
95-702 Distributed Systems Information
System Management 1

Organizational Communications and
Distributed Object Technologies

Lecture 8
 Chapter 4: Inter-process

Communications

95-702 Distributed Systems Information
System Management 2

Middleware layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

This
chapter

RMI and RPC

95-702 Distributed Systems Information
System Management 3

Socket and Port Abstractions

message

agreed port
any port
 socket
socket

Internet address = 138.37.88.249
Internet address = 138.37.94.248

other ports

client
 server

95-702 Distributed Systems Information
System Management 4

import java.net.*;

import java.io.*;

public class UDPClient{

 public static void main(String args[]){

// args give message contents and server hostname

DatagramSocket aSocket = null;

 try {

aSocket = new DatagramSocket();

byte [] m = args[0].getBytes();

InetAddress aHost = InetAddress.getByName(args[1]);

int serverPort = 6789;

DatagramPacket request = new DatagramPacket(m, args[0].length(), aHost, serverPort);

aSocket.send(request);

byte[] buffer = new byte[1000];

DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

aSocket.receive(reply);

System.out.println("Reply: " + new String(reply.getData()));

 }

 catch (Exception e)

 {

 System.out.println("Problem: " + e.toString());

 }

 finally {

 if(aSocket != null) aSocket.close();

 }

 }

}

A UDP Client

95-702 Distributed Systems Information
System Management 5

A UDP Server import java.net.*;

import java.io.*;

public class UDPServer {

 public static void main(String args[]){

DatagramSocket aSocket = null;

try{

 aSocket = new DatagramSocket(6789);

 byte[] buffer = new byte[1000];

 while(true){

 DatagramPacket request = new DatagramPacket(buffer, buffer.length);

 aSocket.receive(request);

 System.out.println("Got request");

 DatagramPacket reply = new DatagramPacket(request.getData(), request.getLength(),

 request.getAddress(), request.getPort());

 aSocket.send(reply);

 }

 }

 catch (Exception e){

 System.out.println("Problem: " + e.getMessage());

 }

 finally {

 if(aSocket != null) aSocket.close();

 }

 }

}

Two Demonstrations

95-702 Distributed Systems Information
System Management

6

1)  Run the UDP client and server on the same machine.

 /Users/mm6/mm6/mm6/www/95-702/UDPNetworking
 java UDPServer
 java UDPClient hello localhost

2) Run a UDP client on an Android device. The server will
 run on a laptop. In this case, the UDP server will accept
 arithmetic expressions.
 Netbeans 6.8: Homework3Part1UDPProject/UDPServer.java
 Eclipse: AndroidUDPCalculatorProject

Quiz:

 What if the client sends a packet and that packet is lost?
 Does this server handle concurrent visitors?
 Is the packet safe from eavesdropping?
 Could we visit this server with a .Net client?

95-702 Distributed Systems Information
System Management 7

 TCP Client
import java.net.*;
import java.io.*;
public class TCPClient {

 public static void main (String args[]) {
 // arguments supply message and hostname of destination
 Socket s = null;
 try{
 int serverPort = 7896;
 s = new Socket(args[1], serverPort);
 DataInputStream in = new DataInputStream(s.getInputStream());
 DataOutputStream out =
 new DataOutputStream(s.getOutputStream());
 out.writeUTF(args[0]); // UTF is a string encoding see Sn 4.3
 String data = in.readUTF();
 System.out.println("Received: "+ data) ;

 }
 catch (Exception e) {

 System.out.println("Trouble: " + e.getMessage());
 }

 finally {
 if(s!=null) try {s.close();}
 catch (IOException e) {
 System.out.println("close:"+e.getMessage());
 }
 }
 }
}

95-702 Distributed Systems Information
System Management 8

TCP Server(1)
import java.net.*;

import java.io.*;

 public class TCPServer {

 public static void main (String args[]) {

try {

 int serverPort = 7896;

 ServerSocket listenSocket = new ServerSocket(serverPort);

 while(true) {

Socket clientSocket = listenSocket.accept();

 System.out.println("Got connection");

