
95-733 Internet of Things
1

Carnegie Mellon Heinz College

95-733 Internet of Things
XMPP and Sensor Andrew

95-733 Internet of Things

22

Internet Protocol Suite

HTTP, Websockets, DNS, XMPP,
MQTT, CoAp

Application layer

TLS, SSL Application Layer (Encryption)
TCP, UDP Transport
IP(V4, V6), 6LowPAN Internet Layer
Ethernet, 802.11 WiFi,
802.15.4

Link Layer

Where are we?

We are here!

95-733 Internet of Things

XMPP

Extensible Messaging and
Presence Protocol

95-733 Internet of Things

Recall the IBM example
The XML is being
transferred in pieces.
The TCP connection
only closes at the end.

Security parameters
are established during
negotiation.

Note: there are two
XML documents
involved.

Would this work
over websockets?
Sure. It involves a
bidirectional
conversation.

95-733 Internet of Things

Within streams are XML
stanzas

• The example above uses the <message> stanza.
• Stanzas are well formed and complete XML messages.
• Three Stanza types enclosed in a stream tag:
• <Presence>

user status shared with all on the XMPP roster, ”I
am online” or ”I am interested in knowing about
your presence”, ...

• <IQ>
information query, request and change settings,
discovery of services

• <Message>
used for person to person chat

• These stanzas have many many options.

95-733 Internet of Things

Example Messages (1)
• The server pings the client with an information (IQ) stanza

<iq from='capulet.lit' to='juliet@capulet.lit/balcony’
id='s2c1' type='get'>
<ping xmlns='urn:xmpp:ping’/>

</iq>

• The client responds:
<iq from='juliet@capulet.lit/balcony' to='capulet.lit’

id='s2c1' type='result’/>

• A server pings another server:
<iq from='capulet.lit' to='montague.lit' id='s2s1' type='get'>

<ping xmlns='urn:xmpp:ping’/>
</iq>

95-733 Internet of Things

Example Messages (2)
• A client pings another client (an end-to-end ping):

<iq from='romeo@montague.lit/home'
to='juliet@capulet.lit/chamber'
type='get'
id='e2e1'>
<ping xmlns='urn:xmpp:ping'/>

</iq>

95-733 Internet of Things

XMPP XML Ping Schema
An XML Schema is used to describe the grammar and vocabulary
of an XML language. In this case, we are describing a simple ping
message.

<?xml version='1.0' encoding='UTF-8'?>
<xs:schema

xmlns:xs='http://www.w3.org/2001/XMLSchema'
targetNamespace='urn:xmpp:ping'
xmlns='urn:xmpp:ping'
elementFormDefault='qualified'>

95-733 Internet of Things

XMPP XML Ping Schema
<xs:annotation>

<xs:documentation>
The protocol documented by this schema is defined in
XEP-0199: http://www.xmpp.org/extensions/xep-0199.html

</xs:documentation>
</xs:annotation>

95-733 Internet of Things

XMPP XML Ping Schema
<xs:element name='ping' type='empty'/>
<xs:simpleType name='empty'>

<!– a type is being defined -- >
<xs:restriction base='xs:string'>
<!– with a type of string -->

<xs:enumeration value=''/> <!– with no content -->
</xs:restriction>

</xs:simpleType>
</xs:schema>

95-733 Internet of Things

XMPP Example Messages
• Presence example
• Multiple subscribers receive notifications whenever the

publisher (typically an end user) generates an event
related to network availability.

• Example publication
<presence

from='juliet@capulet.lit/balcony'>
<status>Happy</status>

</presence>

95-733 Internet of Things

XMPP Example Messages
• Example messages sent to subscribers:

<presence from='juliet@capulet.lit/balcony’
to='romeo@montague.lit/mobile'>
<status>Happy</status>

</presence>
<presence from='juliet@capulet.lit/balcony’

to='nurse@capulet.lit/chamber'>
<status>Happy</status>

</presence>
<presence from='juliet@capulet.lit/balcony’

to='benvolio@montague.lit/pda'>
<status>Happy</status>

</presence>

95-733 Internet of Things

XMPP From the perspective
of the application developer

• We do not want to work at the level of XML or JSON.
• We want middleware to provide support.
• Middleware separates concerns. It hides the details associated

with messaging.
• Details include marshalling and un-marshaling of parameters

and addressing.
• Details include generating the correct XMPP message to send.
• Details include reading and writing messages to the TCP layer.
• At the application programmer level, WE WANT NONE OF

THAT!
• Use middleware to hide all of that!

