95-733 Internet Technologies Carnegie Mellon University

95-702 Organizational Communication and Distributed Object

New Technologies Homework 4 Due: Wednesday, April 7, 2004
Web Services Middleware using Apache Axis and

Traditional Java RMI

 Part I Axis Installation
(1) Download the Axis version 1.1 binary zip from Axis at http://ws.apache.org/axis/
(2) Unpacked the Axis zip file into the directory D:\jwsdp-1.3. It creates its own subdirectory under D:\jwsdp-1.3 called D:\jwsdp-1.3\axis-1_1
(3) Set the classpath to
 D:\jwsdp-1.3\common\lib\servlet.jar;.;
 D:\jwsdp-1.3\jaxp\lib\endorsed\xercesImpl.jar;

D:\jwsdp-1.3\jaxp\lib\endorsed\dom.jar;
D:\jwsdp-1.3\axis-1_1\lib\axis.jar;
D:\jwsdp-1.3\axis-1_1\lib\commons-logging.jar;
D:\jwsdp-1.3\axis-1_1\lib\saaj.jar;
D:\jwsdp-1.3\axis-1_1\lib\axis-ant.jar;
D:\jwsdp-1.3\axis-1_1\lib\jaxrpc.jar;
D:\jwsdp-1.3\axis-1_1\lib\wsdl4j.jar;
D:\jwsdp-1.3\axis-1_1\lib\commons-discovery.jar;
D:\jwsdp-1.3\axis- 1_1\lib\log4j-1.2.8.jar
(4) Print and read the installation instructions at http://ws.apache.org/axis/. Also, print and read the Axis User’s Guide.
(5) After unpacking the Axis zip, copy the directory D:\jwsdp-1.3\axis-1_1\webapps\axis to D:\jwsdp-1.3\webapps. This creates a new directory called D:\jwsdp-1.3\webapps\axis.

(6) Since a webapp has been moved to Tomcat’s webapp directory there is no need to execute the install script.

(7) Start Tomcat by using the startup command.

(8) Visit Axis by pointing a browser to http://localhost:8080/axis/
(9) Check to see if Axis is happy. Click on the Validate link.

(10) Visit Call a Local Endpoint to see a SOAP document and visit its WSDL
(11) Visit View a list of deployed Web Services and examine their WSDL
(12) Use an HTTP Get to visit a Web Service

 http://localhost:8080/axis/services/Version?method=getVersion
(13) A Java program with a “jws” extension may be executed from the browser. Point the browser to http://localhost:8080/axis/EchoHeaders.jws?method=list
(14) Run the same Java program but this time execute the whoami() method.

Part II Installing a new Web Service with a “.jws” extension
(1) Copy the Calculator.java file and place it into the directory D:\jwsdp-1.3\webapps\axis but give it the name Calculator.jws.

// From the Apache Axis User’s Guide Calculator.java

public class Calculator {

public int add(int i1, int i2)

{

return i1 + i2;

}

public int subtract(int i1, int i2)

{

return i1 - i2;

}

}
(2) Place the following SOAP client in some directory well away from the jwsdp directory structure. The “.java” extension should be left as it is.
// From the Apache Axis User's Guide

// CalcClient.java
import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import org.apache.axis.encoding.XMLType;

import org.apache.axis.utils.Options;

import javax.xml.rpc.ParameterMode;

public class CalcClient

{

public static void main(String [] args) throws Exception {

Options options = new Options(args);

String endpoint = "http://localhost:" + options.getPort() +

 "/axis/Calculator.jws";

args = options.getRemainingArgs();

if (args == null || args.length != 3) {

System.err.println("Usage: CalcClient <add|subtract> arg1 arg2");

return;

}

String method = args[0];

if (!(method.equals("add") || method.equals("subtract"))) {

System.err.println("Usage: CalcClient <add|subtract> arg1 arg2");

return;

}

Integer i1 = new Integer(args[1]);

Integer i2 = new Integer(args[2]);

Service service = new Service();

Call call = (Call) service.createCall();

call.setTargetEndpointAddress(new java.net.URL(endpoint));

call.setOperationName(method);

call.addParameter("op1", XMLType.XSD_INT, ParameterMode.IN);

call.addParameter("op2", XMLType.XSD_INT, ParameterMode.IN);

call.setReturnType(XMLType.XSD_INT);

Integer ret = (Integer) call.invoke(new Object [] { i1, i2 });

System.out.println("Got result : " + ret);

}

}
(3) Start Tomcat and run the SOAP client with a command as shown:

 D:\www\95-702\examples\AxisSOAP\calculator>java CalcClient add 100 200

 Got result: 300
Part III Examining Requests and Responses using the Axis TCPMonitor

(1) To start the TCP Monitor execute the following command from any directory:

 java org.apache.axis.utils.tcpmon
 Note that it is much more convenient to create a batch file with the following code:

 java org.apache.axis.utils.tcpmon %1
 Call this file tcpmon.bat and store it in a directory that is associated with your path

 variable.
(2) Tell TCP Monitor to listen to the port 1234 by entering 1234 in the Listen Port # box and by selecting the Listener radio button.

