95-771 Data Structures and Algorithms for Information Processing Carnegie Mellon University

95-771 – Data Structures and Algorithms for Information Processing

Homework #3

Due Saturday, October 22, 2011 Midnight

Topics: Stacks, Red Black Trees and Reverse Polish Notation
Part 1 – Stacks and RPN (50 Points)

Hewlett-Packard calculators use a format known as Reverse Polish Notation (RPN) for inputting arithmetic expressions. These calculators use a stack to help perform the computations necessary to determine the result of an expression. Expressions are evaluated from left to right. If a number is encountered in the input then that number is simply pushed onto the calculator’s stack. If an operator is encountered (+,-,* , or /), the appropriate number of operands are popped off of the stack, the operation is performed, and the result is pushed back on the stack. As an example, the expression “(3-2)/4” would be written in Reverse Polish Notation as “3 2 – 4 /”. Computation of the result would proceed as follows:

1. Examine 3, determine that it is a number, and push it on the stack.

2. Examine 2, determine that it is a number, and push it on the stack.

3. Examine -, determine that it is an operator and so requires two operands.

· Pop the top two values off of the stack (2 and 3).

· Subtract the first from the second (3 – 2) and place the result, 1, on the stack.

4. Examine 4, determine that it is a number, push it on the stack.

5. Examine /, determine that it is an operator and so requires two operands.

· Pop the top two values off of the stack (4 and 1)

· Divide the second by the first and push the result, 0.25, back on the stack.

6. The result of the expression is now the top value on the stack.

On the class schedule there are two javadoc specifications relating to part one of this assignment, RPNCalc.html and Stack.html. You should begin by implementing the Stack class. This class must be implemented with the doubly linked list that you wrote in homework 1. The doubly linked list will be a private member of the Stack class (the OOP “has-a” relation). It will be modified to be a doubly linked list of java Objects rather than chars. Once you have written the Stack class and are confident it is working (use JUnit tests), you should write the RPNCalc class using your Stack class in a “has-a” relation. That is, an RPNCalc object “has-a” Stack object and so should appear as a private member in each RPNCalc object. Once you have completed your implementation, you should examine each method you have written and state the worst and best case Big-Theta (as you did in the first assignment).

Another class has been provided that we will use to test your RPNCalc class. This class is called RPNParser.java and is included on the course schedule.

As an example, evaluation of the expression given above (3 2 – 4 /) will result in the following calls to the RPNCalc class:

1. number(3)

2. number(2)

3. subtract()

4. number(4)

5. divide()

If the user then wants to see the result of the calculations, the top() method would be called to examine the top of the stack.

Part 2 – Stacks and Red Black Trees (50 Points) –

 Rewrite the RedBlackTree class that you wrote in homework 2 so that it is able to hold <key, value> pairs. Call this new class RedBlackTreeDictionary. The key will be unique in the tree and will be of type String. The value will be of type Float, a built in non-primitive Java class. The float value need not be unique. You only need to implement two methods on this dictionary. You will need a put method and a get method with the following signatures:

public void put(String key, Float value);

pre: the tree is exists and is a Red Black binary search tree.

post: the <key,value> is entered into the tree and the key is unique within the tree.

If the key was in the tree before then its old value is replaced with this new value.

Float get(String key);

Pre: a value with this key already exists in the tree.

Post: the value is returned.

Rewrite Stack.java so that it holds a stack of object references rather than simple floats. Call this new class StackOfOjects.java. Rewrite RPNCalc.java and RPNParser.java and call these files RPNCalcWithDictionary.java and RPNParserWithDictionary.java. When RPNParserWithDictionary.java is run it should allow for the assignment of value to variables. This will be done using the red black tree to hold the variable names and values. The assignment statement should be handled like other operators. For example, the expression y 3 = must assign the value of 3 to y. The expression m 4 3 + = will assign the value of 7 to m. If these statements have been entered into the calculator then the expression m y + will result in the value 10.

Here is a sample run of my solution. I would like your program to have the same output.

C:\McCarthy\www\95-771\Homeworks\homework2>java RPNParserWithDictionary

1 2 +

3.0

4 5 +

9.0

1 3 + 4 5 + *

36.0

x 4 =

4.0

y 5 =

5.0

0 x +

4.0

0 y +

5.0

x y /

0.8

x y +

9.0

y x /

1.25

z x =

4.0

x y + z 2 * +

17.0

hours 40 =

40.0

pay 10 =

10.0

gross hours pay * =

400.0

gross 0 +

400.0

User input is in bold type. You will need to modify RPNParser.java so that it echoes the value assigned or the value computed. You may always assume that the expressions are meaningful and well formed. You need not check for errors. That is, you do not need to perform checks to make sure the expression is in the proper format.

Grading
Post the following to the assignment section of blackboard:

1. A zip file (that includes your name in the file name) that contains exactly two directories with the following directory names:

RPNCalculator

 RPNCalculatorWithMemory

2. Within the RPNCalculator directory, the following java source files (these may be included in Netbeans or Eclipse projects):

Stack.java

RPNCalc.java

RPNParser.java

DoublyLinkedList.java

3. Within the RPNCalculatorWithMemory directory, the following java files (these may be included in a Netbeans or Eclipse project):

StackOfOjects.java

DoublyLinkedList.java

RedBlackTreeDictionary.java
 RPNCalcWithDictionary.java

 RPNParserWithDictionary.java

4. The grader will look for evidence that JUnit testing has occurred. You need not test everything but you must demonstrate that you are able to write test code and use JUnit in Netbeans or Eclipse or some other environment. You should include your test code in your Netbeans or Eclipse projects.

5. The grader will also look over your program comments. You should make use of Javadoc. Each method needs to have a Javadoc description and provide a Big Theta analysis. Code that is tricky or at all complex needs to be described with comments.

PAGE
1

