NOVEMBER * DECEMBER 2000 http://computer.org/internet/

Framework for the

Semantic Web:
An RDF Tutorial

STEFAN DECKER, PRASENJIT MITRA, AND SERGEY MELNIK
Stanford University

RDF provides a data model that supports fast integration of
data sources by bridging semantic differences.

he current Web supports mainly human browsing

and searching of textual content. This model has

become less and less adequate as the mass of avail-
able information increases. What is required instead is a
model that supports integrated and uniform access to
information sources and services as well as intelligent appli-
cations for information processing on the Web. Such a
model will require standard mechanisms for interchanging
data and handling different data semantics.

The Resource Description Framework is a step in this
direction. RDF provides a data model that supports fast
integration of data sources by bridging semantic differences.
It is often used (and was initially designed) for representing
metadata about other Web resources such as XML files.
However, representing metadata' about the Web is not dif-
ferent from representing data generally. Thus, RDF can be
used as a general framework for data exchange on the Web.

The RDF Data Model

The Resource Description Framework Model and Syntax
Specification,? which became a World Wide Web Consor-
tium (W3C) Recommendation in February 1999, defines
the RDF data model and an XML-based serialization syn-
tax. By separating the data model from the syntax needed
to transport RDF data in a network, the specification
allows an RDF-aware system to access a new non-RDF
data source. To do this, an RDF adapter first assigns unique
resource identifiers (URIs) to resources in the non-RDF
data source (when URIs are not already available) and then
generates statements describing resource properties. The
RDF data model’s use of URIs to unambiguously denote
objects, and of properties to describe relationships between
objects, distinguish it fundamentally from XML tree-
based data model. This simple but effective mechanism
supports a general approach to representing and integrating

1089-7801/00/510.00 ©2000 IEEE

information, as it provides the least common denomina-
tor for all information models.

Core of the Model

The RDF data model vaguely resembles an object-orient-
ed data model. It consists of entities, represented by unique
identifiers, and binary relationships, or statements, between
those entities. In a graphical representation of an RDF
statement, the source of the relationship is called the sub-
ject, the labeled arc is the predicate (also called property),
and the relationship’s destination is the object. Both state-
ments and predicates are first-class objects, which means
they can be used as the subjects or objects of other state-
ments (see the section on reifying statements).

The RDF data model distinguishes between resources,
which are object identifiers represented by URIs, and /iz-
erals, which are just strings. The subject and the predicate
of a statement are always resources, while the object can be
a resource or a literal. In RDF diagrams, resources are
always drawn as ovals, and literals are drawn as boxes.

Figure 1 shows an example statement, which can be read
as: “The resource http://www.daml.org/projects/#11 has a
property hasHomepage (described in http://www.semantic-
web.org/schema-daml01/#hasHomepage) the value of
which is the resource http://www-db.stanford.edu/Onto-
Agents.” The three parts of this statement are the subject
http://www.daml.org/projects/#11; the predicate http://
www.semanticweb.org/schema-damlO1/#hasHomepage; and
the object http://www-db.stanford.edu/OntoAgents. A set of
statements can be visualized as a graph. The graph in Fig-
ure 2 extends the statement in Figure 1 by adding the prop-
erty http://purl.org/dc/elements/1.1/Creator with value Ste-
fan Decker (a literal).

It might seem strange that predicates are also resources
with URI labels, but it eliminates ambiguities that arise

IEEE INTERNET COMPUTING

S POTLI GHT

Subject

http:/ /www.SemanticWeb.org/schema-daml01/#hasHomepage

Predicate Object

hh‘p://www.dom|.org/proiects/#1 1

Figure 1. A simple RDF statement. The resource “http://www.daml.org/projects/#11” is a subject with a property
“http:/ /www.SemanticWeb.org/schema-daml-01/#hasHomepage.” The value of the property is the object “http:/ /www-

db.stanford.edu/OntoAgents.”

http:/ /www.SemanticWeb.org/schema-daml01/#hasHomepage

\

_—
-

http:/ /www.daml.org/projects/#11

Figure 2. RDF data model graph. The property “http://purl.org/DC/#Creator” with value “Stefan Decker” (a literal) is

hﬂp://pur|.org/dc//e|ements/] .1/Creator

Y

hﬂp://www-db.sfonford.edu/OntoAgenfs

Word.edu/ OntoAgents

"Stefan Decker"

joined with the simple statement in Figure 1 to form a graph.

from using only word identifiers. For example,
vocabulary providers can define different versions
of the predicate hasHomepage. URIs provide
unique identifiers for each version.

