
Thesis proposal

Pancasting: forecasting epidemics from

provisional data

Logan Brooks
Computer Science Department
Carnegie Mellon University

Thesis Committee:

Roni Rosenfeld (chair)
Ryan Tibshirani
Zico Kolter
Je�rey Shaman (Columbia University)



Abstract

Infectious diseases remain among the top contributors to human illness and
death worldwide [71, 45]. While some infectious disease activity appears in
consistent, regular patterns within a population, many diseases produce less
predictable epidemic waves of illness. Uncertainty and surprises in the timing,
intensity, and other characteristics of these epidemics stymies planning and
response of public health o�cials, health care providers, and the general public.
Accurate forecasts of this information with well-calibrated descriptions of the
associated uncertainty can assist stakeholders in tailoring countermeasures,
such as vaccination campaigns, sta� scheduling, and resource allocation, to the
situation at hand, which in turn could translate to reductions in the impact
of a disease.

Domain-driven epidemiological models of disease prevalence can be di�cult
to �t to observed data while incorporating enough details and �exibility so that
the observed data can be explained well. Meanwhile, more general statistical
approaches can also be applied, but traditional modeling frameworks seem
ill-suited for irregular bursts of disease activity, and focus on producing accu-
rate single-number estimates of future observations rather than well-calibrated
measures of uncertainty on more complicated functions of the data. The �rst
part of the proposed work develops more �exible variants of simple statistical
approaches that increase the �exibility of both point predictions and proba-
bility distribution forecasts.

Epidemiological surveillance systems commonly incorporate a data revi-
sion process, whereby each measurement may be updated multiple times to
improve accuracy as additional reports and test results are received and data
is cleaned. The second part of the proposed work discusses how this process
impacts proper forecast evaluation and visualization. Additionally, it extends
the models above to �backcast� how existing measurements will be revised,
which in turn can be used to improve forecast accuracy.

Often, there are multiple available sources of estimates of a disease's preva-
lence, which vary in geographical and temporal scope and resolution, accuracy,
and timeliness, and each of which may exhibit its own peculiarities. The �nal
part of the proposed work further generalizes the above methodology to incor-
porate multiple data sources with similar temporal scopes and resolutions, in
order to produce better forecasts than are possible with a single data source
alone.
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Chapter 1

Introduction

Much of this chapter is based on material from [8].

Infectious diseases and the motivation for forecasting

Despite modern medical advances, infectious diseases remain among the top
causes of human illness and death worldwide, and pose major threats even
in high-income countries [71, 45, 42]. Within the scope of infectious diseases,
leading contributors include lower respiratory infections (e.g., with pneumo-
nia or in�uenza) and diarrheal diseases (e.g., from foodborne bacteria and
viruses) [71, 45, 42, 19]. Some infectious disease activity occurs in consistent,
regular �endemic� patterns within a population, but many diseases produce
less predictable �epidemic� waves of illness. Uncertainty and surprises in the
timing, intensity, and other characteristics of these epidemics stymies planning
and response of public health o�cials, health care providers, and the general
public, and contributes to a high health and economic burden.

For instance, in the United States and other temperate regions, lower respi-
ratory infection activity various classes of respiratory and circulatory disease,
such as lower respiratory infections, present fairly uniform �baseline� patterns
repeating each year, punctuated by sharp spikes in prevalence often associated
with in�uenza epidemics [58, 65, 66, 77, 38]. In�uenza epidemics typically oc-
cur once a year during the �in�uenza season� (roughly from October to May
in the Northern Hemisphere), but vary in timing, intensity, and other traits;
these �seasonal� epidemics are associated with an estimated 250 000 to 500 000
annual deaths worldwide [72], with a range of 3000 to 56 000 deaths in the US
alone [12, 65, 57]. Additionally, in�uenza �pandemics�, which are rare global
outbreaks of especially novel in�uenza viruses [14, 13], can cause deaths on
even greater scales [68, 33]. Potential countermeasures include [46] adjusting
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scheduling and providing on-site child care for health workers to better handle
increased patient loads; canceling or rebooking less urgent medical appoint-
ments and procedures, admitting emergency department patients to inpatient
hallway beds and recon�gured or alternative spaces; transferring patients to
other facilities to avoid or reduce overcrowding; producing and tuning com-
position of vaccines; manufacturing, allocating, and redistributing antiviral
medication, respirators, and other resources; and launching or modifying
campaigns to promote vaccination, e�ective hand-washing practices, wearing
face masks [55, 1, 64, 61, 63, 17], and other bene�cial behaviors, targeted to
sick individuals, their close contacts, or health workers, in order to curtail the
spread and consequences of infections. The design and e�ectiveness of
these e�orts depends on the range of expectations for and ultimate reality of
an epidemic's size, timing, and other characteristics.

Accurate and reliable forecasts of this information could provide early warn-
ing, bolster situational awareness, and assist in designing countermeasures,
which in turn may reduce the overall impact of infectious disease. While
the idea of epidemic modeling and forecasting is not new, recent years have
seen growing interest driving government initiatives that standardize datasets,
tasks, and metrics to improve forecast usability, address decision-maker needs,
attract and assist external modelers, and allow for rigorous evaluation and
comparison. These e�orts include the U.S. government's Dengue Forecast-
ing project, CHIKV (Chikungunya virus) Challenge, and a series of in�uenza
forecast comparisons. This document will focus on these in�uenza forecasting
testbeds and corresponding surveillance systems in the US.

The Centers for Disease Control and Prevention (CDC) monitors in�uenza
prevalence with several well-established surveillance systems [11]; the recur-
ring nature of seasonal epidemics and availability of historical data provide
promising opportunities for the formation, evaluation, and application of sta-
tistical models. Starting with the 2013/2014 �Predict the In�uenza Season
Challenge� [4] and continuing each season thereafter as the Epidemic Predic-
tion Initiative's FluSight project [5], CDC has solicited and compiled forecasts
of in�uenza-like illness (ILI) prevalence from external research groups and
worked with them to develop standardized forecast formats and quantitative
evaluation metrics. Targets of interest include disease prevalence in the near
future, as well as features describing the timing and overall intensity of the dis-
ease activity in the season currently underway. Policymakers desire not only
in point predictions of these quantities, but full distributional forecasts; recent
initiatives solicit both types of estimates, but base evaluation on customized
log scores of distributional forecasts.
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1.1 Models of disease dynamics

Various approaches to in�uenza epidemic forecasting are summarized in lit-
erature reviews [16, 47, 67] and descriptions of the CDC comparisons [4, 5].
Some common approaches are described below, with references to work appli-
cable to the current FluSight project and related seasonal dengue forecasting
tasks, emphasizing more recent work that may not be listed in the above three
literature reviews:

Mechanistic models: describe the disease state and interaction between in-
dividuals with causal models, as well as the surveillance data generation
process.

Compartmental models (e.g., [59, 60, 24, 76, 35]): break down the pop-
ulation into a number of discrete �compartments� describing their
characteristics (e.g., age, location) and state (e.g., susceptible to,
infectious with, or recovered from a particular disease), and describe
how the occupancy of these compartments changes over time, either
deterministically or probabilistically. In many of these models, this
division describes solely the state with respect to a single disease,
ignoring details regarding age, spatial dynamics, and mixtures of
ILI diseases, but keeping the number of parameters to infer low.
Methods to �t these models to data include variants of particle
and ensemble Kalman �lters [75], naïve importance sampling [7],
iterative augmented-state �ltering [28, 40, 29], general Bayesian
frameworks [49] (using JAGS [53], Stan [10], etc.), �ltering using
linear noise approximation [79, 78], and Gaussian process approxi-
mations [9].

Agent-based models (e.g., [47, 18]): also known as individual-based
models, these approaches use more detailed descriptions of disease
state and/or individual characteristics and behavior, which are not
easily simpli�ed into a compartmental form, typically studied using
computation-heavy simulations. These approaches usually include
many more parameters than compartmental models, which may
be set based on heuristics or additional data sources and studies,
or, alternatively, inferred based on the surveillance data, often by
using Markov chain Monte Carlo (MCMC) procedures. Developing
e�ective inference techniques is an active area, with scalability to
large populations still on the frontier of research, requiring special
inference techniques and/or likelihood approximations [48].
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Phenomenological models: also referred to as statistical models, these ap-
proaches describe the surveillance data without directly incorporating
the epidemiological underpinnings.