95-733 Internet of Things

XMPP Client in Ruby
Listing 1. Simple XMPP agent for word definitions (IBM)
require 'xmpp4r/client'
Create a *very* simple dictionary using a hash
hash = {}
hash['ruby'] = 'Great object oriented scripting language'
hash['xmpp4r'] = 'Simple XMPP library for ruby'
hash['xmpp'] = 'Extensible Messaging and Presence Protocol'
Connect to the server and authenticate
jid = Jabber::JID::new('bot@default.rs/Home')
cl = Jabber::Client::new(jid)
cl.connect
cl.auth('password')

95-733 Internet of Things

XMPP Client in Ruby
Indicate our presence to the server
cl.send Jabber::Presence::new

Send a salutation to a given user that we're ready
salutation = Jabber::Message::new('hal@default.rs', 'DictBot
ready')
salutation.set_type(:chat).set_id('1')
cl.send salutation

95-733 Internet of Things

XMPP Client in Ruby
Add a message callback to respond to peer requests
cl.add_message_callback do |inmsg|

Lookup the word in the dictionary
resp = hash[inmsg.body]
if resp == nil

resp = "don't know about " + inmsg.body
end
Send the response
outmsg = Jabber::Message::new(inmsg.from, resp)
outmsg.set_type(:chat).set_id('1')
cl.send outmsg

end

95-733 Internet of Things

Java uses the Smack API
In order to test the client, we'll need an XMPP server. To do so,
create an account on jabber.hot-chilli.net – a free Jabber/XMPP
service.
import org.jivesoftware.smack.Chat;
import org.jivesoftware.smack.ConnectionConfiguration;
import org.jivesoftware.smack.MessageListener;
import org.jivesoftware.smack.Roster;
import org.jivesoftware.smack.RosterEntry;
import org.jivesoftware.smack.XMPPConnection;
import org.jivesoftware.smack.XMPPException;
import org.jivesoftware.smack.packet.Message;
// Works with Android

95-733 Internet of Things

Java uses the Smack API

private XMPPConnection connection;
public void login(String userName, String password) throws

XMPPException {
// Use a local XMPP server
ConnectionConfiguration config = new

ConnectionConfiguration("localhost", 5222);
connection = new XMPPConnection(config);
connection.connect();
connection.login(userName, password);

}

95-733 Internet of Things

95-733 Internet of Things

Java uses the Smack API
public void displayBuddyList() {

Roster roster = connection.getRoster();
Collection<RosterEntry> entries = roster.getEntries();
System.out.println("\n\n" + entries.size() + " buddy(ies):");
for(RosterEntry r:entries) {

System.out.println(r.getUser());
}

}

Many XMPP Javascript libraries exist for real time chat within a
browser over websockets.

95-733 Internet of Things

XMPP And Things

XMPP Thing Discovery allows users to build IoT services and
applications using things without the need for a priori knowledge
of things.

https://ubiquity.acm.org/article.cfm?id=2822529

95-733 Internet of Things

General Discovery1
• A naming service provides service references if you have the

name in hand. Example: Phone book, the Domain Name Service
(DNS).

• A directory service provides service references if you have
attributes in hand. Examples include Google search and the
Lightweight Directory Access Protocol (LDAP).

• A discovery service is a directory service that allows registration,
de-registration, and lookUp of services in a spontaneous network
– where clients and services may come and go. Example: You
provide printer attributes and discover a printer.

• Discovery may be done with a directory server or be serverless.
• In serverless discovery, participants collaborate to implement a

decentralized discovery service. Two main models:
push model : services regularly advertise their services

(multicast).
pull model: clients multicast their queries.

