taking ENG040 and MAT100 then the final exam for each of these courses must be scheduled at a different time.

The output of your program must be in the following form:

Final Exam Period 1

<course name >

<course name >

Final Exam Period 2

<course name >

Final Exam Period P

 <course name >

Dictionary Implemented as a Hash Table

You must use a hash table of size 31 to differentiate between those course names that we have previously seen on the file and those that the program is encountering for the first time. The basic idea is to read the course name and check the hash table to see if the name has been seen before. If it’s a new name, we need to assign to it an integer (not the hash value) that will be used to represent the course in the graph. If it’s an old name, we need the hash table to tell us what integer was assigned to this name.

For example, the first course name read will be assigned the number 0. Why ? Well, we looked in the hash table and it was not there. So, we assigned this course the number 0. The second course name will be assigned the number 1 if it is a different name than the first. If it’s the same name as the first then we can retrieve its number from the table, i.e., 0.

You must use the following hash function (adapted to the Java language) in your program:

function hash(x : String of Characters)

int i,sum

sum = 0

for i = 1 to 6

sum = sum + ascii(x[i])

h = sum mod Tablesize

The hash table itself will be implemented as an array of doubly linked lists. You may use the list that you built in homework 1 and 2. And, since some courses are more popular than others, each list will implement a move-to-front heuristic. That is, after a successful search on a list, the course found will be moved to the front of the list. After an unsuccessful search, the new course will be added at the front of the list.

Example

Data File

Smith, Al 2 mat100 che080

Jones,Sue 2 eng040 mat100

Bell,Amy 2 eng050 gym000

Gingrich,Fred 3 gym000 his098 eng040

After hashing, the following graph would be constructed in an Adjacency Matrix:

0
1
2
3
4
5

0
0
1
1
0
0
0

1
1
0
0
0
0
0

2
1
0
0
0
1
1

3
0
0
0
0
1
0

4
0
0
1
1
0
1

5
0
0
1
0
1
0

A table (not the hash table) would have been constructed that looks like the following:

0 (mat100

1 (che080

2 (eng040

3 (eng050

4 (gym000

5 (his098

After displaying the matrix and coloring the graph, the program would produce the following schedule:

Final Exam Period 1 => mat100 eng050 his098

Final Exam Period 2 => che080 eng040

Final Exam Period 3 => gym000

Program Output Requirements:

1) After reading the input file, display each distinct course and the unique number assigned to it. This was accomplished with the hash table. For example:

0 ENG100

1 PSY050

2 MAT220

3 ...

2) Display the adjacency matrix for the graph. It suffices to print a matrix of 0s and 1s.

3) Display the final exam schedule. For example,

Final Exam Period 1 <course1> <course2> ...

Final Exam Period 2 <course1> <course2> ...

Final Exam Period 3 <course1> <course2> ...

The following code may be of use when reading the input file:

// IO Demo

import java.io.*;

import java.util.*;

public class InputDemo {

public static void main(String args[])

{

 try{

 BufferedReader in =

 new BufferedReader(

 new FileReader(args[0])

);

 String line;

 line = in.readLine();

 while(line != null) {

 processLine(line);

 line = in.readLine();

 }

 }

 catch(IOException e) {

 System.out.println("IO Exception");

 }

 }

 public static void processLine(String line) {

 StringTokenizer st;

 // use comma, space, and tab for delimeters

 st = new StringTokenizer(line, " \t");

 while (st.hasMoreTokens()) {

 System.out.println(st.nextToken());

 }

 }

}

Here is a second data file (StudentSchedules.dat) that you may want to test your code against:

Jones,Andy 3 ENG100 PSY050 MAT220

Hein,Peter 4 MAT010 CHM230 CSC401 HST080

Miller,Kyle 5 MAT010 CHM230 HST080 ECN110 PHY100

Williams,Ann 5 MAT010 ENG100 PSY050 CSC401 HST080

Kim,Jenny 3 ENG100 CHM230 HST080

Carter,Herb 5 PSY050 CHM230 CSC401 ENG100 PHY100

Popov,Dimitri 2 PSY050 PHY100

Smith,Kellie 3 PSY050 HST080 ECN110

Submission requirements:

For a maximum score of 90%:

 Submit program listings (“.java” files) of your program to blackboard.

 The main program will be called FinalSchedule.java and will be run as follows:

 java FinalSchedule StudentSchedules.dat

 Include a Word Document with two DOS or Unix screen shots showing each run.

For a maximum score of 100% :

 Design an XML language that represents student schedules. Use an XML parser to

 read the schedule data. You may use DOM, SAX or StAX parsing. (The easiest

 approach would probably be StAX). Your program will now be able to run against the

 original data file format or the xml format. The program will be run with one of the

 following command lines:

 java FinalSchedule StudentSchedules.dat

 java FinalSchedule StudentSchedules.xml

 Submit program listings (“.java” files) of your program to blackboard.

 The main program will be called FinalSchedule.java and will be run as follows:

 java FinalSchedule StudentSchedules.xml.

 Include a Word Document with four DOS or Unix screen shots showing the output.

 Two runs will be against the “.dat” file and two runs will be against the “.xml” file.

 Submit the XML files holding your schedule data.

 Two bonus points will be assigned to those submissions that include a grammar

 describing the StudentSchedule language. The grammar may be written using either

 DTD’s or XSDL. The parser must be configured to perform validation.

1

5

3

2

 4

� Aho, Hopcroft & Ullman, Data Structures and Algorithms, 1983

1
1

