
95-702 Organizational
Communication Technologies

1

Enterprise Java Beans

Overview

95-702 Organizational
Communication Technologies

2

Notes from:

“Advanced Java 2 Platform How to
Program” Deitel Deitel Santry

“Thinking in Enterprise Java” Bruce Eckel et. Al.

Sun downloadable documentation
EJB 2.1 API
http://java.sun.com/webapps/download/Display

95-702 Organizational
Communication Technologies

3

Enterprise Java Beans
• Server-Side

EJB objects may offer a remote view (via
a remote procedure call protocol) a local view
(direct procedure call) or both

• Managed
EJB container services are more involved than the
plain old JVM

• Components
distributed in binary format and are
configurable

95-702 Organizational
Communication Technologies

4

Server-Side Implications

• In order to pull off the RPC trick we need:

• A naming service
-- e.g. RMI clients make requests on the

rmiregistry
• RPC proxies

-- communications code along with
the appropriate interface

95-702 Organizational
Communication Technologies

5

Managed: EJB Container Services

• Object Persistence and Synchronization
• Declarative Security Control
• Declarative Transaction Control
• Concurrency Management
• Scalability Management

95-702 Organizational
Communication Technologies

6

EJB Types

• Entity Beans
• Session Beans
• Message-Driven Beans

95-702 Organizational
Communication Technologies

7

EJB Types

• Entity Beans
• Session Beans

• Message-Driven Beans }
} RMI-based server side components

Accessed using distributed object
Protocols (RMI IIOP)

New in EJB 2.0
Asynchronous server side
component that responds to
JMS asynchronous messages
(Think provider like JAXM)

95-702 Organizational
Communication Technologies

8

Entity Beans
• Represent real world entities (customers, orders,

etc.)
• Persistent Objects typically stored in a relational

database using CMP (Container Managed
Persistence) or BMP (Bean Managed
Persistence)

• The client sees no difference between CMP and
BMP beans

• CMP promotes component portability (less
reliant on the container)

95-702 Organizational
Communication Technologies

9

Session Beans
• Are an extension of the client application
• Manage processes or tasks
• Are not persistent
• Often employ several different kinds of entity beans
• Implement business logic
• Come in two types (which can be more easily shared?)

– Stateless session beans (no memory between calls)
purchase(severalIems,creditCardNo);

– Stateful session beans (remember earlier calls)
addToCart(item);
purchase(creditCardNo);

95-702 Organizational
Communication Technologies

10

Message-Driven Beans
• Work in cooperation with Java Messaging System (JMS)
• JMS is an abstraction API on top of Message-Oriented

Middleware (MOM) – like JDBC is an abstraction API on
top of SQL databases

• Each MOM vendor implements things differently
• MDB’s allow the developer to program using the publish-

subscribe messaging model based on asynchronous,
distributed message queues

• The MOM vendor need only provide a service provider
for JMS (IBM’s MQSeries or Progress’ SonicMQ)

95-702 Organizational
Communication Technologies

11

Message-Driven Beans

• Are like session beans
• Have no persistent state
• Coordinate tasks involving other session

beans or entity beans
• Listen for asynchronous messages
• Unlike Session beans, provide no remote

interface describing the methods that can
be called

95-702 Organizational
Communication Technologies

12

Message-Driven Beans

• Are receivers of MOM messages coming
through the JMS API.

• Usually take action when a message is
received.

• Unlike session and entity beans,
Message-Driven Beans expose no remote
or local view. They are not called directly
called by a client.