Direct regression models (e.g., [69, 15, 7, 56]): attempt to estimate
future prevalence or targets of interest using various types of re-
gression, including nonparametric statistical approaches and alter-
natives from machine learning literature.

Time series models (e.g., [50, 27, 44, 41, 39, 74, 73, 32, 22]): represent
the expected value of (transformations of) observations and/or un-
derlying latent state at a particular time as (typically linear) func-
tions of these quantities at previous times and additional covariates,
paired with Gaussian, Poisson, negative binomial, or other noise
distributions. This category includes linear dynamical systems and
frameworks such as SARIMAX.

Complicated mechanistic approaches such as agent-based models are of-
ten too complex to e�ciently �t to surveillance data and are instead less
strictly �calibrated� based on summary measures, which may not produce a
close match to the surveillance observations. Instead, mechanistic forecasting
approaches have focused on simpler compartmental models and frameworks
for �tting them to surveillance data. However, oversimpli�ed compartmental
models often cannot tightly match the surveillance data for an entire season
simultaneously [7], which can degrade inference quality. Some degree of mis-
match can be attributed to observation models that do not re�ect important
details of the surveillance system, which are discussed in the next section. An-
other contributor is the rigidity of compartmental models with deterministic
state transitions and shallow-tailed observational noise, leading to overcon�-
dent forecasts; some paths forward are to incorporate variance in�ation fac-
tors [59], overdispersed observational noise [41], stochastic variants or process
noise [36], random walk discrepancy terms [49], error breeding procedures [52],
more complex models with appropriate �ltering algorithms [51], or use of im-
proper conditioning procedures to combat overcon�dence.

Phenomenological models, on the other hand, o�er a wide range of general-
purpose methods designed around e�cient, straightforward inference. Univari-
ate response models are extremely �exible, but seem inappropriate when the
target of interest is a function of a surveillance time series. The most popular
statistical time series methods, falling within �alphabet soup� frameworks such
as SARIMAX and GARCH, directly model the time series, but sacri�ce some
�exibility by focusing on linear dynamics and Gaussian noise.
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Chapter 2 expands the phenomenological front and moves toward the mech-
anistic one, presenting methods that incorporate the �exibility of univariate
response models into ARI time series models, and ways to tailor these models
to epidemiological settings to resemble a compartmental model.

1.2 Models of observations

Most epidemic modeling work, including much of the epidemic forecasting lit-
erature, tends to focus on the disease transmission dynamics, with the nature
of surveillance system modeled with a very simple observational noise term.
However, recognizing some details of surveillance systems is essential when
performing retrospective forecast preparation and evaluation, and using these
details to inform models can improve forecast accuracy. For example, surveil-
lance data may contain spikes around holidays, which may be explained by
di�erences in health care seeking behavior producing artifacts in the surveil-
lance system, and/or due to changes in disease transmission behavior. Chap-
ter 2 touches on some model settings that can be used to acknowledge holiday
e�ects.

A more fundamental issue is that the ground truth from traditional surveil-
lance systems used for evaluation is not available in real-time for use in fore-
casts. It takes time for symptoms to be recorded, diagnoses to be made,
lab tests to complete; for health care workers to prepare and submit reports;
and for public health o�cials to compile, clean, summarize, and publish the
data. Furthermore, a case might only be reported after recovery or death,
but recorded with a time closer to the onset of symptoms. In short, there is
a trade-o� between the accuracy of an observation and its timeliness. Tradi-
tional surveillance systems often address this problem by publishing an initial
observation for a given time once the level of reliability is deemed acceptable,
then later reporting a revised value or sequence of revised values that improve
the expected accuracy. After some time, the observation may be �nalized in
the surveillance system or considered stable enough to be interchangeable with
the �nalized value and used as ground truth for forecast evaluation. Chapter 3
discusses how this revision process impacts proper retrospective forecast eval-
uation, and how forecast accuracy can be improved by modeling the revision
process.

In recent years, a number of novel digital surveillance sources and derived
estimators have been prepared using internet search query data, social media
activity, web page hits, self-reported illness, self-reporting, internet-integrated
monitoring and testing devices, electronic health records, insurance claims, or
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some combination along with traditional surveillance data. These estimates
are not used as ground truth for evaluation, but may have better timeliness
and resolution, and o�er opportunities for improved forecasting. Some of
these sources undergo a similar revision process as more traditional surveillance
data; others may be available so quickly that the time period corresponding
to a given observation has not ended before initial estimates are available.
Chapter 4 discusses how to incorporate these additional data sources within
the modeling framework presented in the previous chapters.

1.3 Epidemiological surveillance data

Epidemiological surveillance data exhibit a number of behaviors which are
problematic for traditional time series methods without tailoring:

Rare or one-time events cause major shifts in reported disease prevalence,
including

invasions: introduction of a disease into an area that has not encoun-
tered it before;

novel strain pandemics: epidemics with wider geographical spread or
high incidence, often occurring at unseasonal times of year, caused
by mutations in a strain of a disease that result in more e�ective
transmission;

mass vaccination and eradication campaigns: coordinated e�orts
by public health o�cials to drastically increase the proportion of
the population that is vaccinated against a disease; and

sudden shifts in reporting practices or suitability: changes in re-
porting requirements; the type or number of reporting health care
providers (in a passive surveillance system); disease de�nitions, test-
ing procedures, testing equipment, or testing sensitivity to preva-
lent disease strains; reporting frequency, geographical and temporal
scope and resolution, disease speci�city; among other changes;

Seasonality in transmissibility which results in irregular seasonal behav-
ior in case counts: epidemic waves of varying heights and times that
usually occur with some wide �on-season� time window (in addition to
more predictable background seasonality for which sinusoidal or seasonal
autoregressive terms and Gaussian-like noise seem more appropriate)
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Nonadditive holiday e�ects on health care seeking, reporting, or disease
transmission rates;

Data revisions to past surveillance data are common, as the reporting delay
for cases may vary based on the attending health care provider and
duration of illness, suspected cases of a disease may be included in early
estimates but ruled out later, and, for rapidly available datasets, the
time window for data aggregation may include times in the future (e.g.,
later days of the current week) which are necessarily not observed yet;
and

Ragged data availability , used here to refer di�erences among surveillance
signals in geotemporal and demographic resolution, availability, and reli-
ability patterns; timeliness of release; and underlying stimuli, complicate
the creation and use of models incorporating multiple signals simultane-
ously.

The proposed work focuses on building models that are appropriate given
the last four aspects of epidemiological surveillance data. Chapter 2 focuses
on building nonparametric univariate time series models that factor in holiday
e�ects and seasonality in transmissibility, ignoring the fact that data revisions
occur and additional surveillance signals may be available. Chapter 3 deals
with the modeling of data revisions. Chapter 4 discusses incorporation of
additional data sources with di�ering availability patterns.
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Chapter 2

Probabilistic forecasting of the

spread of epidemics

Stakeholders desire accurate and reliable forecasts of disease prevalence in the
next few weeks, and of summary statistics about the timing and intensity of
epidemics. The goal is to improve situational awareness and decision-making
regarding, for example, hospital sta�ng and scheduling impacting readiness
for surges in the number of inpatients, or the timing of a vaccination campaign.
Each of the prediction targets could be handled separately: one model could
be built to forecast disease prevalence next week, another to forecast the week
when prevalence is highest, and so on. However, we focus on a more uni�ed
approach: �rst, forecasting the distribution of the disease prevalence trajectory
for the entire season, then extracting the corresponding distributions for the
targets of interest. This chapter discusses methods of forecasting the future of
a trajectory given observed values of this trajectory in the past.

Given past observations Y1..t of a univariate surveillance time series Y1..T for
a semi-regular seasonal epidemic, we want to estimate the distribution of future
trajectories, Yt+1..T . The distributional aspect of the forecast is important:
many time series methods treat conditional mean estimates as ��rst class� and
add Gaussian observational and/or process noise as a matter of convenience;
we seek a more �exible noise model able of capturing heavy tails and multi-
modality. Furthermore, any conditional mean estimates that are produced
should have a �exible, nonparametric �avor. Producing a sample from the
distribution for Yt+1..T is su�cient; we do not need an explicit representation
of the model.

