90-723 – Data Structures and Algorithms

Homework #2

Due July 5th, 2000 at 11:59:59 pm

Part 1 – Stacks As we discussed in class, many Hewlett-Packard calculators use a format known as Reverse Polish Notation (RPN) for inputting arithmetic expressions. These calculators use a stack to help perform the computations necessary to determine the result of an expression. Expressions are evaluated from left to right. When a number is encountered, that number is simply pushed onto the calculator’s stack. When an operator is encountered (+,-,* or /), the appropriate number of operands are popped off of the stack, the operation is performed, and the result is pushed back on the stack. As an example, the expression “(3-2)/4” would be written in Reverse Polish Notation as “3 2 – 4 /”. Computation of the result would proceed as follows:

1. Examine 3, determine that it is a number, push it on the stack.

2. Examine 2, determine that it is a number, push it on the stack.

3. Examine -, determine that it is an operator and that is requires two operands.

· Pop the top two values off of the stack (2 and 3).

· Subtract the first from the second (3 – 2) and place the result, 1, on the stack.

4. Examine 4, determine that it is a number, push it on the stack.

5. Examine /, determine that it is an operator and that it requires two operands.

· Pop the top two values off of the stack (4 and 1)

· Divide the second by the first and push the result, 0.25, back on the stack.

6. The result of the expression is not the top value on the stack.

Attached are two javadoc specifications relating to part one of the assignment, RPNCalc and Stack. You should begin by implementing the Stack class. You may find it easiest to build on the linked list code you have already written for this part of the assignment. Once you have written the Stack class and are confident it is working, you should write the RPNCalc class using your Stack class. Since we have not discussed in class how to process user input, the functions that examines user input and determine whether each token is a number or an operator will be provided for you on the course web page. You only need to write the functions that perform the actual manipulation of the stack (as described in the RPNCalc specification). As an example, evaluation the expression given above (3 2 – 4 /) will result in the following calls to the RPNCalc class:

1. number(3)

2. number(2)

3. subtract()

4. number(4)

5. divide()

If the user then wants to see the result of the calculations, the top() method might be called to examine the top of the stack.

Part 2 – Binary Trees – Attached is the javadoc specification for the class bst. This class is meant to be an implementation of a binary search tree in Java. You have seen in class how a binary search tree works. A binary search tree is a binary tree in which values smaller than the value in a given node are stored in the left subtree of that node, and values greater than the value in a given node are stored in the right subtree of that node. For purposed of this assignment, you may assume that the tree will not contain duplicate values. Following the javadoc specification given, you are to write an implementation of the bst class. You do not need to worry about keeping the tree balanced. Once you have completed your implementation, you should examine each method you have written and determine the order of the method, and the worse case Big-Oh (as you did in the first assignment).

Deliverables

· For part 1 of the assignment, you should turn in Stack.java, RPNCalc.java and any other .java files you used in your implementation of Stack and RPNCalc.
· For part 2 of the assignment, you should turn in bst.java, and any other .java files you used in your implementation of bst. In addition, you should turn in your writeup describing the order and worse case Big-Oh of each method you have written in the bst class.

The deliverables for this assignment should be placed in an envelope. Both hard copies and electronic copies (electronic copies on a 3.5 floppy) should be included.

Good Luck!

