95-733 Internet Technologies Carnegie Mellon University

Master of Information System Management Program

Lab 3 Due Thursday, April 19

In this lab you will write several Document Type Definitions (DTD’s). You will also write a Java servlet that allows a browser user to interact with and edit an XML document stored on an HTTP server. You must have completed Lab 1 and Lab 2 before beginning this lab. That is, it will be assumed that all of the necessary software has been installed and that the classpath variables have been set.

We discussed in class the details of the program in Figure 3.1. Please use it to test your DTD’s.

// Validate.java

import java.io.*;

import org.xml.sax.*;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.parsers.SAXParser;

public class Validate extends HandlerBase

{

 public static boolean valid = true;

 public static void main (String argv [])

 {

 if (argv.length != 1) {

 System.err.println ("Usage: java Validate filename.xml");

 System.exit (1);

 }

 SAXParserFactory factory = SAXParserFactory.newInstance();

 factory.setValidating(true);

 try {

 SAXParser saxParser = factory.newSAXParser();

 saxParser.parse(new File(argv [0]), new Validate());

 }

 catch (Throwable t) {

 System.out.println("problem");

 t.printStackTrace ();

 System.out.println(t);

 }

 System.out.println("Valid document is " + valid);

 System.exit (0);

 }

 public void error(SAXParseException e) throws SAXException {

 valid = false;

 System.out.println(e.toString());

 }

} Figure 3.1
Lab 3 Activities Sheet

Directions: Complete the activities listed on this sheet and type or paste your answers directly in the space provided. The completed Activities Sheet (Lab3Submission.doc) must be printed and placed in a large envelope. Also, within the envelope, place a floppy disk containing the files and directories mentioned below. Aside from these files and directories, the flopy disk should be empty. Please use the exact same directory and file names as mentioned in each question. Each question is worth 20 points. The last question is the hardest.

Part I Document Type Definitions (DTD’s)

(1) Write a DTD that can be used to validate the books.xml file found in Lab 2 Figure 2.1. The DTD must be contained within the same file as the document body.

(a) Paste the modified books.xml file here.

(b) Execute Validate.java (Figure 3.1) and paste a screen shot of a DOS window here showing that the document is valid.

(c) Place a copy of the new books.xml file on your floppy.

(2) Create a new language called SylML that your instructor can use to validate the syllabus for this course. You will need to create at least two files (Syllabus.xml and SylML.dtd) and these files must be tested with Validate.java. The file SylML.dtd will contain the Document Type Definition for SylML conforming documents. Six points of this 20 point problem will be allocated for breaking up the DTD into several files using external parameter entities and external parameter entity references.

(a) Paste a copy of the Syllabus.xml file here.

(b) Paste a copy of SylML.dtd (and any other .dtd files) here.

(c) Place all these files on you floppy under a directory called Syllabus.

(3) Write an XSLT program (called Syllabus.xsl) that converts the Syllabus.xml document to HTML format. Your HTML document should look reasonably close (when processed by a browser) to the current syllabus on the web site. However, the links can be broken links. That is, you don’t need to provide target documents (such as Schedule.html and Course_Description.html). You must, however, provide the link elements themselves. Test your program using the command line version of XT.

(a) Paste a copy of the Syllabus.xsl file here.

(b) Paste a copy of the browser screen here.

(c) Include a copy of Syllabus.xsl on your floppy under the directory called Syllabus.

(4) In this exercise you will experiment with using ID and IDREF attributes. Create a new language that can be used to represent instances of the Traveling SalesPerson Problem (TSP). The problem itself is to find the shortest distance that a traveling salesperson can travel and still visit each of several cities once. Documents conforming to your DTD must contain city names and distances to other cities that are also found in the document. The idea is to use ID and IDREF attributes to aid in document validation. A programmer should be able to read your document and compute a solution to the TSP. (That is, assuming the programmer has time to wait for such a solution). We are NOT writing such a program here. Please call your DTD file TSP.dtd and create a file that shows an instance of the problem containing at least four cities and call the file TSP.xml.

(a) Paste a copy of your TSP.dtd file her.

(b) Paste a copy of your TSP.xml file here.