One approach is to borrow from well-known, �exible univariate regression
and density estimation models and repurpose them for time series estimation.
A simple procedure allows us to sample from an estimate of Yt+1..T ∣ Y1..t
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based on samplers for estimates of one-step-ahead conditional distributions
Yt+1 ∣ Y1..t, Yt+2 ∣ Y1..t+1, . . . , YT ∣ Y1..T−1:

� Draw Y sim
t+1 ∼ Yt+1 ∣ Y1..t

� Draw Y sim
t+2 ∼ Yt+2 ∣ Y1..t, Yt+1 = Y sim

t+1 (using model for Yt+2 ∣ Y1..t+1)

� Draw Y sim
t+3 ∼ Yt+3 ∣ Y1..t, Yt+1,t+2 = Y sim

t+1,t+2 (using model for Yt+3 ∣ Y1..t+2)

� . . .

� Draw Y sim
T ∼ YT ∣ Y1..t, Yt+1..t = Y sim

t+1..T−1 (using model for YT ∣ Y1..T−1)

Record Y sim
t+1..T and repeat this process to obtain additional simulated futures.

There are essentially no restrictions on the models selected for Yu ∣ Y1..u−1 for
each u.

One natural approach is to �rst directly estimate the conditional distri-
bution Ψ[u] ∣ Φ[u], where Ψ[u] is a (potentially u-speci�c) function of Y1..u

from which Yu can be recovered given Y1..u−1 (e.g., Ψ[u] = ∆Yu = Yu − Yu−1 or
Ψ[u] = logYu), and Φ[u] is a (potentially u-speci�c) vector of features derived
from Y1..u−1. During simulation, Y sim

1..u−1 will be used to calculate corresponding
simulated feature values Φ[u],sim, which are used to draw a simulated trans-
formed value Ψ[u],sim, from which a corresponding simulated value Y sim

u can be
recovered. Nonparametric methods along these lines include:

Kernel delta density, which draws ∆Y sim
u from an estimate of the condi-

tional density for ∆Yu ∣ Φ[KDD,u] based on smoothing kernel methods
with some heuristic modi�cations, where Φ[KDD,u] is a vector of heuris-
tically constructed and weighted features for time u derived from Y1..u−1,
and

Quantile autoregression using locally linear quantile regression and cor-
rupting noise, which selects Ψ[u],sim as the sum of a random estimated
conditional quantile and (optionally) some smoothing noise, where the
conditional quantile is estimated for Ψ[u] ∣ Φ[QARlinear,u],Φ[QARkernel,u] as
a linear function of covariates Φ[QARlinear,u], with training data weighted
with a smoothing kernel on covariates Φ[QARkernel,u].

2.1 Kernel delta density

Content in this section is taken from or based on material from [8].
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Kernel density estimation and kernel regression use smoothing kernels to
produce �exible estimates of the density of a random variable (e.g., fYt+1..T )
and the conditional expectation of one random variable given the value of
another (e.g., E[Yt+1..T ∣ Y1..t]), respectively; we can combine these two methods
to obtain estimates of the conditional density of one random variable given
another. One possible approach would be to use the straightforward estimate

f̂Yt+1..T ∣Y1..t(yt+1..T ∣ y1..t) =
∑
S
s=1 I

[1..t](y1..t, Y(1..t)+(∆t)s)O
[t+1..T ](yt+1..T , Y(t+1..T )+(∆t)s)

∑
S
s=1 I

[1..t](y1..t, Y(1..t)+(∆t)s)
,

where {1..S} is the set of fully observed historical training seasons, and I[1..t]

and O[t+1..T ] are smoothing kernels describing similarity between �input� tra-
jectories and between �output� trajectories, respectively. However, while basic
kernel smoothing methods can excel in low-dimensional settings, their perfor-
mance scales very poorly with growing dimensionality. During most of the
season, neither Y1..t nor Yt+1..T is low-dimensional, and the current season's
observations are extremely unlikely to closely match any past Y(1..t)+(∆t)s or
Y(t+1..T )+(∆t)s . This, in turn, can lead to kernel density estimates for Yt+1..T

based almost entirely on the single season s with the closest Y(1..t)+(∆t)s when
conditioning on Y1..t, and excessively narrow density estimates for Yt+1..T even
without conditioning on Y1..t. The high-dimensional output issue is already re-
solved by chaining together estimates of conditional densities with univariate
outputs: f∆Yu∣Y1..u−1 for each u from t + 1 to T , where ∆Yu = Yu − Yu−1. Es-
timating single-dimensional densities requires relatively little data. However,
this reformulation exacerbates the high-dimensional input problem since we
are conditioning on Y1..u−1, which can be considerably longer than Y1..t. We
address the high-dimensional input problem by approximating f∆Yu∣Y1..u−1 with
f∆Yu∣Φ[KDD,u] where Φ[KDD,u] is some low-dimensional vector of features de-
rived from Y1..u−1. The straightforward conditional density estimation method
described above for Yt+1..T ∣ Y1..t can be applied to the chained distributions
∆Yu ∣ Φ[KDD,u], although literature indicates that this approach is subopti-
mal [23].

The conditional density estimates above were developed based on combin-
ing kernel regression and univariate kernel density estimation techniques, it
can also be understood as sampling from a joint kernel density estimate over
input and output variables using a product kernel. A slightly more complicated
take on the former viewpoint has been found to yield faster theoretical and
simulated statistical convergence rates [23]. The latter interpretation o�ers
additional alternatives such as deriving results from a joint density estimate
based on a kernel that is not the product of an input and output kernel,
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as well as copula techniques. These approaches have been incorporated in a
separate epidemiological forecasting system working directly with the higher-
dimensional inputs and outputs rather than the one-step-ahead approach [56].
A host of work on kernel conditional density estimation o�ers avenues to im-
proving these kernel delta density approaches, as well as resolving the original
issues regarding high dimensionality.

We use two sets of choices for the approximate conditional density function
and summary features to form two versions of the method.

Markovian delta density: approximates the conditional density of ∆Yu given
Y1..u−1 with its conditional density given just the previous (real or simu-
lated) observation, Yu:

f̂Yt+1..T ∣Y1..t(yt+1..T ∣ y1..t) =
T2

∏
u=t+1

f̂∆Yu∣Y1..u−1(∆yu ∣ y1..u−1)

=
T2

∏
u=t+1

f̂∆Yu∣Yu−1(∆yu ∣ yu−1)

=
T2

∏
u=t+1

∑s I
[u](yu−1, Yu−1+(∆t)s) ⋅O

[u](∆yu,∆Yu+(∆t)s)

∑s I
[u](yu−1, Yu−1+(∆t)s)

,

where I[u] and O[u] are Gaussian smoothing kernels. The �rst equality
corresponds to the chain rule of probability on the actual (not estimated)
densities; the second incorporates the Markov assumption (i.e., selects
Φ[u] = [Yu−1]); and the third gives our choice of estimators for the condi-
tional densities f̂∆Yu∣Yu−1 for each u. The bandwidth of each I[u] and O[u]

is chosen separately using bandwidth selection procedures for regular ker-
nel density estimation of Yu−1 and ∆Yu, respectively. (Speci�cally, we use
the bw.SJ function from the R[54] built-in stats package, with bw.nrd0

as a fallback in the case of errors. These functions do not accept weights
for the inputs; it may be possible to improve forecast performance by
incorporating these weights or by using other approaches to select the
bandwidths.) Note that density estimates for ∆Yu are based on data
from past seasons on week u only, allowing the method to incorporate
seasonality and holiday e�ects (for holidays that consistently occur at
the same time of year).