95-702 Organizational
Communication Technologies

13

Before working with EJB’s

• Understand the role of JNDI (Java Naming
and Directory Interface)

95-702 Organizational
Communication Technologies

14

Naming

• Concepts from the JNDI Tutorial

• Java Naming and Directory Interface

95-702 Organizational
Communication Technologies

15

Naming Concepts

• We need to map people friendly names to
objects

• Examples
mm6@andrew.cmu.edu -> Mike’s mailbox
www.cnn.com -> cnn’s web server
c:\somedir\f1.dat -> a file on a C drive

mailto:mm6@andrew.cmu.edu
mailto:mm6@andrew.cmu.edu
http://www.cnn.com/

95-702 Organizational
Communication Technologies

16

Naming Conventions
• Different naming systems use different conventions (or

syntax) for names

• Examples:
DOS uses slashes and colons and periods c:\some\f.dat

Unix uses slashes /usr/local/filename

DNS uses dots www.cnn.com

LDAP (The lightweight directory access protocol) uses
name, value pairs cn=Rosanna Lee, o=Sun, c=US

http://www.cnn.com/

95-702 Organizational
Communication Technologies

17

Bindings

• A binding is the association of a name with
an object or an object reference.

Examples:
www.cnn.com is bound to an IP address
c:\exam1.doc is bound to a file
a phone number is bound to a phone

http://www.cnn.com/

95-702 Organizational
Communication Technologies

18

Bindings
• A binding is the association of a name with an

object or object reference.

The phone book maps names to
numbers which act as references to
objects. The number is a communication
endpoint.

• A communication endpoint is specific information
on how to access an object

95-702 Organizational
Communication Technologies

19

Context
A context is a set of name-to-object bindings.

Every context has an associated naming
convention.

A context may allow operations such as
bind, unbind, lookup.

A context may associate a name with
another context (subcontext, or
subdirectory)

95-702 Organizational
Communication Technologies

20

Naming System
• A naming system is a connected set of contexts

of the same type (they have the same naming
convention) and provides a common set of
operations. DNS and LDAP, for example, are
two naming system.

• A naming system provides a naming service to
its customers for performing naming-related
operations. For example, associate a new name
with an IP address.

• A namespace is the set of names in a naming
system.

95-702 Organizational
Communication Technologies

21

Directory Service

• A Directory Service is an extension of a naming
service that allows one to lookup objects based
on names or based on attributes.

• Attributes have attribute identifiers and a set of
attribute values.

For example, UDDI - Universal Description,
Discovery and Integration is a Directory Service.

95-702 Organizational
Communication Technologies

22

Reverse lookup or content-based
searching

• Example queries to directory services:

Find all machines whose IP address
begins with 192.115.50.

Find all companies that provide hardware
support services.

95-702 Organizational
Communication Technologies

23

Directory Enabled Applications
A directory-enabled application is an application
that uses a naming or directory service.
Applications can share the common
infrastructure provided by the directory.

Example: A mail client, scheduling systems and
mail forwarding program might all use the same
address book stored in a common directory.
The directory may also be used as an Object
store for programs needing the same object.

95-702 Organizational
Communication Technologies

24

Java Naming and Directory
Interface JNDI

95-702 Organizational
Communication Technologies

25

Java Naming and Directory
Interface (JNDI)

• An abstraction API (like JDBC handles
different RDBMS databases)

• The JNDI API handles or sits on top of
different naming services.

Java Application
JNDI API

File SystemLDAP DNS RMI Service Providers
File System must
Be downloaded

95-702 Organizational
Communication Technologies

26

JNDI
• The javax.naming packages contains mostly

Java interfaces.
• Some vendor implements the interface to

provide JNDI support for their service.
• To use the service, you need a JNDI Service

Provider that implements the interface
• JDK1.4 comes with RMI, DNS, COS, and LDAP

Service providers.
• Sun’s web site has an additional JNDI Service

Provider that works with the local file system

95-702 Organizational
Communication Technologies

27

JNDI

• A namespace is a logical space in which
names can be defined.

• The same names in different namespaces
cause no collisions.

• Namespaces can be nested:
- file system directories are nested
- the Internet DNS domains and
sub-domains are nested

95-702 Organizational
Communication Technologies

28

Namespaces are represented by
the Context Interface

• Different classes implement this interface
differently depending on which naming service
they are accessing.

• Has methods to
- bind and unbind objects to names
- create and delete sub-contexts
- lookup and list names

• Since a Context is a Java object it can be
registered in another Context with its own name.