Connection c = new Connection(clientSocket);

 }

}

 catch(IOException e) {

 System.out.println("Listen :"+e.getMessage());

 }

 }

}

95-702 Distributed Systems Information
System Management 9

TCP Server(2)
class Connection extends Thread {

 DataInputStream in;
 DataOutputStream out;
 Socket clientSocket;
 public Connection (Socket aClientSocket) {
 try {
 clientSocket = aClientSocket;
 in = new DataInputStream(clientSocket.getInputStream());
 out =new DataOutputStream(clientSocket.getOutputStream());
 this.start();
 }

 catch(IOException e) {System.out.println("Connection:"+e.getMessage());}
 }

 public void run() {
 try {
 String data = in.readUTF();
 out.writeUTF("From server: " + data);
 }

 catch(Exception e) {
 System.out.println("EOF:"+e.getMessage());
 }

 finally{ try {clientSocket.close();}catch (IOException e){/*close failed*/}}
 }

}

Demonstration

95-702 Distributed Systems Information
System Management

10

/Users/mm6/mm6/mm6/www/95-702/TCPNetworking

java TCPServer
java TCPClient hello localhost

95-702 Distributed Systems Information
System Management 11

Quiz

 What if the client sends a packet and that packet is lost?
 Does this server handle concurrent visitors?
 Is the packet safe from eavesdropping?
 Could we visit this server with a .Net client?

95-702 Distributed Systems Information
System Management 12

External Data Representation
and Marshalling

Messages consist of sequences of bytes.

Interoperability Problems
 Big-endian, little-endian byte ordering

 Floating point representation
 Character encodings (ASCII, UTF-8, Unicode, EBCDIC)

So, we must either:
 Have both sides agree on an external representation or

 transmit in the sender’s format along with an indication
 of the format used. The receiver converts to its form.

95-702 Distributed Systems Information
System Management 13

External Data Representation
and Marshalling

External data representation – an agreed standard for the
representation of data structures and primitive values

Marshalling – the process of taking a collection of data items
and assembling them into a form suitable for transmission in
a message

Unmarshalling – is the process of disassembling them on
arrival into an equivalent representation at the destination

The marshalling and unmarshalling are intended to be carried
out by the middleware layer

95-702 Distributed Systems Information
System Management 14

External Data Representation
and Marshalling

Quiz:

 If, in the TCPNetworking example, we passed java
 objects rather than simple characters, would the
 server interoperate with a .NET client?

95-702 Distributed Systems Information
System Management 15

Three Important Approaches
To External Data Representation and Marshalling:

 CORBA’s CDR binary data may be used by
 different programming languages

 Java and .Net Remoting Object Serialization are both
 platform specific (that is, Java on both sides or .Net
 on both sides) and binary.

 XML is a textual format, verbose when compared
 to binary but more interoperable.

95-702 Distributed Systems Information
System Management 16

Interoperability
Consider int j = 3;

What does it look like in memory?
00000000000000000000000000000011

How could we write it to the wire?
Little-Endian approach Big-Endian Approach
Write 00000011 Write 0000000
Then 00000000 Then 0000000
Then 00000000 Then 0000000
Then 00000000 Then 0000011

The receiver had better know
which one we are using!

95-702 Distributed Systems Information
System Management 17

Binary vs. Unicode

Consider int j = 3;
j holds a binary representation 00…011
We could also write it in Unicode.
The character ‘3’ is coded as 0000000000110011
Binary is better for arithmetic.

The character ‘Ω’ is coded as 0000001110101001
The number 43 can be written as a 32 bit binary
integer or as two 16 bit Unicode characters

The receiver had better know
which one we are using!