Forecasts are based on Monte Carlo simulations of Yt+1..T ∣ Y1..t using
the chained one-step-ahead procedure described in the previous section.
This process is illustrated in Figure 2.1. Repeating this procedure many
times yields a sample from the model for Yt+1..T ∣ Y1..t; stopping at 2000
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draws seems su�cient for use in our ensemble forecasts, while at least
7000 are needed to smooth out noise when displaying distributional tar-
get forecasts for the delta density method in isolation. Any negative
simulated weighted %ILI (wILI) values in these trajectories are clipped
o� and replaced with zeroes.
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Figure 2.1: The delta density method conditions on real and simulated

observations up to week u−1 when building a probability distribution
over the observation at week u. This �gure demonstrates the process for
drawing a single trajectory from the Markovian delta density estimate. The
past data Y1..t, which incorporates observations through week 48, is shown in
black. Kernel smoothing estimates for future values at times u from t+1 to T2

are shown in blue, as are simulated observations drawn from these estimates.
Past seasons' trajectories are shown in red, with alpha values proportional to
the weight they are assigned by the kernel Iu.

Extended delta density: approximates the conditional density of ∆Yu given
Y1..u−1 with its conditional density given four features:
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� the previous wILI value, Yu−1;

� the sum of the previous ku wILI values, roughly corresponding to
the sum of wILI values for the current season;

� an exponentially weighted sum of the previous ku wILI; values,
where the weight assigned to time u′ is 0.5t

′−u′ ; and

� the previous change in wILI value, ∆Yu−1.

The approximate conditional density assigns each of these features a
weight (0.5, 0.25, 0.25, and 0.5, respectively) in order to reduce over�t-
ting and emphasize some relative to the others, and incorporates data
from other weeks close to u (speci�cally, within lu weeks; the choice of
lu is discussed in a later section) with a truncated Laplacian kernel. We
selected these weights and other settings, such as kernel bandwidth selec-
tion rules, somewhat arbitrarily based on intuition and experimentation
on out-of-sample data; a cross-validation subroutine could be used to
make the selection as well, but would multiply the amount of computa-
tion required. In case the resulting product of Gaussian and Laplacian
kernels is too narrow, we mix its results with a wide boxcar kernel which
evenly weights all data from time u − lu to u + lu:

f̂∆Yu∣Y1..u−1(∆yu ∣ y1..u−1)

= 0.9 ⋅
∑s∑

u+lu

u′=u−lu 0.7∣u′−u∣[Iu1 (yu−1, Y(u′−1)+(∆t)s)]
0.5
⋯Ou(∆yu,∆Y(u′)+(∆t)s)

∑s∑
lu

u′=u−lu 0.7∣u′−u∣[Iu1 (yu−1, Y(u′−1)+(∆t)s)]
0.5
⋯[Iu4 (∆yu−1,∆Y(u′−1)+(∆t)s)]

0.5

+ 0.1 ⋅
∑s∑

u+lu

u′=u−lu O
u(∆yu,∆Y(u′)+(∆t)s)

∑s∑
u+lu

u′=u−lu 1
.

Using data from u′ ≠ u incorporates additional reasonable outcomes for
∆yu by incorporating past wILI patterns with di�erent timing, but risks
including some very unreasonable possibilities produced by repeatedly
drawing from the same u′ rather than following seasonal trends with
increasing u′'s. For example, when a portion of a past season that is
more similar to itself with a slight time shift than to any other past
season, it may be selected for multiple consecutive u's and produce an
unreasonable trajectory. This could potentially occur when drawing data
from the relatively �at regions of wILI trajectories of many seasons, or
when incorporating observations around an unusually early, late, high, or
low peak. To prevent this possibility, we combine the natural estimate for
Yu arising from the density estimate for ∆Yu with a random draw Yuncondu
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from the unconditional density estimate for Yu (using a Gaussian kernel
and only data from week u):

Y sim
u = 0.9 ⋅ (Yu−1 +∆Y sim

u ) + 0.1 ⋅ Y uncond
u .

2.2 Quantile autoregression

Locally linear quantile regression o�ers an alternative approach to modeling
Yu ∣ Y1..u−1 o�ering greater �exibility in covariate relationships and better an-
ticipated behavior with larger numbers of covariates; �corrupting� its output
with random noise is one way to address potential issues with discrete outputs
that do not cover the entire support of Yu. Basic linear quantile regression
estimates the τth conditional quantile of some variable Y given covariates X
as a linear function of X; locally linear quantile regression additionally allows
for weighting of training instances based on a smoothing kernel on another
set of covariates X ′ (potentially overlapping with X). Additionally, the same
types of transformations can be applied on the output and covariates as in
the kernel smoothing case. A speci�cation of a simple corrupted locally linear
quantile autoregression approach could consist of:

� Ψ[u]: a transformation of Yu from which we can recover Yu (potentially
using information from Y1..u−1),

� Φ[QARlinear,u]: a set of features (derived from Y1..u−1) to use in the linear
combination estimating some quantile of Yu,

� Φ[QARkernel,u],KΦ[QARkernel,u]
: a set of features (derived from Y1..u−1) and

corresponding smoothing kernel (or �weighted� smoothing kernel as used
in extended delta density) that assigns weights to training instances, and

� KΨ[u]
, a smoothing kernel that de�nes the distribution of additive cor-

rupting noise.

The corresponding sampling procedure for Y sim
u is:

1. Draw quantile level τ ∼ U[0,1].

2. Compute estimate q̂ of the level τ quantile of Ψ[u] ∣ Φ[QARlinear,u],Φ[QARkernel,u]

using locally linear quantile regression.

3. Draw ε ∼KΨ[u]
from corrupting noise distribution.

4. Let Ψ[u],sim = q̂ + ε.
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5. Let Y sim
u be the value of Yu given by Ψ[u] = Ψ[u],sim and Y1..u−1.

Quantile autoregression has already been formulated and studied from a
theoretical perspective and applied to economic datasets [37]. A recent ap-
plication to �u forecasting [70] studied di�erent data weighting approaches
based on time of season. Similarly, the proposed work focuses on customizing
quantile autoregression approaches to epidemiological data.

2.2.1 Connection to smoothing kernel approaches

The family of corrupted locally linear quantile autoregression approaches sub-
sumes the considered delta density approaches after mirroring any heuristic
modi�cations to the kernel conditional density estimates. Consider a kernel
conditional density estimate of ∆Yu ∣ Φ[KDD,u] using covariate kernelKΦ[KDD,u]

.
If the response kernel K∆Yu is replaced with the degenerate Dirac delta distri-
bution, the resulting kernel conditional �density� estimates are just weighted
empirical distributions. The corresponding quantiles are weighted sample
quantiles of ∆Yu with weights based on KΦ[KDD,u]

; this coincides with the
estimated quantiles of the locally linear/constant quantile regression model
with the same Ψ[u], Φ[QARlinear,u] = (1) (the model only �ts an �intercept�),
Φ[QARkernel,u] = Φ[KDD,u], and KΦ[QARkernel,u]

= KΦ[KDD,u]
. The sampling proce-

dures also coincide: drawing from a weighted empirical distribution function
gives an equivalent distribution to selecting a weighted sample quantile with
a level randomly distributed on the unit interval. (�Sample quantile� here is
restricted to quantiles of the type outputted by quantile regression; for a �nite
number of quantile levels, there will not be a unique associated sample quan-
tile and the one selected may vary across implementations, but these levels are
drawn with probability 0. For other types of quantiles, e.g., from continuous
quantile functions [26], this is normally not the case.) Using K∆Yu instead of
the Dirac distribution is equivalent to just adding additional noise to a draw
from the weighted empirical distribution; thus, the smoothing kernel approach
can be completely mimicked by a corrupted locally linear quantile regression
approach using the same K∆Yu as the corrupting noise distribution.

2.2.2 Incorporating covariates inspired by mechanistic

models

While quantile regression can be restricted and post-processed to match the
output of the kernel conditional density method, it is natural to favor use of
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Φ[QARlinear,u] covariates not only in appeal to more general statistical argu-
ments regarding scaling with higher dimensionality inputs and boundary bias,
but also due to similarities with domain-driven mechanistic models when in-
corporating autoregressive terms. Furthermore, additional covariates can be
constructed to strengthen this resemblance while maintaining the �exibility of
quantile modeling and smoothing kernel weighting.