Additional Vocabulary

The XML-namespace syntax” is used to abbreviate
URIs in statements. For instance, we can define
the substitution of the namespace-prefix sw for
http://www.SemanticWeb.org/schema-daml01/#,
and then write simply sw:hasHomepage. In this
tutorial, we use the namespace prefix rdf for
vocabulary defined in the RDF model and syntax
specification.? The prefix can be expanded to
http:/ /www.w3.0rg/1999/02/22-rdf-syntax-ns#,
which is the namespace defined for RDF-specific
vocabulary.

The rdf namespace defines the property
“rdf:type” to denote type relationships between two
resources. The rdf:type property is particularly use-
ful in conjunction with the Class and subClassOf
vocabulary defined in the RDF Schema Specifica-
tion,* where rdf:type is used like the instanceOf rela-
tionship in object-oriented languages.

IEEE INTERNET COMPUTING

Representing collections. We often need to make
statements about collections of resources, for exam-
ple, the members of a project. We could make sin-
gle statements about each element of the collection;
however, if we wish to make a statement about all
members of a project (where the individual mem-
bers might change), we must use a container.
RDF defines three types of containers that can
represent collections of resources or literals:

m Bagsare unordered lists, for example, a class ros-
ter where the order of student names is not
important. Bags dont enforce set semantics, so
a value can appear several times in a Bag.

m Sequencesare ordered lists. Sequences represent,
for example, a batch of jobs submitted to a
processor, where the job order is important. Like
Bags, Sequences permit duplicate values.

» Alternatives are lists from which the property
can use only one value. We could use alterna-
tives to express, for example, the options of fly-
ing or driving from San Francisco to San Diego,
and an application could choose a suitable alter-
native.

http://computer.org/internet/ NOVEMBER » DECEMBER 2000

69

70

T UTOR

http://www.daml.org/projects/#11

sw:hasMembers

rdf: 2

"Gio Wiederhold" |

"Stefan Decker"
»| "Sergey Melnik"

Figure 3. An rdf:Bag specifying the members of the DAML project.

In Figure 3, the resource http://www.daml.org/
projects/#11 has the property sw:hasMembers, whose
value is a container of the type bag. The bag is repre-
sented by an intermediate node. To refer to the inter-
mediate node, you can give it an identifier like
bagid1. An rdf:type arc specifies bagid1 as an rdf:Bag,
and ordinal properties (rdf:_1 through rdf:_4) point
to literals representing members’ names.

Reifying statements. In RDF, we want to be able to
make statements about statements. To refer to a
statement, we need to treat it like a resource. The
process of associating a statement and a specific
resource representing the statement is formally
called reification. The statement that has been mod-
eled as a resource is called a reified statement.

Consider, for example, the following statement:
“http://www.daml.org/projects/#11 is an NSF-fund-
ed project.” We want to oppose this statement
because it is not true (the project is funded by
DARPA). To represent the statement, “The members
of the project oppose the statement that
hetp://www.daml.org/projects/#11 is an NSF-funded
project,” we must reify it by introducing a new
resource (node in the graph) to represent the original
statement. We type the new resource using the RDF-
defined resource rdf:Statement, and then model the
statement’s subject, object, and predicate with the
special properties (rdf:subject, rdf:object, and rdf:pred-
icate) defined in the RDF specification for this task.

As shown in Figure 4, the reified statement’s
rdf:subject property is the URI of the OntoAgents
project; the rdf:object property value is the original
statement’s object (the NSF identifier); and the
rdf:predicate property value is the resource repre-
senting the predicate in the original statement
(sw:fundedBy).

NOVEMBER » DECEMBER 2000 http://computer.org/internet/

rdf: 3

"Prasenijit Mitra"

The only thing missing now is the statement
about the reified statement: “All members of the
OntoAgents project oppose the original statement.”
To model this, we introduce an additional arc,
labeled sw:opposedBy, which ends at the rdf:Bag
resource defined in Figure 3.

RDF Schema

The RDF Schema Specification,® which became a
W3C candidate recommendation in March 2000,
is an RDF application that introduces an object-
oriented, extensible type system to RDE RDF
Schema provides means to define property domains
and ranges, and class and subclass hierarchies.