(3) Click Add and then select the newly displayed Port 1234 Tab. The idea is for clients to visit the port 1234. TCP Monitor will note the visit and forward the request to port 8080. In this way, TCP Monitor can show us the XML documents and the HTTP headers that are exchanged.

(4) Visit http://localhost:1234/axis/ and watch the interaction using the TCP Monitor.
Part IV Deploying a SOAP service using Axis Web Service Deployment Descriptor
(1) Compile the file BigCalculator.java into a “.class” file and place the compiled code into the directory D:\jwsdp-1.3\webapps\axis\WEB-INF\classes.
import java.math.*;

public class BigCalculator {

 public String add(String i1, String i2) {

 BigInteger x = new BigInteger(i1);

 BigInteger y = new BigInteger(i2);

 return new String(x.add(y).toString());

}

 public String subtract(String i1, String i2) {

 BigInteger x = new BigInteger(i1);

 BigInteger y = new BigInteger(i2);

 return new String(x.subtract(y).toString());

}

 public static void main(String args[]) {

 BigCalculator bc = new BigCalculator();

 String a = bc.add("9999999999999","1");

 System.out.println(a);

 }

}
(2) Add a directory for batch files to your path variable. Add a simple file called adminclient.bat to that directory with the following line of code:

 java org.apache.axis.client.AdminClient %1
 You should now be able to enter adminclient at the DOS prompt.
(3) Startup Tomcat. Place the file deploy.wsdd (shown below) in any directory and execute the following command (while in the same directory as the deploy.wsdd file.)
 adminclient deploy.wsdd

 java org.apache.axis.client.AdminClient deploy.wsdd

 Processing file deploy.wsdd

 <Admin>Done processing</Admin>
adminclient deploy.wsdd
Processing file deploy.wsdd

<Admin>Done processing</Admin>

 <!—deploy.wsdd (
<deployment xmlns="http://xml.apache.org/axis/wsdd/"

 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <service name="BigCalculatorService" provider="java:RPC">

 <parameter name="className" value="BigCalculator"/>

 <parameter name="allowedMethods" value="*"/>

 </service>

</deployment>
(4) Run the Client.java SOAP client from any directory:
import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import org.apache.axis.encoding.XMLType;

import javax.xml.namespace.QName;

import javax.xml.rpc.ParameterMode;

public class Client

{

 public static void main(String [] args)

 {

 try {

 if(args.length != 2) {

 System.out.println("usage:java Client BigInt BigInt");

 System.exit(-1);

 }

 Service service = new Service();

 Call call = (Call) service.createCall();

 call.setTargetEndpointAddress(new
 java.net.URL("http://localhost:8080/axis/servlet/AxisServlet"));

 call.setOperationName(new QName("BigCalculatorService", "add"));

 call.addParameter("arg1", XMLType.XSD_STRING, ParameterMode.IN);

 call.addParameter("arg2", XMLType.XSD_STRING, ParameterMode.IN);

 call.setReturnType(org.apache.axis.encoding.XMLType.XSD_STRING);

 String ret = (String) call.invoke(new Object[] { args[0],args[1] });

 System.out.println("The BigCalculator Service computed : " + ret);

 } catch (Exception e) {

 System.err.println(e.toString());

 }

 }

}

Part V Apache Axis Questions for submission

(1) Modify the Client.java program to communicate with port 1234 rather than 8080. Configure tcpmon to listen on port 1234 and target 8080. Run Client.java again. Paste a printout here showing the entire request and response documents. Use the save feature of tcpmon. (5 Points)
(2) What namespace (not the prefix) has been placed on the add element in the request document? Write your answer here. (2 Points)
(3) What namespace (not the prefix) has been placed on the addResponse element in the response document? Write your answer here. (2 Points)
(4) Describe the contents of the add element. Write your answer here. (2 Points)
(5) Describe the contents of the addResponse element. Write your answer here (2 Points)
(6) What is the content-type in the HTTP headers? (2 Points)
(7) Create a new Java program by modifying BigCalculator. This program must be called BigCalculator2 and it must work entirely with BigIntegers. For example, BigCalculator2’s add method looks like this:

 public BigInteger add(BigInteger i1, BigInteger i2) {

 return i1.add(i2);