Epidemiological compartmental models are a popular class of mechanistic
model that divides a population into a �xed number of �compartments� and
considers all individuals within each compartment to behave identically. Sys-
tem dynamics are characterized by the manner in which individuals are added,
removed, or �ow between di�erent compartments. For example, �SIRS� com-
partmental models represent population state by the number or proportion of
individuals in each of three states: those

� Susceptible to infection with some disease,

� Infectious and spreading the disease, and

� Recovered from the infectious stage of a disease and currently immune
to future reinfection;

Susceptible individuals can become Infectious by interacting with Infectious
individuals, Infectious individuals transition to Recovered over time, and Re-
covered individuals can become Susceptible again due to waning immunity
or mismatches of antibodies with currently circulating strains of a pathogen;
these possible transitions are the basis for the initialism �SIRS�. A simple de-
terministic, continuous-time, proportion-based SIRS model can be speci�ed
with the following system of di�erential equations:

s′(t) = −s(t) ⋅ βi(t) + r(t) ⋅ µ

i′(t) = +s(t) ⋅ βi(t) − i(t) ⋅ γ

r′(t) = +i(t) ⋅ γ − r(t) ⋅ µ

s(0) + i(0) + r(0) = 1, s(0) ≥ 0, i(0) ≥ 0, r(0) ≥ 0,

where

� s(t), i(t), and r(t) are the proportions of the population in the Suscep-
tible, Infectious, and Recovered states, respectively, at time t;

� β is the rate at which any individual experiences contact with another
person in which the latter could potentially spread an infection to the
former (assumed to be the same across all pairs of individuals, regardless
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of their current state), potentially modulated by the current weather (i.e.,
β(w) where w is a vector of weather variables) or other data;

� µ is the rate at which recovered individuals become susceptible again;

� γ is the rate at which infectious individuals recover; and

� the conditions on the state at t = 0 are preserved as invariants for all
other t.

The underlying proportions s(t), i(t), and r(t) are latent; a simple noiseless
observation model assumes that infectious individuals produce some kind of
reported health care events at a steady rate, with no false positives from the
other compartments:

y(t) = i(t) ⋅Nρ,

where

� y(t) is the number of reported health care events at time t,

� N is the population size, and

� ρ is the rate at which infectious individuals generate reported health care
events.

Already, this formulation suggests the use of models with linear autoregressive
terms, as changes to compartment occupancy depend linearly or quadratically
on the current occupancy, and the observations depend linearly on compart-
ment occupancy. However, the latent dynamics and quadratic terms compli-
cate the relationship; fortunately, a few manipulations will allow us to fully
characterize the dynamics of y(t) without any reference to latent state, re-
vealing a very direct relationship with linear autoregressive and additional
auxiliary terms. These manipulations are likely more widely familiar in the
context of di�erential equations than discrete-time di�erence equations, so we
examine the former �rst then establish parallels in the latter.

Our ultimate goal is to express y′(t) as a causal function of y(t) (i.e., a
function depending only on y(τ) for τ ≤ t). First, note that

y′(t) = i′(t) ⋅Nρ and (derivatives are linear)

i(t) =
1

Nρ
y(t) (scale both sides of y(t) de�nition)
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so we can instead seek to express i′(t) as a causal function of i(t) and quickly
obtain y′(t) as a causal function of y(t). Next, observe that

i′(t) = βs(t)i(t) − γi(t)

= β[1 − i(t) − r(t)]i(t) − γi(t), (proportions sum to 1)

so we just need to express r(t) as a causal function of i(t). Rearranging the
equation for r′(t) and applying an integrating factor approach, we �nd that

r′(t) = i(t) ⋅ γ − r(t) ⋅ µ

µr(t) + r′(t) = γi(t)

µeµtr(t) + eµtr′(t) = γeµti(t)

eµtr(t) = γ ∫
t

t0
eµτ i(τ)dτ +C

r(t) = γ ∫
t

t0
e−µ(t−τ)i(τ)dτ +Ce−µt,

for

� a time t0 which is arbitrary for this derivation, but which we must select
to be in the range of times for which observations are available, to ensure
the integral involves only observed values of its argument, and

� a constant of integration C ≥ 0 determining the initial conditions;

thus, r(t) can be represented as a scaled exponential moving average of i(t) (a
causal function of i(t)) plus an exponential decay term. Applying the earlier
observations gives

i′(t) = β[1 − i(t) − r(t)]i(t) − γi(t)

= β[1 − i(t) − γ ∫
t

t0
e−µ(t−τ)i(τ)dτ −Ce−µt]i(t) − γi(t)

= (β − γ) [i(t)] − β [i2(t)] − βγ [∫

t

t0
e−µ(t−τ)i(τ)dτ ⋅ i(t)] − βC [e−µti(t)]

and

y′(t) = i′(t) ⋅Nρ

= Nρ(β − γ) [i(t)] −Nρβ [i2(t)] −Nρβγ [∫

t

t0
e−µ(t−τ)i(τ)dτ ⋅ i(t)] −NρβC [e−µti(t)]

= (β − γ)[y(t)] −
β

Nρ
[y2(t)] −

βγ

Nρ
[∫

t

t0
e−µ(t−τ)y(τ)dτ ⋅ y(t)] − βC [e−µty(t)] .
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The discrete-time analogues of the key equations above and some additional
transformations follow:

st+1 = st − βstit + µrt

it+1 = it + βstit − γit

rt+1 = rt + γit − µrt

s0 + i0 + r0 = 1, s0 ≥ 0, i0 ≥ 0, r0 ≥ 0

yt = Nρit

∆yt+1 = yt+1 − yt = (β − γ) [yt] −
β

Nρ
[y2
t ] −

βγ

Nρ
[
t−1

∑
t0

(1 − µ)t−1−τyτ ⋅ yt] − βC [(1 − µ)t−1yt]

yt+1 = (1 + β − γ) [yt] −
β

Nρ
[y2
t ] −

βγ

Nρ
[
t−1

∑
t0

(1 − µ)t−1−τyτ ⋅ yt] − βC [(1 − µ)t−1yt]

∆yt+1

yt
= (β − γ) [1] −

β

Nρ
[yt] −

βγ

Nρ
[
t−1

∑
t0

(1 − µ)t−1−τyτ] − βC [(1 − µ)t−1] .

The last few equations motivate the use of the bracketed quantities on the right
as covariates in a regression for the response variable given on the left. Unfor-
tunately, the last two bracketed quantities have a nonlinear dependence on the
parameter µ and so µ can not be immediately selected using linear (quantile)
regression; instead, a value of µ can be selected from domain literature or with
hyperparameter search, or, for additional �exibility, multiple versions of the
bracketed quantities with di�erent possible µ values can be included simulta-
neously in the same regression. Additional manipulations of equations might
allow for more e�cient estimation of µ; alternatively, they might reveal some
nonidenti�ability of µ showing that any arbitrary selection of µ within some
wide constraints would be equally valid, eliminating this concern altogether. If
such nonidenti�ability does not hold for the current model, it might hold for a
version of the model incorporating birth and death rates and/or false positive
reporting rates; repeating or generalizing the above analysis to this case and
other types of compartmental models would be of interest regardless.

The primary goal of this e�ort is to inform construction of a higher-quality,
easily �t model for yt; any interpretation regarding the latent state is suspect
in such a simplistic model, particularly causal or counterfactual reasoning, and
especially if some parameters are nonidenti�able. Still, it is notable that we
can recover (estimates of) γ, β, Nρ, and the latent state, at least in this purely
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deterministic setup; for example, consider the formulation involving ∆yt+1
yt

:

θ1 = β − γ

θ2 = −
β

Nρ

θ3 = −
βγ

Nρ

θ4 = −βC

γ =
θ3

θ2

=
−βγ/(Nρ)

−β/(Nρ)
(using de�nitions of θ2, θ3)

β = θ1 +
θ3

θ2

= θ1 + γ (using de�nition of θ1)

Nρ = −
θ1

θ2

−
θ3

θ2
2

= −
β

θ2

(using de�nition of θ2)

C = −
θ4

θ1 +
θ3
θ2

= −
θ4

β
(using de�nition of θ4)

it =
yt
Nρ

rt= γ
t−1

∑
t0

(1 − µ)t−1−τ iτ +C(1 − µ)t−1 (parallel of continuous-time result)

st = 1 − it − rt.

