95-702 Organizational Communication & Distributed Object Technologies Carnegie Mellon University

Lab 2 Due: Monday, February 14, 2005
Topics: Servlets, XML DOM, JNDI, JDBC, RDBMS
In lab 1 you worked with the Simple API for XML (SAX) to read RSS news feeds. In this lab you will work with XML’s Document Object Model to read and process documents which contain schedules. Schedule documents are not as prevalent on the web as are RSS documents. It is anticipated that the web of the future will contain a wide variety of data sources in XML. The intent of this lab is to help you prepare for that future.

Your client application will read from static schedule documents (stored in local files and on the web) and from documents dynamically generated from a database.

Part I Web/Database Integration Exercise
Two Questions at 10 Points Each
Using the PointBase RDBMS included with Sun's App server

==
Start the PointBase server

==================
D:\Sun\AppServer\pointbase\tools\serveroption>startserver

Server started, listening on port 9092, display level: 0 ...

>

Place build.xml in a directory called MyTestDB

==================================
<?xml version="1.0" ?>

<!-- A minimal build.xml to populate a PointBase database.

 This is derived from the build.xml in the J2EE Tutorial.

-->

<project name = "studentDB" default="create-db_common" basedir=".">

 <property file="build.properties"/>

 <path id="db.classpath">

 <fileset dir="${db.root}/lib">

 <include name="*.jar"/>

 </fileset>

 </path>

 <target name="create-db_common" depends="init"

 description="Create database tables and populate database." >

 <java classname="com.pointbase.tools.toolsCommander" fork="yes" >

 <jvmarg line="${db.jvmargs}" />

 <arg line="${db.driver} ${db.url} ${sql.script} ${db.user} ${db.pwd}" />

 <classpath refid="db.classpath" />

 </java>

 </target>

 <target name="init">

 <tstamp/>

 </target>

</project>

Include the file build.properties in the same directory

======================================
j2ee.home=D:/Sun/AppServer

sunone.home=${j2ee.home}

domain.resources="domain.resources"

domain.resources.port=8080

db.root=${j2ee.home}/pointbase

db.driver=com.pointbase.jdbc.jdbcUniversalDriver

db.host=localhost

db.port=9092

db.sid=sun-appserv-samples

db.url=jdbc:pointbase:server://${db.host}:${db.port}/${db.sid}

db.user=pbpublic

db.pwd=pbpublic

url.prop=DatabaseName

ds.class=com.pointbase.jdbc.jdbcDataSource

db.jvmargs=-ms16m -mx32m

sql.script=student.sql

Include a file student.sql in the same directory

=================================
DROP TABLE student;
CREATE TABLE student

(name VARCHAR(10), qpa VARCHAR(6));

DELETE FROM student;

INSERT INTO student VALUES('Sue', '4.0');

INSERT INTO student VALUES('Billy','3.4');

Execute the build.xml script with asant (Application Server Ant)
==
D:\McCarthy\www\95-702\examples\MyTestDB>asant

Buildfile: build.xml

init:

create-db_common:

 [java] ***

 [java] -driver com.pointbase.jdbc.jdbcUniversalDriver

 [java] -url jdbc:pointbase:server://localhost:9092/sun-appserv-samples

 [java] -script student.sql

 [java] -user pbpublic

 [java] -password pbpublic

 [java] -autocommit true

 [java] -prompt2 true

 [java] -spoolfile <none>

 [java] -silent false

 [java] ***

 [java] SQL> DROP TABLE student;

 [java] OK

 [java] SQL> CREATE TABLE student

 [java] (name VARCHAR(10), qpa VARCHAR(6));

 [java] OK

 [java] SQL> DELETE FROM student;

 [java] OK

 [java] SQL> INSERT INTO student VALUES('Sue', '4.0');

 [java] 1 row(s) affected

 [java] SQL> INSERT INTO student VALUES('Billy','3.4');

 [java] 1 row(s) affected

BUILD SUCCESSFUL

Total time: 2 seconds

See if the database was created in PointBase

===============================
Run the console with

D:\Sun\AppServer\pointbase\tools\serveroption>startconsole
In the URL field be sure to select jdbc:pointbase:server://localhost/sun-appserv-samples
User name pbpublic
Password pbpublic
Select OK and you should see SCHEMAS and SECURITY
Schemas->PBPUBLIC->Tables->Select Student

In "Enter SQL Commands" enter

select * from student

Click the Execute button (not the tab)
(1) Paste a copy of the Pointbase GUI (showing the result of the query) here.
Display the database contents on the web

Create a DataSource in the Application Server

=================================

Start the app server (default server not sample server)
Run the admin console.

Expand JDBC and select the JDBC Resource

Click new.

