95-702 Organizational Communication & Distributed Object Technologies Carnegie Mellon University

Lab 2 Due: Exam 1 Day - Wednesday, February 18, 2004
The Web For Programs
This is a two part homework problem. In the first part you will work with an XML parser and the Document Object Model (DOM) to write a client application that visits web sites and schedules meetings. In the second part you will write a web application that uses the SimpleAPI for XML (SAX) to collect data from RSS news feeds.
Before beginning, make sure that your classpath contains a “.” and pointers to xercesImpl.jar and dom.jar. These files will be found under you JWSDP directory.

Part I

Assume that following schedule (schedule.xml) and the following Document Type Definition are available on the internet. In order to simplify the project we will assume that the letters A,B,C, and D represent well known time slots.
File: schedule.xml located at http://localhost:8080/MccarthysSchedule/schedule.xml

<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE Schedule SYSTEM "Schedule.dtd">

<Schedule>

 <Monday>

 <openSlot>A</openSlot>

 <openSlot>B</openSlot>

 </Monday>

 <Tuesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Tuesday>

 <Wednesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Wednesday>

 <Thursday>

 <openSlot>A</openSlot>

 </Thursday>

 <Friday>

 <openSlot>A</openSlot>

 <openSlot>C</openSlot>

 </Friday>

 <Saturday>

 <openSlot>A</openSlot>

 <openSlot>C</openSlot>

 </Saturday>

 <Sunday><openSlot>A</openSlot>

 </Sunday>

</Schedule>

Figure 2.1

File: Schedule.dtd located at http://localhost:8080/MccarthysSchedule/Schedule.dtd

<!ELEMENT Schedule (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)>

<!ELEMENT Monday (openSlot*)>

<!ELEMENT Tuesday (openSlot*)>

<!ELEMENT Wednesday (openSlot*)>

<!ELEMENT Thursday (openSlot*)>

<!ELEMENT Friday (openSlot*)>

<!ELEMENT Saturday (openSlot*)>

<!ELEMENT Sunday (openSlot*)>

<!ELEMENT openSlot (#PCDATA)> Figure 2.2

Let’s also assume that the following schedule and DTD are available locally:

File: schedule.xml located in the client’s directory

<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE Schedule SYSTEM "Schedule.dtd">

<Schedule>

 <Monday>

 <openSlot>C</openSlot>

 <openSlot>D</openSlot>

 </Monday>

 <Tuesday>

 <openSlot>A</openSlot>

 <openSlot>D</openSlot>

 </Tuesday>

 <Wednesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Wednesday>

 <Thursday>

 <openSlot>B</openSlot>

 </Thursday>

 <Friday>

 <openSlot>B</openSlot>

 <openSlot>D</openSlot>

 </Friday>

 <Saturday>

 <openSlot>B</openSlot>

 <openSlot>D</openSlot>

 </Saturday>

 <Sunday><openSlot>A</openSlot>

 </Sunday>

</Schedule>

Figure 2.3

File: Schedule.dtd holds the grammar for schedules and is located in the client’s directory as well
<!ELEMENT Schedule (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)>

<!ELEMENT Monday (openSlot*)>

<!ELEMENT Tuesday (openSlot*)>

<!ELEMENT Wednesday (openSlot*)>

<!ELEMENT Thursday (openSlot*)>

<!ELEMENT Friday (openSlot*)>

<!ELEMENT Saturday (openSlot*)>

<!ELEMENT Sunday (openSlot*)>

<!ELEMENT openSlot (#PCDATA)>

Figure 2.4

In addition, the client will need to make use of an XML document containing URL’s of schedules. This document and its DTD appear next:

File: urlList.xml located in the client’s directory
<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE URLList SYSTEM "urlList.dtd">

<URLList>

 <URL>schedule.xml</URL>

 <URL>http://localhost:8080/MccarthysSchedule/schedule.xml</URL>

</URLList>

Figure 2.5

File: urlList.dtd located in the client’s directory
<!ELEMENT URLList (URL*)>

<!ELEMENT URL (#PCDATA)>

Figure 2.6

Consider a Java client that reads the list of URL’s contained in the urlList.xml file. The program then fetches the schedule documents at those URL’s and displays a list of meeting times.