Let’s Examine Three Approaches

•  CORBA
•  Java
•  XML

95-702 Distributed Systems Information
System Management 18

95-702 Distributed Systems Information
System Management 19

CORBA Common Data Representation
(CDR) for constructed types

T
y
p
e
 Re
pr
e
s
e
n
ta
t
i
o
n

s
e
q
ue
n
ce
 l
e
n
g
th
(
u
n
si
g
n
ed
l
o
n
g
)
fo
ll
ow
ed
b
y
el
e
m
e
nt
s
i
n
o
r
d
e
r

s
t
ri
n
g
 l
e
n
g
th
(
u
n
si
g
n
ed
l
o
n
g
)
fo
ll
ow
ed
b
y
ch
a
ra
c
te
rs
i
n o
r
d
e
r
(
ca
n
 al
so

ca
n
h
av
e
w
i
de
ch
a
ra
c
te
rs)

a
r
ra
y
 a
rr
ay
e
le
m
e
n
t
s i
n
o
r
de
r (
n
o l
en
g
t
h s
p
e
ci
f
ie
d b
eca
us
e
i
t
is
f
i
x
e
d
)

s
t
ru
ct
 i
n t
he
or
de
r o
f
de
c
la
r
at
i
o
n o
f
t
he
co
mp
o
n
e
n
t
s

e
n
u
m
e
r
a
t
e
d
 u
n
s
i
g
n
e
d
l
o
n
g
(
t
h
e
v
a
l
ue
s a
re
 s
pe
c
i
f
ie
d
b
y t
he
o
r
de
r d
ec
l
ar
e
d
)

u
ni
o
n
 t
y
p
e
ta
g f
o
l
l
o
we
d b
y
t
h
e s
el
e
cte
d m
e
mb
er

•  Can be used by a variety of programming languages.
•  The data is represented in binary form.
•  Values are transmitted in sender’s byte ordering which is
 specified in each message.
•  May be used for arguments or return values in RMI.

95-702 Distributed Systems Information
System Management 20

CORBA CDR message

 struct with value: {‘Smith’, ‘London’, 1934}

0–3

4–7

8–11

12–15

16–19

20-23

24–27

5

"Smit"

"h___"

 6

"Lond"

"on__"

1934

index in

sequence of bytes
 4 bytes

notes

on representation

length of string

‘Smith’

length of string

‘London’

unsigned long

In CORBA, it is assumed that the sender and receiver have common
knowledge of the order and types of the data items to be transmitted
in a message.

95-702 Distributed Systems Information
System Management 21

CORBA

CORBA Interface Definition Language (IDL)

struct Person {
 string name;
 string place;
 long year;
};

CORBA Interface Compiler

Appropriate marshalling
and unmarshalling operations

generates

95-702 Distributed Systems Information
System Management 22

Java
public class Person implements Serializable {
 private String name;
 private String place;
 private int year;
 public Person(String nm, place, year) {
 nm = name; this.place = place; this.year =

year;
 }
 // more methods
}

95-702 Distributed Systems Information
System Management 23

Java Serialization
 Serialization refers to the activity of flattening an

object or even a connected set of objects
 - May be used to store an object to disk
 - May be used to transmit an object as an

 argument or return value in Java RMI
 - The serialized object holds Class

 information as well as object instance data
 - There is enough class information passed to
 allow Java to load the appropriate class at
 runtime. It may not know before hand what
 type of object to expect

95-702 Distributed Systems Information
System Management 24

Java Serialized Form

The true serialized form contains additional type markers; h0 and h1
are handles are references to other locations within the serialized form
The above is a binary representation of {‘Smith’, ‘London’, 1934}

Serialized values

Person

3

1934

 8-byte version number

int year

5 Smith

java.lang.String

name:

6 London

h0

java.lang.String

place:

h1

Explanation

class name, version number

number, type and name of

instance variables

values of instance variables

95-702 Distributed Systems Information
System Management 25

XML
<p:person p:id=“123456789” xmlns:p=“http://www.andrew.cmu.edu/~mm6”>
 <p:name>Smith</p:name>
 <p:place>London</p:place>
 <p:year>1934</p:year>
</p:person>

•  Textual representation is readable by editors like Notepad or Textedit.
•  But can represent any information found in binary messages.
•  How? Binary data (e.g. pictures and encrypted elements) may be represented
 in Base64 notation.
•  Messages may be constrained by a grammar written in XSD.
•  An XSD document may be used to describes the structure and type of the data.
•  Interoperable! A wide variety of languages and platforms support
 the marshalling and un-marshalling of XML messages.
•  Verbose but can be compressed.
•  Standards and tools still under development in a wide range of domains.