95-702 Organizational
Communication Technologies

29

The Context Interface

• Start from some “root” context.
• Get the “root” from the InitialContext class
• Examples

LookUp.java
ListCurrentDirectory.java

95-702 Organizational
Communication Technologies

30

LookUp.java

// before running download JNDI provider from Sun
// add .jar files to classpath

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import java.util.Hashtable;
import java.io.File;

95-702 Organizational
Communication Technologies

31

public class LookUp {

public static void main(String args[]) throws NamingException {

try {

System.out.println("Using a file system (FS) provider");

// initialize the context with properties for provider
// and current directory
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL,

"file:D:\\McCarthy\\www\\95-702\\examples\\JNDI");

Context ctx = new InitialContext(env);

Object obj = ctx.lookup(args[0]);

95-702 Organizational
Communication Technologies

32

if(obj instanceof File) {

System.out.println("Found a file object");

System.out.println(args[0] + " is bound to: " + obj);

File f = (File) obj;

System.out.println(f + " is " + f.length() + " bytes long");
}
// Close the context when we're done
ctx.close();

}
catch(NamingException e) {

System.out.println("Naming exception caught" + e);
}

}
}

95-702 Organizational
Communication Technologies

33

D:\McCarthy\www\95-702\examples\JNDI>java LookUp LookUp.java
Using a file system (FS) provider
Found a file object
LookUp.java is bound to: D:\McCarthy\www\95-702\examples\JNDI\LookUp.java
D:\McCarthy\www\95-702\examples\JNDI\LookUp.java is 1255 bytes long

95-702 Organizational
Communication Technologies

34

ListCurrentDirectory.java
// Use JNDI to list the contents of the current
// directory

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.naming.NamingEnumeration;
import javax.naming.NameClassPair;
import java.util.Hashtable;
import java.io.File;

95-702 Organizational
Communication Technologies

35

public class ListCurrentDirectory {

public static void main(String args[]) throws NamingException {

try {

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL,

"file:D:\\McCarthy\\www\\95-702\\examples\\JNDI");

95-702 Organizational
Communication Technologies

36

Context ctx = new InitialContext(env);

NamingEnumeration list = ctx.list(".");

while (list.hasMore()) {
NameClassPair nc = (NameClassPair)list.next();
System.out.println(nc);

}
ctx.close();
}
catch(NamingException e) {

System.out.println("Naming exception caught" + e);
}

}
}

95-702 Organizational
Communication Technologies

37

D:\McCarthy\www\95-702\examples\JNDI>java ListCurrentDirectory
ListCurrentDirectory.class: java.io.File
ListCurrentDirectory.java: java.io.File
LookUp.java: java.io.File
SimpleJNDI.java: java.io.File
x: javax.naming.Context x is a DOS directory

95-702 Organizational
Communication Technologies

38

// Use JNDI to change to a sub directory and list contents

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.naming.NamingEnumeration;
import javax.naming.NameClassPair;
import java.util.Hashtable;
import java.io.File;

public class ChangeContext {

public static void main(String args[]) throws NamingException {

try {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL,

"file:D:\\McCarthy\\www\\95-702\\examples\\JNDI");

95-702 Organizational
Communication Technologies

39

Context ctx = new InitialContext(env);

// a subdirectory called x contains a file f.txt and a subdirectory t
Context sub = (Context)ctx.lookup("x");

NamingEnumeration list = sub.list(".");

while (list.hasMore()) {
NameClassPair nc = (NameClassPair)list.next();
System.out.println(nc);

}
ctx.close();
sub.close();

}
catch(NamingException e) {

System.out.println("Naming exception caught" + e);
}

}
}

95-702 Organizational
Communication Technologies

40

D:\McCarthy\www\95-702\examples\JNDI>java ChangeContext

f.txt: java.io.File
t: javax.naming.Context

95-702 Organizational
Communication Technologies

41

Back to EJB

• Implementing session and entity beans
• Implementing message-driven beans

95-702 Organizational
Communication Technologies

42

Implementing Entity and Session
Beans

• Define the component interfaces
– You may choose to define all or only some of

these depending on how you want your bean
used

– local interfaces do not require RMI overhead
• Define a bean class
• For entity beans define a primary key