1. Notes from Coulouris text on Distributed Systems

95-733 Internet of Things

XMPP and Thing Discovery
• During production of a Thing, decisions have to be made

whether the following parameters should be pre-configured,
manually entered after installation or automatically found
and/or created by the device if possible (zero-configuration
networking):

Parameters:
– Address and domain of XMPP Server.
– JID of the Thing.
– JID of Thing Registry, if separate from the XMPP Server.
– JID of Provisioning server, if different from the Registry

and XMPP server
• A provisioning server may be needed if the device needs special

configuration parameters from that server. Perhaps with user
involvement.

95-733 Internet of Things

XMPP and Thing Discovery
• If the address of an XMPP Server is not preconfigured,

the thing must attempt to find one in its local
surroundings. This can be done using one of several
methods:
Dynamic Host Configuration Protocol (DHCP)

- Server returns IP address as needed – device
issues a query to a well known broadcast
address. Response may include DNS location.

Multicast Domain Naming Service (mDNS)
- small network, no DNS server, P2P
- multicast a query message with a name.

The server with that name responds (broadcasts)
its IP address. Machines may update caches.
Build a directory of name, ip mappings

95-733 Internet of Things

XMPP and Thing Discovery
• Simple Service Discovery protocol SSDP/UPnP

(Universal Plug n Play)
- No DNS or DHCP, Uses UDP and multicast

addresses
- A UPnP compatible device from any vendor can

dynamically join a network, obtain an IP
address, announce its name, advertise
or convey its capabilities upon request, and
learn about the presence and capabilities of
other devices.1 Uses XML messages.

• The XMPP server and registry are found and the Thing
registers itself with the following XMPP message:

1. Wikipedia

95-733 Internet of Things

XMPP and Thing Registration
<iq type='set'

from='thing@example.org/imc'
to='discovery.example.org'
id='1'>

<register xmlns='urn:xmpp:iot:discovery'>
<str name='SN' value='394872348732948723'/>
<str name='MAN' value='www.ktc.se'/>
<str name='MODEL' value='IMC'/>
<num name='V' value='1.2'/>
<str name='KEY' value='4857402340298342'/>

</register>
</iq>

95-733 Internet of Things

Suppose a sensor is
registered. How do we read

from it?

95-733 Internet of Things

Reading sensor data
• Request to a Thing for an Automatic Meter Reading
<iq type='get' from='client@clayster.com/amr'

to='device@clayster.com' id='S0001'>
<req xmlns='urn:xmpp:iot:sensordata' seqnr='1’

momentary='true'/>
</iq>
• Response from the Thing – I got your request
<iq type='result' from='device@clayster.com'

to='client@clayster.com/amr' id='S0001'>
<accepted xmlns='urn:xmpp:iot:sensordata' seqnr='1'/>

</iq>

95-733 Internet of Things

Data arrives from a sensor
<message from='device@clayster.com'

to='client@clayster.com/amr'>
<fields xmlns='urn:xmpp:iot:sensordata' seqnr='1' done='true'>

<node nodeId='Device01'>
<timestamp value='2013-03-07T16:24:30'>

<numeric name='Temperature' momentary='true'
automaticReadout='true' value='23.4' unit='°C'/>

<numeric name='load level' momentary='true'
automaticReadout='true'
value='75' unit='%'/>

</timestamp>
</node>

</fields>
</message>

<!– Note how the units are stated and the lack of ambiguity -->

95-733 Internet of Things

Sensor Andrew Based on
XMPP (2007)

95-733 Internet of Things

Non-functional characteristics:
Open (XMPP)

Standards based
Standard message formats

Heterogeneous sensors
Security, Privacy Challenges
Reliable (ejabberd – Erlang open

source)
Fault tolerant (ejabberd, Erlang)

In ejabberd all information can be
stored on more than one node,
nodes can be added or replaced
“on the fly”. Erlang is big on
handling failures

Performance (speed) XML is
typically far slower than
compact binary messages

Extensible
Manageable
Cost

95-733 Internet of Things

Sensor Andrew
A good architecture survives
change. What could change?

Price of things
Variety of things (sensors)
Applications
Ubiquity of networks
Speed of networks
Battery life
Speed of processors
Effects of failure
Government regulations?

We do not allow cars on
the road without seatbelts.
We may need governments
to regulate IOT devices
for security. New California
IoT law goes into effect
January 1, 2020