Enter jdbc/StudentDB as the JNDI name

Choose PointBasePool in the pool name drop down list

Click OK

We have just associated a name with a connection pool. The name is a JNDI name. “JNDI” stands for the Java Naming and Directory Interface. We have bound a people friendly name to a database resource that provides a connection to our student database.
Write a servlet that reads the database and writes HTML to a browser

===

Compile the servlet called ReadStudentDB.java

// ReadStudentDB.java.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

import java.util.*;

public class ReadStudentDB extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse response)

 throws ServletException,

 IOException {

 Connection con = null;

 try {

 InitialContext ic = new InitialContext();

 Context envCtx = (Context) ic.lookup("java:comp/env");

 DataSource ds = (DataSource) envCtx.lookup("jdbc/StudentDB");

 con = ds.getConnection();

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String resultString = "";

 String selectStatement = "select * " + "from student";

 PreparedStatement prepStmt = con.prepareStatement(selectStatement);

 ResultSet rs = prepStmt.executeQuery();

 resultString += "<html><body>";

 while (rs.next()) {

 resultString += rs.getString(1)+"<p>";

 resultString += rs.getString(2)+"<p>";

 }

 resultString += "</body></html>";

 prepStmt.close();

 out.println(resultString);

 }

 catch (SQLException ex) {

 System.out.println("SQL EX " + ex.getMessage());

 }

 catch(Exception ex) {

 System.out.println(" A Wierd Exception " + ex);

 }

 finally {

 try {

 if(con != null) con.close();

 }

 catch(SQLException e){

 System.out.println("Problem closing");

 }

 }

 }

 }
Before compiling this servlet, make a copy of j2ee.jar and place it in the directory Sun\AppServer\jdk\jre\lib\endorsed.

Compile the servlet with the command javac ReadStudentDB.java.
Follow these notes (adapted from Pages 103-104 of the Sun J2EE Tutorial)

Deploytool ->File->New Web Component

Browse to the directory where the servlet resides and enter that directory path in the WAR location text box. This path will end with MyDBReader.war

The war file MyDBReader (without the .war) will be automatically placed in the WAR name text box.
Set the context root to /GetStudents (this will be the name that appears after http://localhost:8080/ on the browser)
Edit Contents and place the compiled servlet in the WAR

Complete the wizard, select the servlet from the tree to the left, select the alias tab and give it the alias /CoolServlet. Don’t forget to hit the return key. (This will be the name that appears after http://localhost:8080/GetStudents/ on the browser.)
Select the WAR name on the tree to the left.
Select the Resource Ref’s tab

Click Add

Type jdbc/StudentDB in the coded name field (don’t forget the return key)
Select localhost:4848 in the server list (log in if you must)
Select MyDBReader in the web war list

Select the Resource Ref’s tab

Select the Resource Reference Name, jdbc/StudentDB, that you just entered

In the Sun-specifi settings frame, select jdbc/StudentDB from the Drop Down List for the JNDI name

In the User Name text field enter pbpublic (this is the database user name)

In the Password Field enter pbpublic (this is the database password)

Deploy the web application

Testing

Make sure the database is running

Make sure the Application Server is running

Make sure MyDBReader.war is deployed

Use a browser to visit http://localhost:8080/GetStudents/CoolServlet
(2) Paste a screen shot here showing your browser displaying the contents of the student database.

Part II Reading Schedule.xml using XML DOM

5 Questions (3-7)
Assume that following schedule (schedule.xml) and the following Document Type Definition are available on the internet. In order to simplify the project we will assume that the letters A,B,C, and D represent well known time slots.
File: schedule.xml located at http://localhost:8080/MccarthysSchedule/schedule.xml

<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE Schedule SYSTEM "Schedule.dtd">

<Schedule>

 <Monday>

 <openSlot>A</openSlot>

 <openSlot>B</openSlot>

 </Monday>

 <Tuesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Tuesday>

 <Wednesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Wednesday>

 <Thursday>

 <openSlot>A</openSlot>

 </Thursday>

 <Friday>

 <openSlot>A</openSlot>

 <openSlot>C</openSlot>

 </Friday>

 <Saturday>

 <openSlot>A</openSlot>

 <openSlot>C</openSlot>

 </Saturday>

 <Sunday><openSlot>A</openSlot>

 </Sunday>

</Schedule>

Figure 2.1

File: Schedule.dtd located at http://localhost:8080/MccarthysSchedule/Schedule.dtd

<!ELEMENT Schedule (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)>

<!ELEMENT Monday (openSlot*)>

<!ELEMENT Tuesday (openSlot*)>

<!ELEMENT Wednesday (openSlot*)>

<!ELEMENT Thursday (openSlot*)>

<!ELEMENT Friday (openSlot*)>

<!ELEMENT Saturday (openSlot*)>

<!ELEMENT Sunday (openSlot*)>

<!ELEMENT openSlot (#PCDATA)> Figure 2.2

Let’s also assume that the following schedule and DTD are available locally:

File: schedule.xml located in the client’s directory

<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE Schedule SYSTEM "Schedule.dtd">

<Schedule>

 <Monday>

 <openSlot>C</openSlot>

 <openSlot>D</openSlot>

 </Monday>

 <Tuesday>

 <openSlot>A</openSlot>

 <openSlot>D</openSlot>

 </Tuesday>

 <Wednesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Wednesday>

 <Thursday>

 <openSlot>B</openSlot>

 </Thursday>

 <Friday>

 <openSlot>B</openSlot>

 <openSlot>D</openSlot>

 </Friday>

 <Saturday>

 <openSlot>B</openSlot>

 <openSlot>D</openSlot>

 </Saturday>

 <Sunday><openSlot>A</openSlot>

 </Sunday>

</Schedule>

Figure 2.3

File: Schedule.dtd holds the grammar for schedules and is located in the client’s directory as well
<!ELEMENT Schedule (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)>

<!ELEMENT Monday (openSlot*)>

<!ELEMENT Tuesday (openSlot*)>

<!ELEMENT Wednesday (openSlot*)>

<!ELEMENT Thursday (openSlot*)>

<!ELEMENT Friday (openSlot*)>

<!ELEMENT Saturday (openSlot*)>

<!ELEMENT Sunday (openSlot*)>

<!ELEMENT openSlot (#PCDATA)>

Figure 2.4

In addition, the client will need to make use of an XML document containing URL’s of schedules. This document and its DTD appear next:

File: urlList.xml located in the client’s directory
<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE URLList SYSTEM "urlList.dtd">

<URLList>

 <URL>schedule.xml</URL>

 <URL>http://localhost:8080/MccarthysSchedule/schedule.xml</URL>

</URLList>

Figure 2.5

File: urlList.dtd located in the client’s directory
<!ELEMENT URLList (URL*)>

<!ELEMENT URL (#PCDATA)>

Figure 2.6

Consider a Java client that reads the list of URL’s contained in the urlList.xml file. The program then fetches the schedule documents at those URL’s and displays a list of meeting times.

The output of my solution looks like the following:

D:\McCarthy\www\95-733\examples\scheduleOnTheWeb\clientcode>java Scheduler

Processing 2 schedules

Got 2 schedules

Available meeting times

Schedule meeting for Wednesday at B

Schedule meeting for Wednesday at C

Schedule meeting for Sunday at A

Figure 2.7

There are two document types that we are working with in this part. The first is the document type that contains schedule data. The second is the document type that contains a list of URL’s.
Below is a wrapper class that reads the URL’s into a DOM tree and provides user classes with a simple interface to the URL’s.
It will be your responsibility to write the code that handles the schedule document type.
Your wrapper class should know nothing about the scheduling process. In other words, your wrapper class should only provide simple access to the XML document’s fields. In this way, there is a natural separation of concerns and other applications might make use of these classes.
/** URLListDoc.java Wraps urlList.xml documents

 Provide an InputSource object to initialize the objects of this class.
 An InputSource object may be created with a StringReader containing an XML

 document, a String containing a file path or a URL.

 This class passes the InputSource object to the parser and the document

 is parsed. The document’s fields are then available to a client program.
 The individual URL strings are returned by calling
 public String getURL(int i). The integer i must be in the range 1 <= i <= getNumURLs().
 public int getNumURLs() returns an int representing the number of URLs in InputSource.

*/

import java.io.File;

import java.io.ByteArrayOutputStream;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import org.w3c.dom.*;

import javax.xml.parsers.DocumentBuilderFactory;

import org.xml.sax.InputSource;

import javax.xml.parsers.DocumentBuilder;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

public class URLListDoc

{

 public final static String ROOT = "URLList";

 public final static String URL = "URL";

 private Document dom;

 /** The constructor takes an InputSource object as input. It passes the InputSource object

 * to the parser and builds a DOM tree.

 */

 public URLListDoc(InputSource is)

 {

 try {

 DocumentBuilderFactory docBuilderFactory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder docBuilder =

 docBuilderFactory.newDocumentBuilder();

 dom = docBuilder.parse(is);

 }

 catch(SAXParseException err) {

 System.out.println("Parsing error" +

 ", line " + err.getLineNumber() +

 ", URI " + err.getSystemId());

 System.out.println(" " + err.getMessage());

 }

 catch(SAXException e) {

 Exception x = e.getException();

 ((x == null) ? e : x).printStackTrace();

 }

 catch (Throwable t) {

 t.printStackTrace();

 }

}

 /** getNumURLs takes no arguments. It simply returns the number of URLs

 * read from the InputSource.