The output of my solution looks like the following:

D:\McCarthy\www\95-733\examples\scheduleOnTheWeb\clientcode>java Scheduler

Processing 2 schedules

Got 2 schedules

Available meeting times

Schedule meeting for Wednesday at B

Schedule meeting for Wednesday at C

Schedule meeting for Sunday at A

Figure 2.7

There are two document types that we are working with in this lab. The first is the document type that contains schedule data. The second is the document type that contains a list of URL’s.
Below is a wrapper class that reads the URL’s into a DOM tree and provides user classes with a simple interface to the URL’s.
It will be your responsibility to write the code that handles the schedule document type.
Your wrapper class should know nothing about the scheduling process. In other words, your wrapper class should only provide simple access to the XML document’s fields. In this way, there is a natural separation of concerns and other applications might make use of these classes.
/** URLListDoc.java Wraps urlList.xml documents

 Provide an InputSource object to initialize the objects of this class.
 An InputSource object may be created with a StringReader containing an XML

 document, a String containing a file path or a URL.

 This class passes the InputSource object to the parser and the document

 is parsed. The document’s fields are then available to a client program.
 The individual URL strings are returned by calling
 public String getURL(int i). The integer i must be in the range 1 <= i <= getNumURLs().
 public int getNumURLs() returns an int representing the number of URLs in InputSource.

*/

import java.io.File;

import java.io.ByteArrayOutputStream;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import org.w3c.dom.*;

import javax.xml.parsers.DocumentBuilderFactory;

import org.xml.sax.InputSource;

import javax.xml.parsers.DocumentBuilder;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

public class URLListDoc

{

 public final static String ROOT = "URLList";

 public final static String URL = "URL";

 private Document dom;

 /** The constructor takes an InputSource object as input. It passes the InputSource object

 * to the parser and builds a DOM tree.

 */

 public URLListDoc(InputSource is)

 {

 try {

 DocumentBuilderFactory docBuilderFactory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder docBuilder =

 docBuilderFactory.newDocumentBuilder();

 dom = docBuilder.parse(is);

 }

 catch(SAXParseException err) {

 System.out.println("Parsing error" +

 ", line " + err.getLineNumber() +

 ", URI " + err.getSystemId());

 System.out.println(" " + err.getMessage());

 }

 catch(SAXException e) {

 Exception x = e.getException();

 ((x == null) ? e : x).printStackTrace();

 }

 catch (Throwable t) {

 t.printStackTrace();

 }

}

 /** getNumURLs takes no arguments. It simply returns the number of URLs

 * read from the InputSource.

 * @return int >= 0 representing the number of URL's available.

 */

 public int getNumURLs() throws Exception

 {

 try

 {

 NodeList nl = dom.getElementsByTagName(URL);

 return nl.getLength();

 }

 catch(Exception ex)

 {

 ex.printStackTrace(System.err);

 throw new Exception("Problems with reading URL data");

 }

 }

 public String getURL(int i) throws Exception

 {

 try

 {

 NodeList nl = dom.getElementsByTagName(URL);

Node urlNode = (Node)nl.item(i-1);

Text text = (Text)urlNode.getFirstChild();

 return (String)text.getNodeValue();

 }

 catch(Exception ex)

 {

 ex.printStackTrace(System.err);

 throw new Exception("Problems with getURL");

 }

 }

 /** main is for testing.