}
Make minor modifications to the addressing portion of your client (call it Client2.java) so that it attempts to access the new service with the same types as it used before. In other words, Client2.java will still write the string type into the SOAP document. This won’t work but try it. The SOAP document that is returned contains an error message. Paste the body of the <Fault> element here. (5 Points)
(8) Make additional modifications to Client2.java so that it uses the XMLType.XSD_INTEGER constant and BigIntegers. After it works, paste the Java code here. (10 Points)
(9) Visit Axis with the “wsdl” option to collect a machine readable description of this new web service. http://localhost:8080/axis/servlet/AxisServlet/BigCalculatorService?wsdl
Paste a copy of the WSDL document here. (5 Points)
(10)Create another batch file called wsdl2java.bat. Place the following line in this file:
 java org.apache.axis.wsdl.WSDL2Java %1
 Run the wsdl2java batch file on the wsdl file that you took from the web site in
 problem 9. This creates a client API and places it in a java package.

Write another client that accesses the BigCalculator web service.
 Call this client Client3.java. The code in Client3 will make good use of the API
that was generated from the wsdl2java command. In other words, the client code will work at a higher level than the code Client.java. Paste a copy of Client3.java here. Include with this a DOS screen shot showing your client running. (10 Points)
(11)Visit http://www.google.com/apis/download.html and download the “Google Web APIs Developer's Kit”. (You will need to register with google and get a license key. My key is “n6lHU/FQFHIHzpbzRTPFvrUP4Cw+/k+N”. Execute the wsdl2java command on the downloaded GoogleSearch.wsdl file. We will work with the WSDL generated code and not with the java API provided by default with the google download. Write a program (that uses the newly generated Java code) to request a search value from the user and displays information returned by google. Call this client MyGoogleClient.java. Paste a copy of your program and a copy of a DOS screen shot here. (5 Points)
Here is some additional help with question 11.

 (a) Download the wsdl from google.

 (b) Run wsdl2java (from Apache Axis) to create a directory called GoogleSearch.

 (c) The directory contains several classes and interfaces. Study these.

 (d) Get a GoogleSearchPort from the GoogleSearchServiceLocator.

 (e) Call the doGoogleSearch() method on the GoogleSearchPort.

 (f) The doGoogleSearch method takes the following parameters:

 String key with value got from the key server. Mine is
 n6lHU/FQFHIHzpbzRTPFvrUP4Cw+/k+N

 Several other parameters are described at

 http://www.google.com/apis/reference.html#2_1

 (g) The results are returned in an array of ResultElement's.

 (h) Inspect the generated ResultElement class to learn what you can

 do with results.

(12) Write a web service client that makes some calls on any one of the web services from http://www.xmethods.com/. Paste a copy of your client program and a copy of a DOS screen shot here. (5 Points)

Part VI RMI and Apache SOAP Questions for submission

(13)Chapter 5 of the Coulouris text contains a Java RMI case study. The code implements a distributed white board. Modify the code so that it acts as a distributed chat server. Rather than moving graphical objects about we would like to move simple text.

The execution of one client program follows:

C:>java MyChatClient

client>Hello There

Hello There

<client>This is cool

Hello There

This is cool

<client>I’m talking to myself

 Hello There

 This is cool

 I’m talking to myself

<client>! Explanation mark means quit

C:> There were no other clients running.

You can put all of your classes in one directory so that you will not have to work with the Security Manager. It’s also fine, if you would prefer, to work with the Security Manager and separate the client and server directories. See the course slides for help with working with rmic. Two or more users must be able to use the system to converse.

Place all of your source code in a directory called rmi. Turn in a floppy disk containing this code. Submit printouts of your source code. Paste two DOS screen shots here showing two clients talking. (30 Points)
(14)This problem is the same as problem 12 but using SOAP rather than RMI. Write Java server code that is similar in intent to ShapeListServant on page 198 of your text. Deploy this new service using the adminclient deploy.wsdd discussed above. Use a browser to access the WSDL document associated with this service. Use the WSDL document and the wsdl2java batch file to generate client side source code. Write the distributed chat server client code so that it makes full use of the generated API. The user interaction will be the same as in the RMI example above.
Place all of your source code in a directory called soap. Turn in a floppy disk containing this code. Submit printouts of your source code. Paste two DOS screen shots here showing two clients talking. Paste a copy of a typical SOAP request and a SOAP response document here (use tcpmon.) (27 Points)
 (15)Demonstrate something cool in class. “Something cool” is defined as web service composition. I used Google and a web service called BorlandBabel (that I found on XMethods.) You may use these two or be creative and use others. (3 Points)

PAGE
1