In RDF Schema a property is not “local” to a
class, as an attribute usually is in object-oriented
languages. Instead, properties are global and
described in terms of the classes they connect. To
illustrate the use of RDF Schema, we will now
define the vocabulary used in the previous exam-
ples. We use the namespace prefix rdfs to abbre-
viate the RDF Schema namespace identifier
http:/ /www.w3.0rg/2000/01/RDF schemat.

Figure 5 (on page 72) depicts an RDF schema
that defines the class sw:Project and two proper-
ties, sw:hasHomepage and sw:hasMembers. The
class is defined by typing it with the resource
rdfs:Class, which is defined as a metaclass in the
RDF Schema Specification. sw:Project is also
defined as a subclass of rdfs:Resource, which is the
most general class in the RDF Schema class hier-
archy. The rdfs:subClassOf property is considered
to be transitive.

All properties are defined by typing them with
the rdfs:property resource class. Furthermore, a
property’s domain and range can be restricted using
the rdfs:domain and rdfs:range properties. For exam-

IEEE INTERNET COMPUTING

S POTLI GHT O

rdf:Statement

rdf:type

rdf:subject

http://www.daml.org/projects/#11

rdf:predicate

sw:opposedBy

Statement 1
rdf:object

http:/ /www.nsf.gov

Y

Figure 4. Graphical representation of a reified statement. In the statement, the members of the Onto-
Agents project oppose the statement that says the OntoAgents project is funded by NSF.

ple, the property sw:hasHomepage has the domain
sw:Project and a range rdfs:Resource. Using these def-
initions, RDF data can be tested for compliance
with a particular RDF-schema specification.

The RDF Schema Specification defines addi-

tional modeling primitives:

» rdfs:label defines a human-readable name format;

» rdfs:comment lets developers make comments;

» rdfs:subPropertyOf indicates that a property is usu-
ally subsumed by another property (for example,
the property fatherOf is subsumed by the proper-
ty parentOf because every father is also a parent);

» rdfs:seeAlso and rdfs:isDefinedBy indicate relat-
ed Web pages that contain additional RDF
information (for example, a schema);

» rdfs:ConstraintResource and rdfs:ConstraintProper-
ty define advanced constraint mechanisms that
are not covered by the RDF Schema (for exam-
ple, we could define a cardinality constraint by
defining a property maxCardinality, which is a
subclass of rdfs:ConstraintProperty with a domain
of rdf:Property and range of Integer). This is an
extensibility mechanism only, which allows
today’s RDES processors to determine that there
are constraints they don’t understand.

As a convention, application developers should put
an RDF schema document declaring the vocabu-
lary associated with a particular namespace at the
namespace URL. The role of the schema document
is similar to that of a contract: By delivering an
RDF schema, the application developers guarantee
that their application can work with RDF instance
data complying with the RDF schema.

However, the language provided by RDF
Schema is weaker than other modern knowledge
representation languages. For example, there is no

IEEE INTERNET COMPUTING

standardized way to describe cardinality con-
straints. Recent approaches like DAML (http://
daml.semanticweb.org) and OIL (http://oil.seman-
ticweb.org) extend RDF Schema and provide full-
fledged ontology modeling languages.

RDF Syntax

The interchange of data represented in RDF must
be facilitated through a concrete serialization syn-
tax. XML is an obvious choice, and the RDF spec-
ification uses it. However, the RDF data model is
not tied to a particular syntax. It can be expressed
in any syntactic representation; it can also be
extracted from non-RDF data sources. The XML
serialization syntax of RDF is hard to understand,
but RDF application programming interfaces
(APIs) are supposed to shield developers from the
details of the serialization syntax and to let them
handle RDF data as graphs (see the sidebar, “RDF
Tool Support and Deployments” on page 73). In
this tutorial, we will illustrate the syntax with
examples, but we will not cover all possible uses of
the XML serialization syntax defined in the RDF
specification.

The specification suggests two syntaxes for seri-
alizing RDF data in XML: abbreviated and stan-
dard. Both use the XML namespace mechanisms
to abbreviate URIs. The RDF syntax is defined to
look like existing XML documents. For example,
it tries to be “human-readable” and closely resem-
bles data representation in the simple object access
protocol (SOAP).’ Figure 6 shows the XML serial-
ization of the RDF graphs from Figures 2. (Note
that we have left out the namespace declarations.)