 */

public static void main(String args[]) throws Exception {

InputSource is = new InputSource("urlList.xml");

URLListDoc urlDoc = new URLListDoc(is);

for(int k = 1; k <= urlDoc.getNumURLs(); k++){

 System.out.println("URL " + k + " = " + urlDoc.getURL(k));

}

}

}

Figure 2.8

Homework 2 Part I Using DOM
Please use the same names as mentioned below for your files and classes.
Write a Java application client called Scheduler.java that reads a list of n local URL’s and visits the n sites associated with those URL’s to retrieve schedules. Scheduler.java then computes and displays all available meeting times (where all n schedules show the same available meeting time slot) on the DOS screen.
Sketch of Scheduler.java:

Reads a URL list by creating an InputSource object pointing to urlList.xml file and passing the InputSource object to the URLList constructor

For each URL listed (there may be many)

Create an InputSource object with that URL and pass it to the ScheduleDoc.java constructor

Work from the n schedules to display every possible meeting time when all participants can

be present. Assume that the meeting times are represented by the letters A,B,C and D.
Sketch of URLListDoc.java and ScheduleDoc.java:

Scheduler.java: will make use of two types of documents and so you will provide two Java classes that wrap document instances. One of those classes, URLListDoc.java, is provided in Figure 2.8.

URLListDoc.java

public Constructor : public URLListDoc(InputSource is)

public Methods: public int getNumURLs() throws Exception

 public String getURL(int i) throws Exception

ScheduleDoc.java

public constructor : public ScheduleDoc(InputSource is)

public method: public boolean getAvailable(String day, String slot) throws Exception

Demonstrate that your program works

(1) (10 Points) Paste a DOS screen shot showing your program running using the schedules in Figures 2.1 and 2.3. Figure 2.1 must be available on the internet and must be stored as a Web Application on Tomcat. Figure 2.3 should be a local file stored in the same directory as the client. This all happens on your machine.

(2) (20 Points) Paste a DOS screen shot showing your program running using the schedules in Figures 2.1 and 2.3 as well as a schedule available on my server. You will find a schedule at the URL http://dewdney.heinz.cmu.edu/HempelsSchedule/Schedule.xml.

 Paste a copy here of your updated urlList.xml file. It will now contain a reference to Dewdney.

Paste a copy of the DOS screen shot showing your client running with these three schedules.

 (3) (20 Points) This is the same problem as 2 but with one less schedule. Paste a screen shot showing your program running using the schedules in Figures 2.1 and the schedule available from my server. You will find a schedule at http://dewdney.heinz.cmu.edu/HempelsSchedule/Schedule.xml.

 Paste a copy here of your updated urlList.xml file.

Paste a copy here of the DOS screen showing your client run with these two schedules.

(4) (50 Points) Paste a copy of URLListDoc.java , ScheduleDoc.java, and Scheduler.java here. For full credit these programs must have names as specified above and be clean and well documented.

Homework 2 Part II Using SAX

Many web sites are beginning to describe their content using RSS. In this project you will write a web application that allows a user to register her interest in a set of several RSS feeds. After the registration step, the user will be able to visit the web application and receive a list of news items and links (pointing to those items) on her browser. Many users (with different email addresses) may use the same application concurrently.
Required files:

Register.html When Register.html is accessed it displays an HTML form on the browser. The form allows the user to enter a complete email address and a URL of an RSS news feed. When the submit button is hit, Register.html sends an HTTP request to a servlet called SetRSS.java. This servlet collects the email address and the URL and places the pair in a shared object called UserLists.java. UserLists.java is a modified version of the VisitTracker.java program we studied in class. UserLists holds a hash table of linked lists. Each hash table cell holds a list of URL’s that a particular user is interested in. The hash table is indexed with an email address.

SetRSS.java SetRSS is a servlet that is called by Register.html. It reads the URL and email address and passes both of these data items to UserLists.java. It then makes a request on UserLists for a list of all URL’s that the email address is associated with. SetRSS collects this list of RSS URL’s and sends them back to the browser.

