Carnegie
Mellon
University

95-733 Internet of Things
Flow Based Programming and Edge
Analytics

95-733 Internet of Things

Carnegie Mellon University

Node-Red is a browser
based flow language

95-733 Internet of Things
Carnegie Mellon University

Node-Red

Create additional flow screens,

f Flow 2 - f) dashboard
input » ‘ Layout | Ther Site "
inject " II[rabs & Links + "3
| caten ¥ 4 e e 1
Drag node from here y g
S ‘- == into screen Y 4 > B8 Senso "
link R— , > [9 Light
W’ I

s link nodes '—m-~,)
s together y i
SensorsiF T T A o =

—~——
bsocke s s v
bk = ‘ 4 . - Layout of User
s -~ 24 Interface screen
udp \
- tput - -
— Provides usage info on

selected node

95-733 Internet of Things
Carnegie Mellon University

Node Red

Flow Based Programming created by J. Paul Morrison (1970’s).
Node-Red is a visual flow based tool based on Node.js.
Each black box does one thing well. >750 boxes available.
Built for programmers and non-programmers.

No or little programming. Hmmm.

Two short videos:

Node Red Introduction:
https://developer.ibm.com/components/node-red/videos/node-red-essentials
Node Red Fundamentals
https://www.youtube.com/watch?v=3AR432bguQY

95-733 Internet of Things £l
Carnegie Mellon University

Definitions

Edge analytics is an approach to data collection and
analysis in which an automated analytical computation is
performed on data at a sensor, network switch or other
device instead of waiting for the data to be sent back to a
centralized data store. — Whatls.com.

The edge itself is a constrained area:

Constraints include weight, space, cost, battery

life, disconnected operation, intermittent

networks, limited connectivity, cost of network usage, etc.

An edge environment may contain a half dozen sensors or
thousands of sensors.

V\ée might need a global view of what is going on on the
edge.

95-733 Internet of Things 5
Carnegie Mellon University

Centralized and Edge Analytics

Quarks Edge Devices Communication Centralized Analytics

& |

="
% —_
v
<

0
-
A ﬁ Custom Hub “

From http://edgent.incubator.apache.org

95-733 Internet of Things
Carnegie Mellon University

Apache Edgent

IBM Quarks launched in February 2016.
Became Edgent and open sourced to Apache.

Designed for edge analytics on a constrained
device.

IBM’s Node Red, Apache Spark Streaming and
Apache Flink are typically found on the back end.

Front end analytics important but may not be as
rich as data stores on the backend.

Edgent is an SDK for the edge (you pick and
choose what to deploy).

You may run on the edge with no communications
or only intermittent connectivity.

95-733 Internet of Things
Carnegie Mellon University

Edgent

May run on Rasberry Pi or Android devices

Currently Java based and does not run on Swift or
iIPhone

A simple linux box on the edge can run Java and
Edgent

Edgent is a programming model (functional flow
API) and a lightweight embeddable runtime for
edge analytics

95-733 Internet of Things
Carnegie Mellon University

Edge and Centralized
Analytics

Less and more selective communication to backend.
Make local decisions (valuable especially when
disconnected).

Central analytics system is not constrained like the
edge. Multiple devices may be reporting to the central
analytics system.

The edge may receive commands from the central
analytics system, for example, central may ask the
edge to report more often if conditions require.
Central analytics is not required but is a likely pattern.
Perhaps you only require local decision making.

The Central analytics system may have access to
systems of record as well as a much wider variety of

data over many devices and types of data.
95-733 Internet of Things 9
Carnegie Mellon University

Cool Edgent Use Case

Govt. requlations

Sensor reading water lev

Weather API

Rasberry Pi ‘ Sprinkler contr .
Running Edgent /

IBM Watson-IoT (MQTT)

Streaming analytics

https://youtu.be/Rvc1CqNIkOA?list=PLhZR82i0PONqrksME13f2t8tDMIhxUtCH

95-733 Internet of Things
Carnegie Mellon University

10

Edgent

Functional flow API for streaming analytics (Map,
Flatmap, Filter, Aggregate, Split, Union, Join,
Deadband filter)

Connectors (MQTT, HTTP, Websockets, JDBC, File
Kafka, IBM IoT Watson)

For example, the Java API allows you to send
JSON to an MQTT device

Bi-directional communications with the backend
Edgent uses Java Lambda expressions.
Let’s pause and look at Lambda expressions...

95-733 Internet of Things
Carnegie Mellon University

I

11

Java Lambda Expressions (1)

// ListenerTest, an example not from Edgent

package java.awt.event;

import java.util. EventListener;

public interface ActionListener extends EventListener §
public void actionPerformed(ActionEvent ¢);

h

// An interface with only one method is called a functional
interface.

// These interfaces are common in Java. See Runnable and
Comparator.

// What is required to implement this interface?
// Use lambda expressions for functional interfaces.