RDF can be embedded in an XML document. To
make the segment in Figure 6 a correct RDF docu-
ment, we just have to add the namespace declaration
shown in Figure 7. RDF code usually starts and

http://computer.org/internet/ NOVEMBER » DECEMBER 2000

71

rdfs:range

rdfs:subClassOf
rdf:type

rdfs:domain

sw:Project sw:hasHomepage

rdfs:domain

rdf:type

rdf:type

rdfs:Literal

rdfs:range

Figure 5. RDF schema definitions defining the vocabulary used in the previous figures.

<Project rdf :about="http:/ /www.daml.org/projects/#11">
<hasHomepage>
<rdfs:Resource rdf:ID="http:/ /www-db.stanford.edu/OntoAgents”>
<dc:Creator>Stefan Decker</dc:Creator>
<rdfs:Resource>
</hasHomepage>
</Project>

Figure 6. Abbreviated XML serialization defining an instance of “Pro-
ject,” which has a home page. The home page itself has a creator.
Please note that namespace declarations are omitted.

<exml version="1.0"2>

<rdf:RDF
xmlns="http:/ /www.SemanticWeb.org/schema-daml01#”
xmlns:rdf= “http:/ /www.w3.0rg/1999/02/22-rdf-syntax-ns#”
xmins:rdfs="http:/ /www.w3.0rg/2000/01/rdf-schema#”
xmlns:dc="http://purl.org/ dc/elements/1.1/">

</ r'c#:RDF>

Figure 7. RDF namespace declaration. Adding the RDF declaration
to the XML serialization in Figure 6 forms a correct RDF document.

ends with indicated <rdf:RDF> and </rdf:RDF> tags,
but the tags are optional if the processing applica-
tion already knows to expect RDF data.

An RDF description starts either with a typing
identifier (such as project, to denote the type of the
resource described) or simply with rdf:Description,
if no explicit typing is given. Then an ID can be
defined, usually with the rdf:about or rdf:ID XML
attribute, to enable references to the defined
resource.

The next level of nested tags (for example,
hasHomepage in Figure 6) gives properties of the
resource denoted by the ID. The values of the prop-
erties are RDF resources, which can again have

72 NOVEMBER * DECEMBER 2000 hitp://computer.org/internet/

other properties (for example, the resource http://
www.db.stanford.edu/OntoAgents in Figure 6 has a
property dc:Creator with a certain value).

Conclusion
With its built-in notion of resources and relationship
between resources, RDF aims to fulfill the promise
to populate the Web with machine-processable infor-
mation. The simplicity of the RDF data model
makes representing data straightforward, and more
sophisticated representation languages like the Uni-
fied Modeling Language (http://www.omg.org/
technology/uml/ and http://wwwdb.stanford.edu/
~melnik/rdf/uml/) or Description Logics® can be
defined on top of RDE

In a sense, RDF is the lowest common denom-
inator for establishing interoperation between Web
applications. Being object-oriented, it has a more
suitable data model for exchanging information
than XML, and it is extremely flexible for defining
new vocabularies. RDF is the ideal tool for the next
phase in the development of the Web, when vocab-
ularies and vocabulary marketplaces will become
more important.

Further information about these topics can be

found at http://www.w3.org/rdf/ and heep://www.

semanticweb.org. "
Acknowledgments

We thank Ora Lassila for detailed comments on a draft of this
tutorial.

References

1. O. Lassila, “Web Metadata: A Matter of Semantics,” /EEE
Internet Computing, vol. 2, no. 4, July/Aug. 1998, pp. 30-
37.

2. O. Lassila and R. Swick, “Resource Description Framework
(RDF) Model and Syntax Specification,” World Wide Web
Consortium Recommendation, Feb. 1999; available at

htep://www.w3.0rg/ TR/REC-rdf-syntax/.

IEEE INTERNET COMPUTING

S POTLI GHT O N

. T. Bray, D. Hollander, and A. Layman, “Namespaces in
XML,” W3C Recommendation, Jan. 1999; available at
heep://www.w3.org/ TR/REC-xml-names/.

. D. Brickley and R. Guha, “Resource Description Framework
(RDF) Schema Specification,” W3C Candidate Recom-
mendation, Mar. 2000; available at http://www.w3.org/
TR/2000/CR-RDF-schema-20000327.