95-702 Organizational
Communication Technologies

43

Implementing Entity and Session
Beans

• Define the component interfaces
– The remote interface specifies how the outside world

can access the bean’s business methods
– The remote home interface specifies how the outside

world can access the bean’s life-cycle methods (for
creating, removing and finding)

– The local interface specifies how the inside world
(same EJB container) can access the bean’s
business methods

– The local home interface specifies how the inside
world can access the bean’s life-cycle methods

95-702 Organizational
Communication Technologies

44

Implementing Entity and Session
Beans

• Implement the bean
– Fill in the code for the business and life-cycle

methods
– It’s not normal to directly implement the interfaces as

we do in standard Java (though you must provide
many of the methods). The calls to methods are not
normal Java calls. They first go through the container.

– Session beans implement javax.ejb.SessionBean
– Entity beans implement javax.ejb.EntityBean
– Both beans extend javax.ejb.EnterpriseBean

95-702 Organizational
Communication Technologies

45

For Entity Beans

• Define a primary key class
– Required for entity beans
– Provides a pointer into the database
– Must implement Java.io.Serializable

• The EJB instance represents a particular
row in the corresponding database table

• The home interface for the entity EJB
represents the table as a whole (has finder
methods.)

95-702 Organizational
Communication Technologies

46

Implementing a Message-Driven
Bean

• Has no local, local home, remote, or
remote home interfaces to define.

• The container will call the onMessage()
method when an asynchronous message
arrives. (Like JAXM message provider.)

• Extends the EnterpriseBean class and
implements the
javax.ejb.MessageDrivenBean and
javax.jms.MessageListener interfaces

95-702 Organizational
Communication Technologies

47

Implementing a Message-Driven
Bean

• Two basic messaging-system models
(1) point-to-point model allows messages
to be sent to a message queue to be read
by exactly one message consumer
(2) publish/subscribe model allows
components to publish messages on a
topic to a server to be read by zero or
more subscribers

95-702 Organizational
Communication Technologies

48

In both models

• The messages hold
-- a header containing the destination and
the sending time.
-- message properties to allow the
receiver to select which messages they
would like to receive. These may be set by
the sender.
-- the message body itself

95-702 Organizational
Communication Technologies

49

Point-to-point On the client side

import javax.jms.*;

QueueConnection qCon;
QueueSession qSes;
QueueSender qSen;

Through JNDI get access to a QueueSender.
Build messages and send.

95-702 Organizational
Communication Technologies

50

Point-To-Point On the server side

import javax.jms.*;

QueueConnection qCon;
QueueSession qSes;
QueueReceiver qRec;

Through JNDI get access to a QueueSender.
Build a MessageListener with an onMessage
method.

	Enterprise Java Beans
	Enterprise Java Beans
	Server-Side Implications
	Managed: EJB Container Services
	EJB Types
	EJB Types
	Entity Beans
	Session Beans
	Message-Driven Beans
	Message-Driven Beans
	Message-Driven Beans
	Before working with EJB’s
	Naming Concepts
	Naming Conventions
	Bindings
	Bindings
	Context
	Naming System
	Directory Service
	Reverse lookup or content-based searching
	Directory Enabled Applications
	Java Naming and Directory Interface JNDI
	Java Naming and Directory Interface (JNDI)
	JNDI
	JNDI
	Namespaces are represented by the Context Interface
	The Context Interface
	LookUp.java
	ListCurrentDirectory.java
	Back to EJB
	Implementing Entity and Session Beans
	Implementing Entity and Session Beans
	Implementing Entity and Session Beans
	For Entity Beans
	Implementing a Message-Driven Bean
	Implementing a Message-Driven Bean
	In both models
	Point-to-point On the client side
	Point-To-Point On the server side

