OCT

Principles From Chapter One of "Distributed Systems Concepts and Design"

Characterization of Distributed Systems

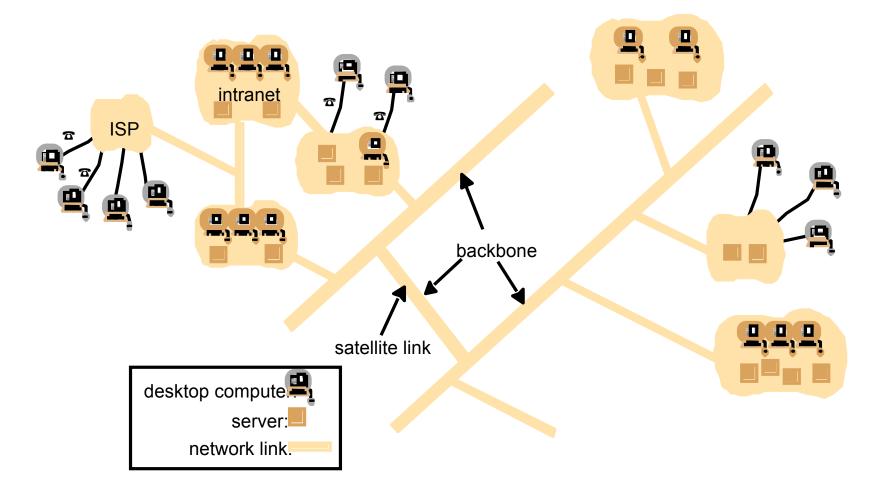
- Components are located on networked computers and execute concurrently
- Components communicate and coordinate only by passing messages
- There is no global clock
- Components may fail independently

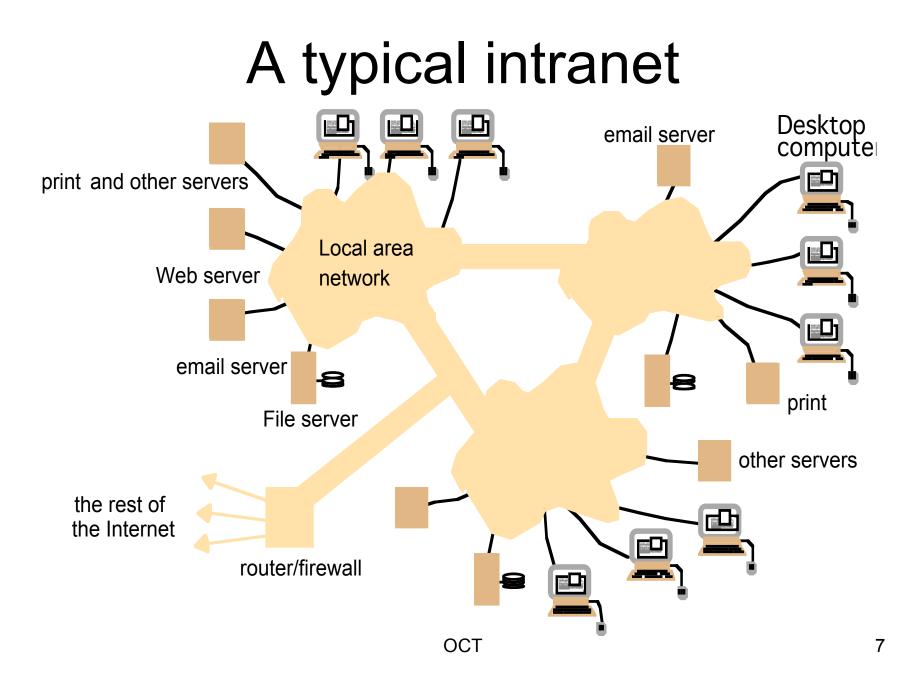
Main motivation for constructing DS

Resource sharing of : **CPU** cycles documents objects data files printers

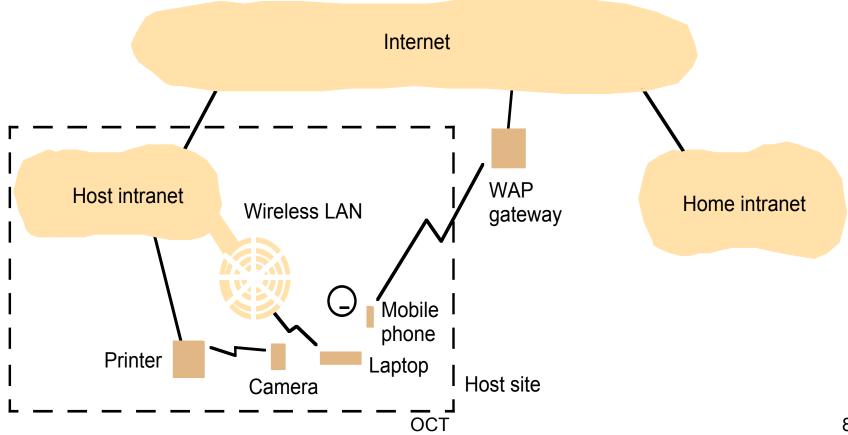
Challenges in Constructing DS

- Heterogeneity of components
- Openness
- Security
- Scalability
- Failure handling
- Concurrency of components
- Transparency


Examples


• The internet

A collection of diverse networks A very large distributed system Providing services such as email, file transfer, telnet, and recently, WWW, Web Services, and multimedia