The derivations above present some exciting possibilities for �tting com-
partmental models using standard regression routines, which may scale more
readily than particle �lter and MCMC approaches. While this derivation is
based on a deterministic model, quantile autoregression provides for a �exible
noise model which acts like process noise on it; other regression methods such
as linear regression and generalized linear models provide additional options.
However, observational noise in yt and process noise in st and rt is not con-
sidered; the former is especially important when dealing with noisy signals
so momentary �uctuations are not mistaken for trends. This suggests a few
potential branches of further investigation. First, preparing retrospective fore-
casts for real and/or simulated data using the currently bracketed covariates
with various choices of µ could suggest whether forecast quality could bene-
�t from a more thorough investigation. Second, a class of models or �tting
technique that resolves the µ estimation problem would eliminate some po-
tential reliability issues and may speed up computation. Third, the lack of
true observational noise is somewhat jarring; spectral methods for predictive
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linear dynamical models (e.g., hidden Markov models (HMMs) [25], kernelized
HMMs [62], and linear dynamical systems (Kalman �ltering) [6]) may provide
a guide to incorporating multivariate observational and process noise into the
above derivation, and tools from quantile �ltering [31] for maintaining a non-
parametric noise model; alternatively, additional features and regularization
may be su�cient to reduce sensitivity to observational noise encountered. Fi-
nally, the primary appeal of these manipulations is the potential to enable
better scalability of nonparametric autoregressive models or other approaches
when including multiple locations, demographic groups, or virus types, or to
incorporate weather covariates, preferably using a generalized derivation and
computational framework. One part of the proposed work is to perform the
initial evaluation step above and investigate some of the latter points if mer-
ited.

2.2.3 Incorporating covariates to model multiplicative hol-

iday e�ects

Content in this subsection is taken from or based on material from [8].

Holidays can impact the spread, observation, and impact of a disease. For
example, reduced school and workplace contact may reduce disease transmis-
sion, patients may not seek or may delay medical care for less serious issues,
and some health care providers may not be open or operate with reduced
sta�ng. The delta density methods described above attempt to match holi-
day behaviors by restricting training windows around major holidays to focus
on data from the same, or nearby, weeks of the year. This reduction in the
amount of training data might actually degrade performance. A more direct
model of the holiday e�ects may allow a model to match holiday behavior with
less data, and simultaneously remove the perceived need for narrow training
windows.

CDC's wILI measure is an estimate of the proportion of health care visits
in an area that are due to ILI. Sharp rises and drops in wILI are common from
early or mid-December to early January (roughly coinciding with a four week
period beginning with epi week 50), with either the season's peak or a lower,
secondary peak commonly occurring on epi week 52. This pattern appears to
arise from at least two factors:

� spikes downward in the number of non-ILI visits during the holiday sea-
son (corresponding to increases in wILI), perhaps caused by patients
choosing not to visit the doctor for less serious issues on holidays, and
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� decreases in the average number of ILI visits at the end of the holidays,
perhaps due to decreased transmission of ILI during holidays, which
make the preceding increases in wILI appear even sharper.

Similarly, there are spikes or minor blips downward in the average number
of non-ILI visits (which can result in small increases in wILI) associated with
Thanksgiving Day; Labor Day; Independence Day; Memorial Day; Birthday of
Martin Luther King, Jr.; Washington's Birthday; Columbus Day; and perhaps
other holidays. The spike upward in wILI at Thanksgiving can push wILI
unexpectedly over the onset threshold, and holiday e�ects may help explain the
surprising frequency at which peaks occur on epi week 7 but not neighboring
weeks. Additional age-speci�c patterns may be obscured by this analysis of
aggregate ILI and non-ILI visit counts.
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Figure 2.2: On average, wILI is higher on holidays than expected

based on neighboring weeks. Weekly trends in wILI values, as expressed
by the contribution of a each week to a sum of wILI values from seasons
2003/2004 to 2015/2016, excluding 2008/2009 and 2009/2010 (which include
portions of the 2009 in�uenza pandemic), show spikes and bumps upward on
and around major holidays. (U.S. federal holidays are indicated with event
lines.) The number of non-ILI visits to ILINet health care providers spikes
downwards on holidays (disproportionately with any drops in the number of
ILI visits), contributing to higher wILI. The number of ILI visits generally
declines in the second half of the winter holiday season, causing winter holiday
peaks to appear even higher relative to nearby weeks. In addition to holiday
e�ects, we see that average ILINet participation jumps upward on epi week
40, and gradually tapers o� later in the season and in the o�-season.

The goal of future exploration would be to incorporate holiday indicator
covariates, lags of these covariates, or other features into the quantile autore-
gression approach, alongside response transformations such as Φ[u] = ∆Yu+1

Yu
, to

obtain exact or approximate multipliers on reporting and transmission rates.
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Chapter 3

Modeling surveillance data

revisions

The past discussion assumed that, when forecasting future measurements of
disease prevalence, we have access to these same desired measurements for all
times in the past. In reality, this exact data is not immediately accessible, as
accurate measurements may take weeks or years to be completed. However, to
enable decisionmakers to quickly assess and respond to a situation, epidemi-
ological surveillance systems often publish a sequence of tentative versions of
each complete measurement, with later versions more accurate on average.
The existence of multiple versions of measurements has signi�cant implica-
tions for proper forecast evaluation and analysis, and explicitly accounting for
the revision process can improve model forecasts:

� When estimating the performance of a proposed model by mimicking the
forecasts it would have made in the past, it is important that we input
the version of each measurement that would have been available at the
time of each forecast; otherwise, accuracy estimates will almost surely be
too high since the evaluation was based on higher accuracy input data.

� Visualizing past forecasts together with completed measurements can
cause confusion when the version of the measurements fed into the fore-
cast has signi�cant error; plotting the available version alongside the
complete measurements and forecast can eliminate this confusion.

� Forecast performance can potentially be improved by modeling the data
revision process in addition to future observations, especially when a
small change in past observations can cause a large change in the predic-
tion target or associated forecast evaluations (as is sometimes the case
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for some timing and overall intensity targets), or when there is a high
degree of error in earlier versions of measurements.

The above discussion and traditional time series forecasting methods such
as SARIMA model the distribution of future observations of a time series of
interest, Yt+1..T , as a function of past observations of that time series, Y1..t.
However, in some settings, we do not have access to Y1..t itself but instead
a sequence of tentative reports, Y

(1)
1 , Y

(2)
1..2 , . . . , Y

(t−1)
1..t−1 , Y

(t)
1..t , each adding a new

(tentative) observation and revising previous values. For example:

� ILINet is a network of health care providers that voluntarily submit
reports to CDC, which cleans and aggregates the data. Providers may
di�er in timeliness and frequency of reporting, and new providers may
enter the system and might provide a chunk of data, and the aggregate
measure of ILI prevalence is updated as additional providers submit or
revise their data. CDC adjusts for the fact that di�erent versions will be
based on di�erent numbers of providers by reporting the proportion of
visits due to ILI, but earlier versions can still be biased, as slower or less
frequent reporters may serve di�erent populations with higher or lower
typical ILI proportions than earlier reporters. The revisions may also be
correlated across time, as a lower frequency or slower huge provider or
group of similar providers may report a chunk of multiple weeks at the
same time. CDC may also perform data cleaning, which can a�ect the
entire season at the same time; for example, they may remove all data
from a particular provider.

� FluSurv-NET is a surveillance network for laboratory-con�rmed in�uenza
hospitalizations. Many of the issues above still are applicable; for exam-
ple, di�erences in types of laboratory test used, testing location, testing
capacity, hospital administration, etc., can contribute to di�erences in
timeliness of reporting between hospitals. Reporting may not take place
until after a patient is discharged, which spreads reports apart further
based on uncontrollable factors regarding duration of patients' illnesses.
Additionally, reports may be revised after cases are ruled out as ad-
ditional tests are performed. The combined e�ect is that the initially
reported hospitalization rates are always or nearly always lower than the
�nalized �gures, typically 50% of the �nalized value, while later versions
have a growing chance of overestimating the �nalized value but are closer
to it on average.

� Gross domestic product (GDP) and gross national product (GNP) esti-
mates can also be revised over time. Previous work has named di�erent
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types of updates and addressed the task of forecasting these updates in
the context of Kalman �ltering [34, 30, 43, 3].