(c) Paste a screen shot of a DOS screen showing Validate.java validating TSP.xml.

(d) Place both files on your floppy under a new directory called TSP.

Part II Servlet Collaboration and FpML Document Collaboration

(5) Part of the idea behind FpML (the Financial product Markup Language) is to promote collaboration over financial documents. In this exercise, we will write a Java program that allows such document sharing to go on on the internet. We will be working with the W3C’s XML DOM and Java servlets.

Write two servlets and one shared singleton class that assists with servlet collaboration. The first servlet, FpMLViewer.java, provides the browser with a list of name value pairs in html form markup. These name value pairs are got from the SharedXML.java object and are presented to the browser in an HTML form that allows the value fields to be edited. SharedXML.java is a singleton that loads the FpML document from a file called “vanillaFixedFloat.xml”. It builds an XML DOM document tree and provides client servlets with an iterator to a linked list of name value pairs. The second servlet, FpMLModifier.java, receives the updated HTML form data and passes it to the SharedXML.java object as a query string. SharedXML.java uses the query string to make updates to the XML tree. The tree is then save back to its original file.

These servlets must be placed in Jigsaw’s servlet directory.

The SharedXML.java file need not be placed in Jigsaw’s servlet directory. In my solution, I have it placed in a beans directory. That is, it’s under c:\Jigsaw\Jigsaw\Jigsaw\Www\beans\SharedXML.java. The path to this class must be added to your classpath variable.

In this exercise, please use Netscape to test your code.

We will spend some time in class discussing this problem and its solution.

Please test your code across browser visits. Upon each visit by FPMLViewer the document should show the latest edition.

Please test your code across runs of Jigsaw. That is, when Jigsaw is shutdown and then restarted FPMLViewer should see the latest edition of the document.

The file vanillaFixedFloatSwap.xml is on the course web site and is called vanillaFixedFloatSwap.txt.

Please create a directory on your floppy called FPML and place the files mentioned below under that directory. Please use the exact same names as specified here.

(a) The servlet FPMLViewer.java should be pasted here.

(b) The servlet FPMLModifier.java file should be pasted here.

(c) The SharedXML.java file should be pasted here.

(d) A screen shot of the browser after visiting FPMLViewer.java (for the first time) should be pasted here.

This screen should show a form containing all the elements that contain a single text child. The text should be editable. For example, the screen shot of a solution to this program when run on FixedFloatSwap.xml would appear as follows (note that your program must run against vanillaFixedFloat.xml as found on the web site):

FixedFloatSwap.xml

<?xml version="1.0"?>

<!DOCTYPE FixedFloatSwap>

<FixedFloatSwap>

 <Notional>1000.0</Notional>

 <Fixed_Rate>5.6</Fixed_Rate>

 <NumYears>4</NumYears>

 <NumPayments>8</NumPayments>

</FixedFloatSwap>

[image: image1.wmf]

(e) A display of the response from FPMLModifier.java (a screen shot) after it collects the data from the form and asks SharedXML.java to update and save the XML tree.

 (f) A second screen shot of FPMLViewer showing that the changes have taken place.

Submission Checklist

This document must be printed and placed in a large envelope.

 Your name and class time must be placed on the same envelope.

The envelope will also contain an otherwise blank floppy disk with the following files and directories:

books.xml (containing an internal DTD)

 Syllabus\Syllabus.xml (showing all the data for our course)

 Syllabus\Syllabus.xsl (converting the xml to html)

 Syllabus\Syllabus.dtd (there may be more than one DTD file involved in validation)

 TSP\ TSP.xml (showing one instance of the TSP)

 TSP\TSP.dtd (validating TSP instances)

 FPML\FpMLViewer.java (that shows the current state of the FpML document)

 FPML\FpMLModifier.java (receives a query string which represents the new state)

 FPML\SharedXML.java (makes vanillaFixedFloat.xml available to servlets)

PAGE
4

_1044008720.doc
[image: image1.png]Netscape

[itp://localhost:B001 /serviet/FPMLViewer =
g & & & & = g

T
FedRaefe
Wl
NPapmensfE | | sebmit ey |