Passing Pointers

95-702 Distributed Systems Information
System Management 26

In systems such as Java RMI or CORBA or .NET remoting, we need a
way to pass pointers to remote objects.

Quiz: Why is it not enough to pass along a heap address?

95-702 Distributed Systems Information
System Management 27

Representation of a Remote
Object Reference

Internet address
 port number
 time
 object number
 interface of

remote object

32 bits
 32 bits
 32 bits
 32 bits

A remote object reference is an identifier for a remote object.
May be returned by or passed to a remote method in Java RMI.

A Request Reply Protocol

95-702 Distributed Systems Information
System Management 28

OK, we know how to pass messages and addresses of objects.
But how does the middleware carry out the communication?

95-702 Distributed Systems Information
System Management 29

UDP Style Request-Reply
Communication

Request

Server Client

doOperation

(wait)

(continuation)
Reply
message

getRequest

execute
method

message
select object

sendReply

95-702 Distributed Systems Information
System Management 30

UDP Based Request-Reply
Protocol

Client side:

 public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)

sends a request message to the remote object and returns the reply.

The arguments specify the remote object, the method to be invoked and the
arguments of that method.

Server side:

 public byte[] getRequest ();

acquires a client request via the server port.

 public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);

sends the reply message reply to the client at its Internet address and port.

Server side:

 b=getRequest()
 operate
 sendReply()

Client side
 b = doOperation

95-702 Distributed Systems Information
System Management 31

Failure Model of UDP Request
Reply Protocol

A UDP style doOperation may timeout while
waiting.

What should it do?
 -- return to caller passing an error message
 -- but perhaps the request was received and the
 response was lost, so, we might write the
 client to try and try until convinced that the
 receiver is down
In the case where we retransmit messages the

server may receive duplicates

Client side
 b = doOperation

Server side:

 b=getRequest()
 operate
 sendReply()

95-702 Distributed Systems Information
System Management 32

Failure Model Handling Duplicates
(Appropriate for UDP but not TCP)

•  Suppose the server receives a duplicate
messages.

•  The protocol may be designed so that either
 (a) it re-computes the reply (in the case of

idempotent operations) or
 (b) it returns a duplicate reply from its history of

previous replies
•  Acknowledgement from client clears the history

95-702 Distributed Systems Information
System Management 33

Request-Reply Message Structure

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

95-702 Distributed Systems Information
System Management 34

RPC Exchange Protocols
Identified by Spector[1982]

N
a
m
e
 M
es
sag
es
s
e
nt b
y

C
li
e
nt
 S
e
r
ve
r
 C
li
e
nt

R
 R
e
qu
es
t

R
R
 R
e
qu
es
t
 R
e
pl
y

R
R
A
 R
e
qu
es
t
 R
e
pl
y
 A
ck
no
w
ledg
e re
ply

R = no response is needed and the client requires
 no confirmation
RR= a server’s reply message is regarded as an
 acknowledgement
RRA= Server may discard entries from its history

95-702 Distributed Systems Information
System Management 35

A Quiz

Why is TCP chosen for request-reply protocols?

Variable size parameter lists.
TCP works hard to ensure that messages are
delivered reliably.
So, no need to worry over retransmissions, filtering
of duplicates or histories.
The middleware is easier to write.

95-702 Distributed Systems Information
System Management 36

HTTP Request Message

GET
 //www.SomeLoc/?age=23
 HTTP/ 1.1

URL or pathname
method
 HTTP version
 headers
message body

Traditional HTTP request

HTTP Is Implemented over TCP.

95-702 Distributed Systems Information
System Management 37

HTTP SOAP Message

POST
 //SomeSoapLoc/server
 HTTP/ 1.1

URL or pathname
method
 HTTP version
 headers
message body

Web Services style HTTP request

<SOAP-ENV
 <age>23…

HTTP is extensible.