- Intranets (a portion of the internet separately administrated) and connected to the internet via a router
- Mobile and ubiquitous computing

A typical portion of the Internet

Portable and handheld devices in a distributed system

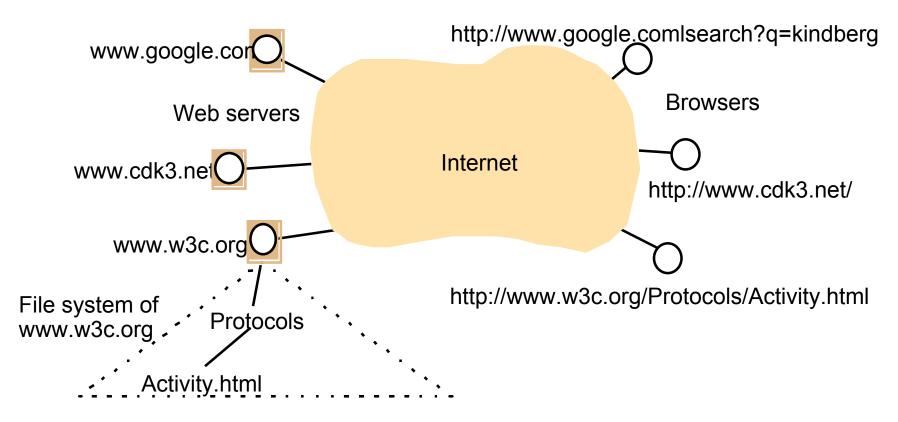
Resource Sharing and the Web

- A server is a running program on a networked computer that accepts requests from programs running on other computers to perform a service and respond appropriately
- The requesting processes are referred to as *clients*
- WWW, Web Services, networked printers and email fit this model

The World Wide Web

- Created by Tim Berners-Lee at European centre for nuclear research (CERN) in Switzerland in 1989 (Knighted 2003)
- Provides a hypertext structure allowing documents to contain links to other documents
- Is an open system (can be extended and implemented in new ways, standards are public and widely implemented)

The World Wide Web (2)


The web is based on three main standard technological components

(1) HTML (User presentation of content and Links)

(2) URL's (Used to point to a resource and specify a protocol)

(3) HTTP (A request-reply protocol)

Web servers and web browsers

A Request May Cause

- A simple file transfer
- A process to be run on the server and content sent to the browser (CGI programs, servlets, JSP pages, etc.)
- Program code to be downloaded and executed in the browser (JavaScript, Applets, Java Web Start, etc.)

Challenges to DS Design(1)

- Heterogeneity applies to
 - Networks (Ethernet, Wireless,..)
 - Computer Hardware (PC's, PDA's,..)
 - Operating Systems (Linux, Windows,..)
 - Programming Languages (Java, C++, C#,..)
 - Different developers
- *Middleware* provides a programming abstraction that addresses these issues

Challenges to DS Design(2)

- Open
 - -- The system can be extended and re-implemented in a variety of ways
 - -- The key specifications are published
 - -- The system is independent of a particular vendor

Challenges to DS Design(3)

• Security

Many resources have a very high value Confidentiality (only those authorized) Integrity (no alteration or corruption) Availability (interference not permitted)

- Encryption will help with much of this
- Denial of Service and Mobile Code are not yet easy to handle

Challenges to DS Design(4)

Scalability

A system is described as scalable if it will remain effective when there is a significant increase in the number of resources and the number of users

For a system with n users to be scalable the quantity of physical resources required to support them should be O(n)

Challenges to DS Design(5)

Scalability

For system to be scalable, the loss in performance attributed to additional users or resources should be O(Log n)

Bottleneck avoidance

- distributed algorithms (Domain Name System)
- caching
- replication

Computers in the Internet

Date	Computers	Web servers
1979, Dec.	1	88 0
1989, July	130,0	00() 0
1999, July	56,218,0)0() 5,560,866

The internet has been scalable and extensible. However, the 32 bit IP address was too small. Moving to IPv6, 128 bits.

Computers vs. Web servers in the Internet

Date	Computers	Web servers	Percentage
1993, July	1,776,000	130	0.008
1995, July	6,642,000	23,500	0.4
1997, July	19,540,00()	1,203,096	6
1999, July	56,218,000	6,598,697/	12

Challenges to DS Design(6)

• Failure Handling

Particularly difficult in DS Failures are often partial Issues include:

> Detecting failures Masking failures Tolerating Failures Recovery from failures

Challenges to DS Design(7)

• Concurrency

Multiple client requests are often allowed to take place concurrently

Standard techniques such as semaphores may be used to ensure that the data in shared objects remain consistent

Challenges to DS Design(8)

Transparency

Access transparency: enables local and remote resources to be accessed using identical operations.

Location transparency: enables resources to be accessed without knowledge of their location.

Concurrency transparency: enables several processes to operate concurrently using shared resources without interference between them.

Replication transparency: enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers.

Challenges to DS Design(9)

Failure transparency: enables the concealment of faults, allowing users and application programs to complete their

tasks despite the failure of hardware or software components.

Mobility transparency: allows the movement of resources and clients within a system without affecting the operation of users or programs.

Performance transparency: allows the system to be reconfigured to improve performance as loads vary.

Scaling transparency: allows the system and applications to expand in scale without change to the system structure or the application algorithms.