95-771 Data Structures and Algorithms

Homework 3
Due: July 12, 2004

Lempel-Ziv Welch Compression Homework 3

Write a Java implementation of the Lempel-Ziv Wech compression algorithm. Your program will be able to compress and decompress ASCII and binary files.

As in previous assignments, you will have to implement a data structure (in this case, a hash table) on which the implementation of the LZW compression and decompression depends. References to “Table” in this document refer to the hash table you will construct.
In order to execute your program for compression the user will type the following:

java LZWCompression c Test.java out.txt

And to decompress the program is run with the following command:

java LZWCompression d out.txt Test2.java
In this example, Test2.java now has the exact same contents as Test.java.

Your program will use LZW 12-Bit compression. The input file to the compression algorithm will be read in 8-bit bytes. The output file will be written in 12-bit chunks. For example, suppose that the input file contained one byte (8 bits) of data. Your program would read this one byte and write two bytes to the output file. Only the first 12 bits of these 16 bits would be meaningful. For another example, suppose that your input file contained 2 bytes (16 bits) of data. The compressed output file would contain 3 bytes of data. This is because the two 8 bit bytes will compress to two 12 bit chunks. The two 12 bit chunks are contained in 24 bits, or three bytes.
Helpful Programs and the LZW Algorithm

Test.java demonstrates some of the issues encountered when moving bytes around with Java.

The program CopyBytes.java will be of help when reading and writing Java files. Note that this program works when reading and writing both binary and ASCII files.
The program GZipDecompress.java shows the way that an application programmer can decompress a file in Java. Please note that we are not using this approach in this project. We need to implement compression and decompression ourselves. I included it here so that you are aware of it. The program uses a filter design that we are not going to use – unless you are ambitious and want to tackle that issue as well. There will be no extra credit for a filter design.
The LZW compression and decompression algorithms appear next.

// After reading a byte and assigning the byte to a char variable

// we need to clear the uppermost 8 bits in the char since the byte

// will sign extend into the char.

public class Test {

 public static void main(String a[]) {

 byte b = -1; // b = 0xFF = 11111111 (8 bits)

 char c = (char)b; // c = 0xFFFF = 1111111111111111 (16 bits sign

 // extension)

 c = (char)(c & 0xFF); // c = 0x00FF = 0000000011111111 (remove the extra

 // bits)

 int t = c; // t = 0x000000FF = 0000-000011111111 (32 bits)

 System.out.println(t); // display 255

 b = (byte)255; // b = 0xFF = 11111111 (8 bits)

 c = (char)b; // c = 0xFFFF = 1111111111111111 (16 bits sign

 // extension)

 c = (char)(c & 0xFF); // c = 0x00FF = 0000000011111111 (remove extra

 // bits)

 t = c; // t = 0xFF = 000-000011111111 (32 bits)

 System.out.println(t); // displays 255
 }

}
The IO classes that are important for project four are exemplified below:

// copy a binary or text file

import java.io.*;

public class CopyBytes {

public static void main(String args[]) throws IOException {

 DataInputStream in =

 new DataInputStream(

 new BufferedInputStream(

 new FileInputStream(args[0])));

 DataOutputStream out =

 new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream(args[1])));

 byte byteIn;

 try {

 while(true) {

 byteIn = in.readByte();

 out.writeByte(byteIn);

 }

 }

 catch(EOFException e) {

 in.close();

 out.close();

 }

 }

}

The compression algorithm that you will implement is as follows:

LZW_Compress(){
 enter all symbols in the table;
 read(first character from w into string s);
 while(any input left){
 read(character c);
 if(s + c is in the table)
 s = s + c;
 else {
 output codeword(s);

 Enter s + c into the table;

 s = c;

 } // end if/else
 } // end while
 output codeword(s);
}

The decompression algorithm that you will implement appears as follows:

LZW_Decompress(){
 enter all symbols into the table;
 read(priorcodeword) and output its corresponding character;

 while(codewords are still left to be input){
 read(codeword);

 if(codeword not in the table) {
 enter string(priorcodeword) + firstChar(string(priorcodeword)) into
 the table;
 output string(priorcodeword) + firstChar(string(priorcodeword));

 }

 else {

 enter string(priorcodeword) + firstChar(string(codeword)) into the
 table;
 output codeword;

 }
 priorcodeword = codeword;
 }
}

The following classes may not be used in Homework3. This is only for your enjoyment.

// Use GZIP decompression to decompress a file Eckel Chapter 11

import java.io.*;

import java.util.zip.*;

public class GZIPDecompress {

 public static void main(String args[]) throws IOException {

 BufferedReader in =
 new BufferedReader (

 new InputStreamReader(

 new GZIPInputStream(

 new FileInputStream("test.gz"))));

 String s;

 while((s = in.readLine()) != null) System.out.println(s);

 in.close();

 }

}

Submission Requirements
(1) Submit paper printouts of LZWCompression.java and any other Java files that are required by LZWCompression.java.

(2) Submit a single piece of paper that describes how your program is working on ASCII files and on binary files. Explain whether your program works for both cases and what degree of compression is your program producing for each?
(3) Submit a floppy disk containing all of the source code under a directory called homework3.

95-711 Data Structures and Algorithms

Page 1 of 4

