Data Structures and Algorithms

Summer 2001

Homework 1

Egyption Fraction Problem

95-771 Data Structures and Algorithms Homework 1

Part A

Due: June 14, 2001

Egyptian Fraction Problem

Linked List Problem

A unit fraction is 1/n, where n is an element of N = {1,2,3,...}. A proper fraction is m/n, where m < n, m and n are elements of N.

EFP: Write any proper fraction as the sum of distinct unit fractions. Rule: 1/x = (1/((x)(x+1))) + (1 / (x+1)).

For example:

2/3 = 1/3 + 1/3 not distinct

 = 1/3 + 1/4 + 1/2 are distinct

When solving this problem with a linked list the final list would appear as head --> 3 --> 4 --> 12 --||

Another example:

3/5 = 1/5 + 1/5 + 1/5

 = 1/5 + (1/6 + 1/30) + (1/6 + 1/30)

 = 1/5 + 1/6 + 1/6 + 1/30 + 1/30

 = 1/5 + 1/6 + (1/7 + 1/42) + 1/30 + (1/31 + 1/930)

 = 1/5 + 1/6 + 1/7 + 1/30 + 1/31 + 1/42 + 1/930

When solving the problem with a linked list the final list would appear as head --> 5 --> 6 --> 7 --> 30 --> 31 --> 42 --> 930 --||

There are a variety of ways to solve the Egyptian Fraction Problem. Our task is to learn about the mechanics of doubly linked list manipulation and not the number theoretic issues surrounding EFP. Thus, our goal is to write a Java program that implements the algorithm described above. The two examples show the input and outputs of your solution. If the user enters 3/5 then the output will show the five equal signs along with the sum of fractions.

The nodes of the doubly linked list will contain values of type java.math.BigInteger as well as a references to the next and previous nodes in the list. We need to use the BigInteger class because the denominators can become quite large.

Notice that you must show the original list of unit fractions. Then you must repeatedly show the expanded list followed by the expanded list in sorted order. Your internal algorithm must be implemented this way as well. This is a linked list problem and not a problem in number theory.

Your solution should be written according to the approach described on the slides and in Michael Main's text. Please use JavaDoc and show pre and post conditions where appropriate.

Turn in the following in a large envelope:

A printout of your well-documented solution in Java.

A printout of several DOS screens demonstrating that your program works for various fractions.

An otherwise blank floppy containing all .java and .class files in a directory called EFP and

all of the JavaDoc contained in a directory called doc.