Our goal is to build a distributional forecast of the entire, �nalized time
series of interest, Y1..T2 , e�ectively leveraging information from tentative mea-

surements Y
(1)

1 , Y
(2)

1..2 , . . . , Y
(t)

1..t and completed measurements Y1..T1 (where T1 ≤ t
and T1 < T2). That is, we want to jointly �backcast� (a.k.a. �backforecast�,
�back-forecast�) YT1..t and forecast Yt+1..T2 , and append the results to obser-
vations Y1..T1−1. There is an approach very similar in nature to the future
trajectory simulation procedure above. We can simulate a random trajectory
Y sim

1..T2
from the distribution of Y1..T2 given all tentative data Y

(1..t)
by chaining

together T2 − T1 1-step-ahead simulations:

� Let Y sim
1..T1

= Y1..T1

� Draw Y sim
T1+1 ∼ YT1+1 ∣ Y (1..t), Y1..T1 = Y

sim
1..T1

� Draw Y sim
T1+2 ∼ YT1+2 ∣ Y (1..t), Y1..T1+1 = Y sim

1..T1+1

� Draw Y sim
T1+3 ∼ YT1+3 ∣ Y (1..t), Y1..T1+2 = Y sim

1..T1+2

� . . .

� Draw Y sim
T2

∼ YT2 ∣ Y (1..t), Y1..T2−1 = Y sim
1..T2−1

That is, we simulate the �rst observation Y1, then feed that simulated value
Y sim

1 into a model for Y2, then feed the resulting value Y sim
2 along with Y sim

1 into
a model for Y3, and so on. The model selected for Yu ∣ Y (1..t), Y1..u−1 is once
again arbitrary, but it is often convenient to consider direct models of Ψ[u] ∣

Φ[u], where Ψ[u] can now depend on Y (1..t), Y1..u such that Yu is recoverable,
and Φ[u] is a feature vector prepared from Y (1..t), Y1..u−1. The kernel delta
density and locally linear quantile autoregression approaches have analogues
in this setting: kernel residual density and quantile ARX (autoregression with
exogenous variables):

Kernel residual density: uses kernel smoothing methods to estimate the
conditional distribution of residuals Yu − Ŷu given some covariates when
u ≤ t, and of deltas Yu − Yu−1 when u > t.

Quantile ARX: uses quantile regression to estimate the conditional distri-
bution of Yu given a selection of features from Y1..u−1 and Y (1..t).
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3.1 Kernel residual density

Content in this section is taken from or based on material from [8].

The kernel residual density method chains together draws from conditional
density estimates of Yu − Ŷu ∣ Φ[u] for u from T1 to t and of ∆Yu ∣ Φ[u] for u
from t + 1 to T2, where Φ[u] is a function of Y1..u−1 and Y (1..t). The delta
density method can be seen as a special case where T1 = t; Ŷ1..t = Y1..t, i.e.,
past values Y1..t are all treated as known and are simply duplicated in the
simulated trajectories; and Ŷt+1..T2 = Yt..T2−1, i.e., the estimator Yu when u ≥ t+1
is the lagged version Yu−1, which is �lled in with a simulation except for when
u = t + 1 and so the complete observation Yu−1 = Yt has been observed. Each
later residual Yu − Yu−1 corresponds to a delta in the delta density approach,
∆Yu.

Figure 3.1 shows sample forecasts over wILI trajectories generated by each
of these approaches and compares them to some alternative methodologies.
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Figure 3.1: Delta and residual density methods generate wider dis-

tributions over trajectories than methods that treat entire seasons

as units. These plots show sample forecasts of wILI trajectories generated
from models that treat seasons as units (BR, Empirical Bayes) and from mod-
els incorporating delta and residual density methods. Yellow, the latest wILI
report available for these forecasts; magenta, the ground truth wILI available
at the beginning of the following season; black, a sample of 100 trajectories
drawn from each model; cyan, the closest trajectory to the ground truth wILI
from each sample of 100.

Figure 3.2 shows cross-validation performance estimates for the extended
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delta density method based on the following input data:

Ground truth, no nowcast: the ground truth wILI for the left-out season
up to the forecast week is provided as input, resulting in an optimistic
performance estimate;

Real-time data, no nowcast: the appropriate wILI report is used for data
from the left-out season, but no adjustment is made for possible up-
dates; this performance estimate is valid, but we can improve upon the
underlying method;

Backcast, no nowcast: the appropriate wILI report is used for data from
the left-out season, but we use a residual density method to �backcast�
updates to this report; this performance estimate is valid, and the back-
casting procedure signi�cantly improves the log score;

Backcast, Gaussian nowcast: same as �Backcast, no nowcast� but with an-
other week of simulated data added to the forecast, based on a Gaussian-
distributed nowcast; and

Backcast, Student t nowcast: same as �Backcast, Gaussian nowcast� but
using a Student t-distributed nowcast in place of the Gaussian nowcast.

Backcast, ensemble nowcast: same as the previous two but using the en-
semble nowcast (which combines �no nowcast� with �Student t nowcast�).

For every combination of target and forecast week, using ground truth as input
rather than the appropriate version of these wILI observations produces either
comparable or in�ated performance estimates.

Using the �backcasting� method to model the di�erence between the ground
truth and the available report helps close the gap between the update-ignorant
method. The magnitude of the performance di�erences depends on the target
and forecast week. Di�erences in mean scores for the short-term targets are
small and may be reasonably explained by random chance alone; the largest
potential di�erence appears to be an improvement in the �1 wk ahead� tar-
get by using backcasting. More signi�cant di�erences appear in each of the
seasonal targets following typical times for the corresponding onset or peak
events; most of the improvement can be attributed to preventing the method
from assigning inappropriately high probabilities (often 1) to events that look
like they must or almost certainly will occur based on available wILI observa-
tions for past weeks, but which are ultimately not observed due to revisions
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of these observations. The magnitude of the mean log score improvement de-
pends in part on the resolution of the log score bins; for example, wider bins
for �Season peak percentage� may reduce the improvement in mean log score
(but would also shrink the scale of all mean log scores). Similarly, the di�er-
ences in scores may be reduced but not eliminated by use of multibin scores
for evaluation or ensembles incorporating uniform components for forecasting.

Using the heavy-tailed Student t nowcasts or nowcast ensemble appears to
improve on short-term forecasts without damaging performance on seasonal
targets. The Gaussian nowcast has a similar e�ect as the other nowcasters
except on the �1 wk ahead� target that it directly predicts: its distribution is
too thin-tailed, resulting in lower mean log scores than using the forecaster by
itself on this target.
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Figure 3.2: Using �nalized data for evaluation leads to optimistic es-

timates of performance, particularly for seasonal targets, �backcast-

ing� improves predictions for seasonal targets, and nowcasting can

improve predictions for short-term targets. Mean log score of the ex-
tended delta density method, averaged across seasons 2010/2011 to 2015/2016,
all locations, all targets, and forecast weeks 40 to 20, both broken down by
target and averaged across all targets (�Overall�). Rough standard error bars
for the mean score for each target (or overall) appear on the right, in addition
to the error bars at each epi week.

3.2 Quantile ARX

Another candidate is a regularized, potentially corrupted, locally linear quan-
tile regression on a subset of the conditioning covariates. One option is to
simulate quantiles of Yu as a linear function of the following covariates, along
with a data weighting kernel and corrupting noise speci�cation:
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Name Type Description Notation

Stable@u-4 Input Stable/simulated value 4 weeks before Yu−4/Y sim
u−4

Stable@u-3 Input Stable/simulated value 3 weeks before Yu−3/Y sim
u−3

Stable@u-2 Input Stable/simulated value 2 weeks before Yu−2/Y sim
u−2

Stable@u-1 Input Stable/simulated value 1 weeks before Yu−1/Y sim
u−1

Latest@u-1 Input Latest value for 1 week before Y
(t)
u−1

Latest@u Input Latest value for given week Y
(t)
u

Latest@u+1 Input Latest value for 1 week after Y
(t)
u+1

Second-Latest@u Input Second-latest value for given week Y
(t−1)
u

Stable@u Output Stable/simulated value for given week Yu/Y sim
u

Table 3.1: One potential choice of R[u],QARXlinear and Ψ[u].