 * @return int >= 0 representing the number of URL's available.

 */

 public int getNumURLs() throws Exception

 {

 try

 {

 NodeList nl = dom.getElementsByTagName(URL);

 return nl.getLength();

 }

 catch(Exception ex)

 {

 ex.printStackTrace(System.err);

 throw new Exception("Problems with reading URL data");

 }

 }

 public String getURL(int i) throws Exception

 {

 try

 {

 NodeList nl = dom.getElementsByTagName(URL);

Node urlNode = (Node)nl.item(i-1);

Text text = (Text)urlNode.getFirstChild();

 return (String)text.getNodeValue();

 }

 catch(Exception ex)

 {

 ex.printStackTrace(System.err);

 throw new Exception("Problems with getURL");

 }

 }

 /** main is for testing.

 */

public static void main(String args[]) throws Exception {

InputSource is = new InputSource("urlList.xml");

URLListDoc urlDoc = new URLListDoc(is);

for(int k = 1; k <= urlDoc.getNumURLs(); k++){

 System.out.println("URL " + k + " = " + urlDoc.getURL(k));

}

}

}

Figure 2.8

Please use the same names as mentioned below for your files and classes.
Write a Java application client called Scheduler.java that reads a list of n local URL’s and visits the n sites associated with those URL’s to retrieve schedules. Scheduler.java then computes and displays all available meeting times (where all n schedules show the same available meeting time slot) on the DOS screen.
Sketch of Scheduler.java:

Reads a URL list by creating an InputSource object pointing to urlList.xml file and passing the InputSource object to the URLList constructor

For each URL listed (there may be many)

Create an InputSource object with that URL and pass it to the ScheduleDoc.java constructor

Work from the n schedules to display every possible meeting time when all participants can

be present. Assume that the meeting times are represented by the letters A,B,C and D.
Sketch of URLListDoc.java and ScheduleDoc.java:

Scheduler.java: will make use of two types of documents and so you will provide two Java classes that wrap document instances. One of those classes, URLListDoc.java, is provided in Figure 2.8.

URLListDoc.java

public Constructor : public URLListDoc(InputSource is)

public Methods: public int getNumURLs() throws Exception

 public String getURL(int i) throws Exception

ScheduleDoc.java

public constructor : public ScheduleDoc(InputSource is)

public method: public boolean getAvailable(String day, String slot) throws Exception

Demonstrate that your program works

(3) (10 Points) Paste a DOS screen shot showing your program running using the schedules in Figures 2.1 and 2.3. Figure 2.1 must be available on the internet and must be stored as a Web Application on Sun’s Application server. Figure 2.3 should be a local file stored in the same directory as the client. This all happens on your machine.

(4) (10 Points) Paste a DOS screen shot showing your program running using the schedules in Figures 2.1 and 2.3 as well as a schedule available on my server. You will find a schedule at the URL
http://www.andrew.cmu.edu/~mm6/95-702/HempelsSchedule/schedule.xml

Paste a copy here of your updated urlList.xml file. It will now contain a reference to HempelsSchedule.

Paste a copy of the DOS screen shot showing your client running with these three schedules.

 (5) (10 Points) This is the same problem as 4 but with one less schedule. Paste a screen shot showing your program running using the schedules in Figures 2.1 and the schedule available from my server. You will find a schedule at http://www.andrew.cmu.edu/~mm6/95-702/HempelsSchedule/schedule.xml

 Paste a copy here of your updated urlList.xml file.

Paste a copy here of the DOS screen showing your client run with these two schedules.

(6) (25 Points) Paste a copy of URLListDoc.java , ScheduleDoc.java, and Scheduler.java here. For full credit these programs must have names as specified above and be clean and well documented.

(7) (25 Points) Write a servlet that uses JDBC to access the schedule data from the PointBase database provided with the application server. Use the JDBC servlet, ReadStudentDB.java, as a guide. Rather than generating HTML, the servlet will generate XML. You need not return a DTD. You may build a DOM tree if you like (see slides on how to create a DOM tree from scratch) or you may decide to simply write XML tags directly from the servlet. Modify your URL list document so that it holds a pointer to this servlet.

Paste a copy here of your updated urlList.xml file. It will now contain a reference to this new servlet.

Paste a screen shot here of your database table. Your screen shot will include the PointBase GUI.

Paste a copy of your servlet here. The code should be clean and well-documented.

 Paste a copy here of a DOS screen shot demonstrating that your client is able to read from the servlet.

You are not required to turn in a disk with this lab. But please keep your files in case we need to review them. Simply turn in a printout of this document with each question answered.

PAGE
14