. D.Boxetal., “Simple Object Access Protocol (SOAP) 1.1,”
W3C note, May 2000; available at http://www.w3.org/
TR/2000/NOTE-SOAP-20000508.

. L. Horrocks et al., “The Ontology Interchange Language
(OIL)” tech. report, Free University of Amsterdam, 2000;

available at http://www.ontoknowledge.org/oil/.

resentation, and inferencing on the Web. He consults fre-

quently on RDE XML, and interoperability issues.

Prasenjit Mitra is a doctoral candidate at Stanford University. He
obtained a bachelor of technology with honors in computer
science and engineering from the Indian Institute of Technol-
ogy, Kharagpur, and an MS in computer science from the Uni-
versity of Texas at Austin. His research interests are the seman-

tics of knowledge, knowledge bases, and databases and logic.

Sergey Melnik is a visiting researcher in the computer science
department at Stanford University. His research interests

include knowledge representation and database systems for

Stefan Decker is a postdoctoral fellow in the computer science
department at Stanford University. His research interests

include intelligent information integration, knowledge rep-

the Web, information integration, and digital libraries.

Readers can contact the authors at {stefan,prasen9,melnik}@

db.stanford.edu.

RDF Tool Support and Deployments

Various tools are already available for handling RDF and
RDF schemas. We list just a few here; a more complete list
is available at the W3C’s RDF home page at http://www.
w3.org/RDF/.

The Protégé-2000 Ontology Editor supports the creation
of RDF schemas and RDF data. It is a system for knowledge-
base design and knowledge acquisition using Java. Pro-
tégé-2000 was developed at Stanford University and is
available under the open-source Moxzilla public license at
http:/ /www.smi.stanford.edu/projects/protege/.

Sergey Melnik has implemented a Java-based RDF API
that includes an XML and RDF parser, schema-based vali-
dation facilities, cryptographic digests of RDF models and
statements, UML support on top of RDF, and support for RDF
schema handling in Java. The APl is available under an
open-source license from http://www-db.stanford.edu/
~melnik/rdf/api.html.

SiLRI is a lightweight deductive database that can rea-
son using RDF metadata. It is also Java based and avail-
able under an open-source license from http://www.aifb.
uni-karlsruhe.de/~sde/rdf.

Ramanathan V. Guha implemented an RDF Database
(RDFDB), based on the Berkeley DB. It supports a graph-
oriented AP| using a textual query language similar to SQL,
and aims to scale to millions of nodes and triples. RDFDB
can be downloaded from http://rdfdb.sourceforge.net.

The FRODO RDFSViz provides a visualization service
for ontologies represented in RDF Schema. It uses the Java
RDF APl implementation from Sergey Melnik and the
Graphviz graph drawing program (AT&T and Lucent Bell

IEEE INTERNET COMPUTING

Labs). The FRODO RDFSViz tool is available at http://
www.dfki.uni-kl.de/frodo/RDFSViz/.
Current deployments of RDF technology include:

» The Platform for Internet Content Selection (PICS) is a
system for associating metadata (PICS “labels”) with
Internet content. A specification for describing PICS
metadata in RDF is available at http://www.w3.org/
TR/ rdf-pics.

= Netscape’s Open Directory Project, available as an RDF
dump at http://dmoz.org/rdf/.

= The open.gov.uk service, a first entry point to UK public
sector information on the Internet, uses the Dublin Core
RDF vocabulary to describe each of the resources
available on the site. The service is available at
http://open.gov.uk.

m The California Environmental Resources Evaluation
System (CERES) Thesaurus Effort and U.S. Geological
Survey Biological Resource Division, which uses RDF to
build digital thesauri, is available at http://ceres.ca.gov/
thesaurus/.

» LastMileServices (http://www.lastmileservices.com), a
telecommunications startup, is building an RDF-based
vocabulary for the telecommunications sector.

m The RDF Schema, available at http://www.cim-
logic.com/cim-rdf/CIM-schema-cimu09a.rdfs, is cur-
rently in the process of becoming an International
Electrotechnical Commission standard. The RDF Schema
format is the basis for an OMG standard created within
the Utility Domain Task Force.

http://computer.org/internet/ NOVEMBER » DECEMBER 2000

73

