90-771 – Data Structures and Algorithms

Homework #3

Due July 19, 2001

Part 1 – Comparing Binary Search and Interpolation Search
Write a program to compare the performance of binary search and interpolation search. Allow the user to enter the size n of an array of longs from the keyboard. Randomly generate long integers between 0 and 7777777 and place them into the array until the array is filled. Use Math.random() to generate these numbers. Sort the array in increasing order. For each element in the sorted array, search for it and count the number of comparisons made until the element is found. Display each element in the sorted array and the number of comparisons necessary to locate it with binary search and interpolation search. Also, display the average number of comparisons necessary to find an element in the array with each method. Even though interpolation search is a log(log(n)) algorithm, the table must be very large to realize any advantage. In addition, for some sets of data this method degenerates to comparing every element in the array against the key. The output should look like,

Enter the size of the array:> 103

 Binary Search
Interpolation Search

Array

 Comparisons

 Comparisons

25461

 7 6

25892 6 5

 … … …

774183 7 6

--
Average No. Comparisons 6.2 5.6

Part 2 – Hashing
In class, we discussed the concept of “chained hashing.” In chained hashing, we resolve conflicts by allowing multiple elements to occupy one place in the hash table. For instance, if element X and element Y both have keys that hash to index two, then both elements are placed at index two. Chained hashing is generally implemented using an array of linked lists. When an element hashes to a certain index in the hash table, it is simply added to the linked list for that index. You may use the ChainedTable in Main’s text, pp555-557. Note that some of the functions appear elsewhere in the text while others need to be implemented, they are

· public void display() //displays the table
· public Object get(Object key) //search for key, if found return element; otherwise null
· public int hash(Object key) //hash key, return an index
· public ChainedHashNode findNode(Object key) // return pointer to (key,element) pair
· public Object remove(Object key) //remove a (key, element) pair

Write a driver to test the ChainedTable. You are to randomly generate 500 keys consisting of six uppercase letters each (e.g., DYVESO) and hash them into a ChainedTable of size 79. Make the element field identical to the key. Display the contents of the table, for example

0:

XJOEDP
USWQN
DMFRA

1:
WQWGS
XUXKX

2:
SSQNY
 …

To test the remove() function, you are to save every fifth key generated in an auxiliary array. Remove each of these keys in turn then display the table again.

Deliverables

· For part 1 of the assignment, you should turn in all .java files used in your implementation.

· For part 2 of the assignment, you should turn in ChainedHashTable.java, and any other .java files used in your implementation.

The deliverables for this assignment should be placed on an otherwise empty floppy disk with two directories called hashing and sorting.

As in the first two assignments, your work will be graded on the programming practices you followed in addition to whether or not your implementation actually works. The grading breakdown will be roughly the same as that used in the first two assignments. Both parts of the assignment will be given approximately the same weight.