95-702 Distributed Systems Information
System Management 38

Traditional HTTP Reply Message

HTTP/1.1
 200
 OK
 <html>…

HTTP version
 status code
reason
 headers
 message body

95-702 Distributed Systems Information
System Management 39

HTTP Web Services SOAP Reply
Message

HTTP/1.1
 200
 OK
 <?xml version..

HTTP version
 status code
reason
 headers
 message body

95-702 Distributed Systems Information
System Management 40

A Working Toy Example
Server side code:

 servant MyCoolClassServant.java
 server CoolClassServer.java
 skeleton MyCool_Skeleton.java
 interface MyCoolClass.java

Client side code:

 Client CoolClient.java
 Interface MyCoolClass.java
 stub CoolClass_Stub.java

Netbeans 6.8
 LowLevelDistributedObjectProject
 LowLevelDistributedObjectProjectClient

95-702 Distributed Systems Information
System Management 41

CoolClassServer.java
public class CoolClassServer {

 public static void main(String args[]) {

 System.out.println("Main");

 MyCool_Skeleton cs =
 new MyCool_Skeleton(new MyCoolClass_Servant());

 cs.serve();

 }
}

95-702 Distributed Systems Information
System Management 42

MyCoolClass_Servant.java
public class MyCoolClass_Servant implements MyCoolClass {

 private String n[] = {"printer","stereo","TV","ipod","pda"};

 private String a[] = {"HP200XT","Kenwood200","Panasonic","Apple","Palm"};

 public String getDevice(String name) {

 for(int i = 0; i < n.length; i++) {
 if(n[i].equals(name)) return a[i];
 }
 return "No device";
 }
}

95-702 Distributed Systems Information
System Management 43

MyCool_Skeleton.java (1)
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.net.Socket;
import java.net.ServerSocket;

public class MyCool_Skeleton {

 MyCoolClass mcc;

 public MyCool_Skeleton(MyCoolClass p) {

 mcc = p;
 }

95-702 Distributed Systems Information
System Management 44

MyCoolSkeleton.java (2)
 public void serve() {
 try {
 ServerSocket s = new ServerSocket(9000);
 while(true) {
 Socket socket = s.accept();
 ObjectInputStream i = new
 ObjectInputStream(socket.getInputStream());
 String name = (String)i.readObject();
 String result = mcc.getDevice(name);
 ObjectOutputStream o = new
 ObjectOutputStream(socket.getOutputStream());
 o.writeObject(result);
 o.flush();
 }
 }
 catch(Throwable t) {
 System.out.println("Error " + t);
 System.exit(0);
 }
 }

}

95-702 Distributed Systems Information
System Management 45

MyCoolClass.java
// Exists on both the client and server

public interface MyCoolClass {

 public String getDevice(String name) throws Exception;
}

95-702 Distributed Systems Information
System Management 46

CoolClient.java
public class CoolClient {

 public static void main(String args[]) {

 try {

 MyCoolClass p = new CoolClass_Stub();
 System.out.println(p.getDevice(args[0]));
 }
 catch(Throwable t) {
 t.printStackTrace();
 System.exit(0);
 }
 }
}

95-702 Distributed Systems Information
System Management 47

CoolClass_Stub.java (1)
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.net.Socket;

public class CoolClass_Stub implements MyCoolClass {

 Socket socket;
 ObjectOutputStream o;
 ObjectInputStream i;

95-702 Distributed Systems Information
System Management 48

CoolClass_Stub.java (2)
public String getDevice(String name) throws Exception {

 socket = new Socket("localhost",9000);
 o = new ObjectOutputStream(socket.getOutputStream());
 o.writeObject(name);
 o.flush();

 i = new ObjectInputStream(socket.getInputStream());

 String ret = (String)(i.readObject());
 socket.close();
 return ret;
 }
 }

95-702 Distributed Systems Information
System Management 49

Discussion

With respect to the previous system, let’s discuss:

Request-Reply protocol.
Marshalling and external data representation.
Interoperability.
Security.
Reliability.
Performance.
Openness.
Use of Metadata.
Remote references.