UserLists.java UserLists.java is a singleton. There is only one object of this class and can be used for servlet collaboration. It makes use of the java.util package. This package contains various collection classes. The UserLists object needs to associate a list of RSS URL’s with each registered email address. The number of email addresses may grow over time and so may the number of URL’s associated with each email address.

Access.html When Access.html is accessed it displays an HTML form on the browser. The form allows the user to enter an email address. When the submit button is hit, Access.html sends an HTTP request to a servlet called ReadRSS.java.
ReadRSS.java The ReadRSS servlet collects the email address from the HTTP request and passes it to the UserLists object. The UserLists object returns a list of RSS URL’s associated with the email address. ReadRSS iterates over each URL and creates an InputSource object for each. The InputSource objects are passed, one at a time, to the RSSHandler class. ReadRSS reads the results made available by RSSHandler. ReadRSS returns an HTML document to the browser. This document contains a set of anchor elements. Each anchor element has an attribute containing a URL. Each anchor element has the title of the news item as its content. So, the user sees a list of news items with links. The source of the RSS feed and the current date and time will be displayed around each list of news feed items.
RSSHandler.java The RSSHandler class is a SAX handler and it extends the ContentHandler class. Its constructor takes an InputSource object as a parameter. The class handles SAX events from an RSS news feed. As a simplification, the RSSHandler class looks for any <item> element containing a <title> and a <link> element. It assumes that a <title> and a <link> element will always be found within an <item> element. It does not assume that <link> and <title> are in any particular order. Nor does it assume that there are no additional children of the <item> element. It ignores all elements that are not found within an <item> element. To model the behavior of the SAX handler you might consider using a finite state machine as discussed in class. For each RSS feed, the RSSHandler class makes available a list of title and link pairs.
RSSTitleAndLink.java This is a very simple class that holds one title and link pair as two Java String objects.
Directory strucure
D:\McCarthy\www\95-702\examples\GetAnRSSFeedServlet>tree /f

Folder PATH listing

Volume serial number is 71FAE346 BA17:BF69

D:.

│ build.properties contains username,password,application name see below
│ build.xml contains a build program written in ant
│

├───build created by running the ant program in build.xml
│ │ Access.html the html that requests the username
│ │ Register.html the html that requests the username and RSS feed
│ │

│ └───WEB-INF

│ │ web.xml deployment descriptor see below
│ │

│ ├───classes compiled code
│ │ ReadRSS.class

│ │ RSSHandler.class

│ │ RSSTitleAndLink.class

│ │ SetRSS.class

│ │ UserLists.class

│ │

│ └───lib

├───docs

├───src

│ ReadRSS.java source code – two servlets, a singleton and a SAX handler
│ RSSHandler.class

│ RSSHandler.java

│ RSSTitleAndLink.class

│ RSSTitleAndLink.java

│ SetRSS.java

│ UserLists.java

│

└───web

 │ Access.html

 │ Register.html

 │

 └───WEB-INF

 web.xml
build.properties
build.properties Context path to install this application on

app.path=/MyNewsReader

JWSDP installation directory

catalina.home=d:/jwsdp-1.3
Manager webapp username and password

manager.username=Your user name without quotes
manager.password=Your password without quotes

web.xml
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>

 <servlet>

 <servlet-name>TestServlet</servlet-name>

 <servlet-class>ReadRSS</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>SetServlet</servlet-name>

 <servlet-class>SetRSS</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>SetServlet</servlet-name>

 <url-pattern>/setRSS/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>TestServlet</servlet-name>

 <url-pattern>/getRSS/*</url-pattern>

 </servlet-mapping>

</web-app>

Demonstrate that your system works
(1) Turn in several screen shots showing users registering. At least one of the users should be shown registering for multiple news feeds. 25 Points
(2) Turn in several screen shots that show a browser displaying a list of links that the user is interested in. 25 Points
(3) Turn in printouts of each of the documented files mentioned above. 50 Points.

PAGE
1

