95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

Data Structures and Algorithms for Information Processing

 Project 3
Due: 11:59:59 PM, Wednesday, October 14, 2015
Topics: Graphs, Graph Coloring, Red Black Trees, Greedy Algorithms, Heuristics
A coloring of a graph is an assignment of a color to each vertex of the graph so that no two vertices connected by an edge have the same color. The problem of coloring of graphs has been studied for many decades. Unfortunately, coloring an arbitrary graph with as few colors as possible is one of a large class of problems called “NP-complete problems”, for which all known solutions are essentially of the type “try all possibilities”. In the case of the coloring problem, “try all possibilities” means to try all assignments of colors to vertices at first one color, then two colors, then three, and so on. It is generally believed that no algorithm to solve this problem can be substantially more efficient than this most obvious approach
.

While finding an optimal solution may require too much computer time, we may be able to get a ‘close to optimal’ solution in a reasonable amount of time.

Consider two ways we could color the graph below.

1) Color 1 Red, Color 2 Red, Color 3 and 4 Blue, Color 5 Yellow.

2) Color 1 and 3 and 4 Blue, Color 5 and 2 Red.

While both are legal colorings, only the second is optimal.

The following algorithm uses a greedy heuristic to color a graph. This algorithm does not necessarily produce optimal solutions but it does run in polynomial time.
Procedure greedy(G : Graph, newclr : Set)

// greedy assigns to newclr a set of vertices of G that may be given the same color

newclr = empty set

for each uncolored vertex v of G do

if v is not adjacent to any vertex in newclr

mark v colored

add v to newclr

This program is a refinement of the greedy algorithm on page one.

Procedure greedy (G : Graph, newclr : LIST)

// greedy assigns to newclr those vertices that may be given the same color

bool found

int v,w

newclr = emptyset

v = first uncolored vertex in G

while v <> null

found = false

w = first vertex in newclr

while w <> null

if there is an edge between v and w in G then

found = true

w = next vertex in newclr

if found == false

mark v colored

add v to newclr

v = next uncolored vertex in G

An application of graph coloring

Write a program that reads a data file containing a list of student class schedules. The name of the data file will be entered on the command line. The output of your program will include a two dimensional matrix representing the graph and a final exam schedule.
The format of the input file will be as follows:

<student name> <N> <course name 1> <course name 2> … <course name N> <return>

<student name> <K> <course name 1 > <course name 2> … <course nameK> <return>

:

:

Each student’s name is in the form <last name>,<first name> with no intervening space characters . The course names are all character strings containing no spaces. Course names often include a section number. The section number is appended to the course name and consists of three decimal digits. Typical course names are “Chemistry304”, “English100”, and “Calculus001”. Course names are separated from each other by spaces. Each course name refers to a single section of the course and for each course, only one section is offered. There will be no more than 40 courses offered.
The number after the student’s name represents the number of courses the student is taking. It is separated from the student name by a space. It is always a single digit between 1 and 6 inclusive. That is, each student is taking between one and six courses.
There is no need to validate the file. We will assume that it has already been validated. In a real application, one would take great care in validating the file before processing it. So, our project has a pre-condition that the file is valid.
Your program must build a graph from the data on the file. Process the graph with the greedy algorithm shown above and display a schedule of final exams. Within the greedy algorithm, use a linked list of your own design for the newclr set.
The final exams must be scheduled in such a way that no student has a conflict. For example, if Sue is taking English040 and Math100 then the final exam for each of these courses must be scheduled at a different time. If the two exams were scheduled at the same time, Sue would have to take both exams simultaneously. That is unfair to Sue and so we need to schedule the exams at different times.
The output of your program must be in the following form:

RECOMMENDED SCHEDULE OF FINAL EXAMS (NOT NECESSARILY OPTIMAL)

Final Exam Period 1

<course name >

<course name >

Final Exam Period 2

<course name >

:

Final Exam Period P

 <course name >

 :
Dictionary Implemented as a Red Black Tree

You must use a dictionary to differentiate between those course names that we have previously seen on the file and those that the program is encountering for the first time. The basic idea is to read the course name and check the dictionary to see if the name has been seen before. If it’s a new name, we need to assign to it an integer. This integer will be used to represent the course in the graph. If it’s an old name, we need the dictionary to tell us what integer was assigned to this name when it was first seen.