95-733 Internet of Things 1 2
Carnegie Mellon University

Java Lambda Expressions (2)

// Suppose we do not use lambdas and create an anonymous
// inner class to listen on a button

JButton testButton = new JButton("Test Button");
testButton.addActionListener(new ActionListener()<{
@Override public void actionPerformed(ActionEvent ae){
System.out.printin("Click Detected by Anon Class");
he

}
)

95-733 Internet of Things 13
Carnegie Mellon University

Java Lambda Expressions (3)

// add a second action listener using lambdas
testButton.addActionListener(

j -> System.out.printin("This click Detected by Lambda Listner"));

JFrame frame = new JFrame("Listener Test");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.add(testButton, BorderLayout.CENTER);
frame.pack();

frame.setVisible(true);

) The single method takes a single
argument. We are implementing
the method with the lambda
expression. In this case, we are
not using j in the method.

95-733 Internet of Things
Carnegie Mellon University

14

Java Lambda Expressions (4)

A lambda expression is composed of three parts:

Argument List Arrow Token Body
(int x, int y) -> X +Y;
(String x) -> Sytem.out.printin(x);
j -> System.out.printin("Hi"));

The body can be either a single expression or a statement block.
It completes the single abstract method in a functional interface.
The class of j may be figured out by the compiler.

15

95-733 Internet of Things
Carnegie Mellon University

Java Lambda Expressions (5)

// This interface is functional - only one method
interface TestInterface {

public void sayHelloToWhoever();
»

// This interface is functional - only one method
interface TestInterface2 {

public void sayHelloToWhoever(String x);
»

95-733 Internet of Things 16
Carnegie Mellon University

Java Lambda Expressions (6)

// Make a call on an implementation of
// TestInterface?2
public static void foo(TestInterface2 y) {

y.sayHelloToWhoever("Amy");
by

17
95-733 Internet of Things
Carnegie Mellon University

Java Lambda Expressions (7)

public class TestLambda {
public static void main(String...args) {
// We need an implemenation of the Testlnterface interface.
// The lambda expression provides that.
// The method takes no parameters.
Testlnterface i = () -> System.out.println("Mike");
i.sayHelloToWhoever();

// In TestInterface2, we need to handle x in the method.

// The compiler can figure that x is a String. We can drop “String”.
TestInterface2 j = (String x) -> System.out.printin(x + " is cool.");
j.sayHelloToWhoever("Sam");

// pass around a code block

foo(j);

// again

foo(x -> System.out.printin("Wow"));

95-733 Internet of Things
Carnegie Mellon University

18

Java Lambda Expressions (8)

package runabletest;
public class RunnnableTest {
public static void main(String[] args) {

System.out.println("=== RunnableTest ===");
// Anonymous classes - provide the implementation
// of run

Runnable r1 = new Runnable(){
@Override public void run(){
System.out.printin("Hello world one!");

b

19

95-733 Internet of Things
Carnegie Mellon University

Java Lambda Expressions (9)

// Lambda Runnable

Runnable r2 = () -> System.out.println("Hello world two!");
ril.run();
r2.run();

t

t

=== RunnableTest ===
Hello world one!

Hello world two!

20

95-733 Internet of Things
Carnegie Mellon University

Edgent Flow Programming

http://edgent.incubator.apache.org/docs/streaming-
concepts

95-733 Internet of Things
Carnegie Mellon University 21

http://edgent.incubator.apache.org/docs/streaming-concepts

Edgent Example(1)

import java.util.Random;
import quarks.function.Supplier;
// Every time get() is called, TempSensor
// generates a temperature reading.
public class TempSensor implements Supplier<Double> {
double currentTemp = 65.0;
Random rand;
TempSensor(){
rand = new Random();

95-733 Internet of Things 22
Carnegie Mellon University

Edgent Example(2)

@Override // the get() method defined in Supplier

public Double get() {
// Change the current temperature some random amount
double newTemp = rand.nextGaussian() + currentTemp;
currentTemp = newTemp;
return currentTemp;

¥
¥

95-733 Internet of Things
Carnegie Mellon University

Edgent Example(3)

// First download the appropriate jars

import java.util.concurrent. TimeUnit;

import org.apache.edgent.providers.direct.DirectProvider;
import org.apache.edgent.topology.TStream;

import org.apache.edgent.topology.Topology;

95-733 Internet of Things
Carnegie Mellon University

Edgent Example(4)

public class TempSensorApplication {
public static void main(String[] args) throws Exception {
// implements Supplier
TempSensor sensor = new TempSensor();

DirectProvider dp = new DirectProvider();
Topology topology = dp.newTopology();
TStream<Double> tempReadings = topology.poll(sensor, 1,
TimeUnit.MILLISECONDS);

TStream<Double> filteredReadings =

tempReadings.filter(reading -> reading < 50 || reading > 80);
filteredReadings.print();
dp.submit(topology);

95-733 Internet of Things
Carnegie Mellon University

Edgent Example(5)

42.21773497632803
43.778600196956134
43.50474973480867
43.825909511894686
45.161912344306764
46.12672565018012
47.566025733982215
47.660160245707836

95-733 Internet of Things
Carnegie Mellon University