Figure 3.3 visualizes this availability-dependent selection with a Bayes net.

u − 4 u − 3 u − 2 u − 1 u u + 1

Y
(∞)

u−4 ? Y
(∞)

u−3 ? Y
(∞)

u−2 ? Y
(∞)

u−1 ? Y
(∞)
u

Y ↑u−1? Y ↑u ? Y ↑u+1?

Y ↑#u ?

Time

Finalized data

Latest provisional

Second-latest provisional

Figure 3.3: Bayes net corresponding to earlier covariate table. Here, u could
refer to a past, present, or future week, not just the current week. Question
marks denote covariates that are included if available (observed/simulated)
at test/application time. The ↑̄ symbol refers to the latest version of a wILI
measurement available at test time (if there are any versions available), while
↑̄ # refers to the second-latest version of a wILI measurement available at test
time (if there are ≥ 2 versions available).

Usually, we will start simulating with u's where most of this data is avail-
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able, but at higher u some of the covariates will be excluded due to unavail-
ability. For example, when simulating Yt+1, the above covariate set would
incorporate only Yt(t) and Y sim

t−3..t. Training instances for the quantile regres-
sion model map these test covariates to the following training covariates:

� Y
(t+∆t)

(u−1..u+1)+∆t
corresponding to available Y

(t)
u−1..u+1

� Y
(t−1+∆t)
u+∆t corresponding to available Y

(t−1)
u

� Y(u−4..u−1)+∆t, corresponding to available Y sim
u−4..u−1 or Yu−4..u−1

The training set is limited to those instances where all of the above covariates
are available. Weights can be assigned to training instances to encourage
use of data from similar times of year and similar values of the covariates.
Regularization is incorporated to prevent over�tting and remain robust in the
face of collinearities. (Collinearities can arise, e.g., when the training set used
�lls in holes in records for Y (1..t) with other values from Y (1..T ) or Y1..T .)

Consider a more restrictive set of covariates: Y
(t)
u , if available, and Y sim

u−1 (or
Yu−1 if available). Then the above process draws from conditional distributions

that resemble a state space �lter; for example, YT1 ∣ Y
(t)
T1
, YT1−1, using natural

Markov assumptions, would be equivalent to Y1..T1 ∣ Y
(t)
T1
, Y1..T1−1, but would

not consider information from observations for subsequent epiweeks such as
Y

(t)
T1+1..T2

. Since dependencies between data updates to observations for nearby
weeks, we may want to ensure that this information is included. One simple
way would be to simply add more elements from Y

(t)
T1+1..T2

as covariates when
available, but this might lead to issues with �tting too many parameters, e.g.,
at T1. An alternative would be to add a backward pass that parallels a state
space smoothing algorithm; this approach may not be feasible when using
complicated transformations or data weights. Yet another path would be to
add subsequent values such as Yu+1 to the conditioning covariates and perform
�tting and sampling using algorithms for the Multiple Quantile Graphical
Model [2].
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Chapter 4

Incorporating additional

surveillance sources into

spatiotemporal modeling

The previous two chapters discuss models for a single source of surveillance
data that reports (multiple versions of) a single measurement for each time
in the past for a particular location. This approach forgoes useful informa-
tion available from additional traditional surveillance sources and a number
of novel digital surveillance sources such as search query volume, social media
activity, page hits, illness self-reporting, internet-integrated monitoring and
testing devices, electronic health records, and insurance claims. Furthermore,
the disease prevalence for each location of interest is forecast in isolation, which
again neglects some available observations, and decreases the �delity of any
forecasts about the joint behavior of multiple locations. To address these is-
sues, we can generalize the above approaches to forecast multiple data sources
and/or locations at once, incorporating information from multiple auxiliary
data streams. The remainder of the proposed work is to develop a joint mod-
eling and simulation approach that incorporates dependencies across sources
and locations using a careful selection of covariates, and to explore methods
of incorporating dependencies between noise terms of sources and locations.
In both single-location and multi-location settings, this task is often referred
to as �nowcasting� or �nearcasting� when performing inference on times u > t
beyond the latest provisional data Y

(t)
1..t that correspond to or are close to the

time of inference, taking advantage of some lower-latency external data Xu

that is already available. Performing joint inference for YT1..T2 covering times
before, near, and after t combines the tasks of backcasting, nowcasting, and
forecasting, and henceforth is referred to as �pancasting�.
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Baseline model

In the spatiotemporal pancasting context, one baseline for comparison is to
treat each location in isolation, eschewing all exogenous covariates. A multi-
location trajectory Ysim

1..T2
would be formed simply by binding together location-

speci�c simulations Y sim
l,1..T2

for all locations l.

Spatially isolated model with existing nowcasters

A limited number of additional data sources with su�cient temporal availabil-
ity and matching resolution can be easily and directly added to the baseline
model. For example, in the context of ILI forecasting, the ILI-Nearby [20, 21]
system combines several novel data sources and autoregressive models into
publicly accessible real-time �nowcasts� of CDC surveillance data, as well as
weekly historical and retrospective nowcasts starting in the 2010/2011 �u sea-
son. Historical data about revisions of the CDC data is available starting
sometime during the 2009/2010 season, so there is not much of a loss if train-
ing is limited to times when ILI-Nearby is available. The ILI-Nearby data can
be treated in the same way as a provisional data point: added to the list of
covariates used in the QARX pancasting routine. Figure 4.1 visualizes this
availability-dependent selection with a Bayes net for a single location l.
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u − 4 u − 3 u − 2 u − 1 u u + 1

Y
(∞)

l,u−4? Y
(∞)

l,u−3? Y
(∞)

l,u−2? Y
(∞)

l,u−1? Y
(∞)

l,u

Nl,u?

Y ↑l,u−1? Y ↑l,u? Y ↑l,u+1?

Y ↑#l,u?

Time

Finalized data

ILI-Nearby

Latest provisional

Second-latest provisional

Figure 4.1: Bayes net corresponding to earlier covariate table. Here, u could
refer to a past, present, or future week, not just the current week. Question
marks denote covariates that are included if available (observed/simulated)
at test/application time. The ↑̄ symbol refers to the latest version of a wILI
measurement available at test time (if there are any versions available), while
↑̄ # refers to the second-latest version of a wILI measurement available at test
time (if there are ≥ 2 versions available).

Spatial covariates, independent quantile levels

Another straightforward extension to the above model is to augment the list
of covariates used for predicting Yl,u with data from other locations l′ ≠ l.
If there are a large number of such l′, appropriate regularization is essential.
One potential issue is that the quantile level τl,u drawn to generate Yl,u is
independent of the quantile levels τl′,u for other locations l′; this corresponds
to conditional independence of Yl,u and Yl′,u given a common set of spatial
covariates. If observations are available at a �ne enough time resolution, this
assumption does not seem too objectionable; any biological events in l′ in a
su�ciently small time interval u have little opportunity to impact biological
events in l in the same time window, and events from times 1..u − 1 can be
incorporated in the covariate sets. We may still be concerned about potential
reporting e�ects, e.g., tied to media reporting or variations in holiday impact.
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Avenues for exploration

There are many additional avenues for exploration. Incorporating several new
data sources directly, rather than relying partially on an external nowcasting
solution, involves dealing with di�erent ranges of data availability and reliabil-
ity. Incorporating spatial interaction may require careful selection of a small
number of spatial covariates and/or regularization to avoid over�tting. The in-
dependent quantile level noise model could be replaced with a more convincing
noise model, e.g., using copulas, graphical models, multivariate quantiles, or
continuous-time models. Additionally, modi�cations to the quantile regression
formulation, such as non-crossing constraints, better covariate selection, and
better kernel selection, could also contribute performance improvements. The
goal of the remainder of the proposed work is to investigate one or multiple of
these directions.
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Chapter 5

Timeline

Dec 2018 � Feb 2019: set up comparison framework, initial methods

� Evaluation framework for backcasts, forecasts

� Robust quantile regression implementation

� Adding basic SIRS-inspired covariates

� Baseline & simple spatiotemporal methods

Mar 2019 � May 2019: pursue most promising directions

Forecasts: more complex mechanistic-inspired models

Backcasts: �ltering → proper smoothing

Spatiotemporal pancasts: feature selection, dealing with missingness,
and/or multivariate noise model

Jun 2019 � Jul 2019: additional analysis, evaluation, writing

Aug 2019: thesis oral
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