For example, the first course name read will be assigned the number 0. Why? Well, we looked in the dictionary and it was not there. So, we assigned this course the number 0. We place the course name and the integer 0 in the root of a Red Black tree. The second course name will be assigned the number 1 - if it is a different name than the first. If it’s the same name as the first then we can retrieve its number from the dictionary, i.e., 0. This second course, if it is different from the first, will end up in the Red Black Tree with the value 1. And so on. Each distinct course name will have a distinct integer associated with it.
Example

Data File (StudentSchedules1.dat)
Smith, Al 2 Math100 Chemistry080

Jones,Sue 2 English040 Math100

Bell,Amy 2 English051 Gym000
Gingrich,Fred 3 Gym000 History098 English040

The following graph would be constructed in an Adjacency Matrix:

0
1
2
3
4
5

0
0
1
1
0
0
0

1
1
0
0
0
0
0

2
1
0
0
0
1
1

3
0
0
0
0
1
0

4
0
0
1
1
0
1

5
0
0
1
0
1
0

The dictionary (Red Black Tree) would have been constructed with the following mappings:
Math100 -> 0

Chemistry080 -> 1

English040 -> 2

English051 -> 3
Gym000 -> 4

History098 -> 5

Your program will also need to quickly find the name of the course, given an integer. Do this with an array of Strings. For example, the array when indexed with 3 returns the string “English051”. The Red Black tree, when presented with “English051”, returns the value 3.
After displaying the matrix and coloring the graph, the program would produce the following output:

RECOMMENDED SCHEDULE OF FINAL EXAMS (NOT NECESSARILY OPTIMAL)

Final Exam Period 1 => Math100 English051 History098

Final Exam Period 2 => Chemistry080 English040

Final Exam Period 3 => Gym000

Program Output Requirements:

1) After reading the input file, display each distinct course (in alphabetical order) and the unique number assigned to it. This will be accomplished by traversing the Red Black Tree.
Chemistry080 -> 1

English040 -> 2

And so on.
2) Display the adjacency matrix for the graph. It suffices to print a matrix of 0s and 1s. If part of the array is unused, do not display the unused part.
3) Display the final exam schedule. For example:
RECOMMENDED SCHEDULE OF FINAL EXAMS (NOT NECESSARILY OPTIMAL)

Final Exam Period 1 <course1> <course2> ...

Final Exam Period 2 <course1> <course2> ...

Final Exam Period 3 <course1> <course2> ...

The following code may be of use when reading the input file:

// IO Demo

import java.io.*;

import java.util.*;

public class InputDemo {

public static void main(String args[])

{

 try{

 BufferedReader in =

 new BufferedReader(

 new FileReader(args[0])

);

 String line;

 line = in.readLine();

 while(line != null) {

 processLine(line);

 line = in.readLine();

 }

 }

 catch(IOException e) {

 System.out.println("IO Exception");

 }

 }

 public static void processLine(String line) {

 StringTokenizer st;

 // use comma, space, and tab for delimeters

 st = new StringTokenizer(line, " \t");

 while (st.hasMoreTokens()) {

 System.out.println(st.nextToken());

 }

 }

}

Here is a second data file (StudentSchedules2.dat) that you will want to test your code against:

Jones,Andy 3 English100 Psychology050 Math220

Hein,Peter 4 Math010 Chemistry230 CompSci401 History080

Miller,Kyle 5 Math010 Chemistry230 History080 Econ110 Psychology100

Williams,Ann 5 Math010 English100 Psychology050 CompSci401 History080

Kim,Jenny 3 English100 Chemistry230 History080

Carter,Herb 5 Psychology050 Chemistry230 CompSci401 English100 Psychology100

Popov,Dimitri 3 Psychology050 Psychology100 Math010
Smith,Kellie 3 Psychology050 History080 Econ110

We will run your solution against a third data file. It will be named StudentSchedules3.dat and is not provided.

Submission requirements:

Submit program listings (“.java” files) of your program to blackboard. These files will be well documented. Variable names will be well chosen. Pre- and Post-conditions will be used when appropriate. You need not include Big Theta analysis in your comments.
The main program will be called FinalSchedule.java and will be run as follows:

java FinalSchedule StudentSchedules1.dat

Include a Word document with two DOS or Unix screen shots. The first screenshot will show the output using the first data file. The second screenshot will show the output using the second data file. See the Program Output Requirements above.
Zip all folders into one .zip file without zipping each single folder.

Name the zip file as HW3_firstName_lastName.zip.
Bonus Points:
Five additional points will be awarded to those projects that include an additional Java class called OptimalFinalSchedule. The output will be the same as above but will generate an optimal schedule – one using as few final exam periods as possible.
The main program will be called OptimalFinalSchedule.java and will be run as follows:

java OptimalFinalSchedule StudentSchedules.dat
3

2

5

1

 4

� Aho, Hopcroft & Ullman, Data Structures and Algorithms, 1983

1
1

