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Abstract
We present the semi-axiomatic sequent calculus (SAX) that blends features of Gentzen’s sequent
calculus with an axiomatic formulation of intuitionistic logic. We develop and prove a suitable
analogue to cut elimination and then show that a natural computational interpretation of SAX
provides a simple form of shared memory concurrency.
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1 Introduction

The celebrated Curry-Howard isomorphism [8, 14] establishes a close connection between logic
and computation. There are three interrelated components that define this correspondence:
(1) propositions in the logic are interpreted as types, (2) proofs in the logic are interpreted
as programs, and (3) proof reduction is interpreted as computation. Parts (2) and (3)
mean that we must pay attention to the specific formulation of the logic. Curry used
combinatory logic [9] which derives from an axiomatic formulation of inference and arrives
at combinatory reduction. Howard [14] established the close connection between natural
deduction and the simply-typed λ-calculus. As a further example, Herbelin [13] introduced
LJT, a formulation of the sequent calculus with a stoup whose computational interpretation
uses explicit substitutions. In all three of these cases, the logic is simply intuitionistic logic
but its computational interpretation is quite different.

In this paper we add another entry to this list of correspondences. We introduce the
semi-axiomatic sequent calculus (Sax) which blends features of the sequent calculus with
axiomatic presentations of intuitionistic logic. We show that Sax satisfies a version of cut
elimination, where cut-free proofs have the subformula property, thereby establishing the
basics of the proof theory for Sax.

As for other inference systems, the proof of cut elimination contains the seeds of its
operational interpretation. For example, normalization for natural deduction is based on a
substitution operation that corresponds to β-reduction, and cut reduction on LJT corresponds
to λ-reduction in a calculus of explicit substitution. In Sax, a cut disappears entirely during
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a principal cut reduction, which is only possible because certain special forms of analytic cuts
we call snips are allowed to remain in cut-free proofs. This disappearing act can be explained
when we think of the cut reduction itself as reading from or writing to memory, which are
atomic actions. Under this view, we recognize that one operational interpretation of Sax
equates proofs with processes where some actively compute and others are passive, thereby
representing shared memory cells. We formalize the concurrent reduction strategy (that is,
the evaluation relation) using techniques from substructural operational semantics [27, 5, 6],
which can be mapped back directly to proofs (with a loss of readability). As a concurrent
programming language, the interpretation of Sax then has the desired properties such as
type preservation, progress, confluence, and termination.

Our results are yet another illustration of the flexibility of the sequent calculus as
a foundation for computation at a high level of abstraction. Sax is remarkably simple:
it requires no stoup or other structural devices, just the initial leap of faith to replace
noninvertible rules by axioms. It also provides a path towards understanding a simple,
logically grounded form of shared memory concurrency under a Curry-Howard interpretation.

In Section 2, we provide an overview of the standard sequent calculus G3 for background,
before relating it to Sax in Section 3. This section contains our first set of contributions:
Sax itself, translations between G3 and Sax, and a cut elimination result for Sax. We
briefly discuss some example Sax proofs in Section 4, which also serve as examples of
computations later on. Section 5 contains our second major set of contributions. We provide
an operational interpretation of Sax using shared memory and prove the basic theorems
of progress, preservation, and (because the semantics are nondeterministic) confluence. A
termination theorem, analagous to normalization for natural deduction, is more involved,
and is delayed to its own section (Section 6).

In prior work we have given a different interpretation of Sax (without investigating
its metatheory from a logical and proof-theoretic perspective) using session types and
message passing, starting with purely linear intuitionistic logic and generalizing all the way
to adjoint logic, combining structural and substructural intuitionistic logics [24]. This in
turn built on the Curry-Howard interpretation of linear logic as session-typed processes
using message-passing concurrency [3, 29, 4]. (Modeling asynchronous communication in
a Curry-Howard interpretation of linear logic was the original motivation behind Sax.)
Starting from Herbelin’s seminal work, others have also given computational interpretations
of intuitionistic and classical sequent calculi at various level of abstraction (for example, with
multiple conclusions and stoups [7] or with de Bruijn indices [2]). These are, however, quite
different from the interpretation presented here.

2 Ordinary Sequent Calculus

For reference, we provide the standard sequent calculus G3 [15] in Figure 1 so we can
explicitly relate it to Sax. In G3 all structural rules remain implicit, and antecedents Γ of
a sequent Γ ` A are propagated to all premises. For brevity, we omit the logical constants
falsehood (⊥) and truth (>) since they are not particularly interesting, especially from
the computational perspective. We do, however, present two forms of conjunction: A⊗B
and ANB, which are distinguished here by their left rules extrapolated from linear logic.
Although these conjunctions are logically equivalent (that is, A ⊗ B a` A N B), they are
computationally distinct: functionally, A ⊗ B corresponds to eager pairs whereas A N B

corresponds to lazy pairs (see, for example, call-by-push-value [16]).
We also include 1, the unit of A⊗B, which can be thought of as the nullary form of the
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Γ, A ` A
IdA

Γ ` A Γ, A ` C

Γ ` C
CutA

Γ, A ` B

Γ ` A ⊃ B
⊃R

Γ, A ⊃ B ` A Γ, A ⊃ B,B ` C

Γ, A ⊃ B ` C
⊃L

Γ ` A Γ ` B
Γ ` A⊗B

⊗R
Γ, A⊗B,A,B ` C

Γ, A⊗B ` C
⊗L

Γ ` 1
1R

Γ,1 ` C

Γ,1 ` C
1L

Γ ` A
Γ ` A ∨B

∨R1
Γ ` B

Γ ` A ∨B
∨R2

Γ, A ∨B,A ` C Γ, A ∨B,B ` C

Γ, A ∨B ` C
∨L

Γ ` A Γ ` B
Γ ` ANB

NR
Γ, ANB,A ` C

Γ, ANB ` C
NL1

Γ, ANB,B ` C

Γ, ANB ` C
NL2

Figure 1 The Sequent Calculus (G3)

binary A⊗B. The 1L rule may look a bit surprising: we might expect the antecedent 1 to
be deleted in its premise. But since we have implicit weakening and contraction, the principal
formula of every left rule, 1L included, must be preserved. Preserving the antecedents turns
out to be computationally significant in the shared memory interpretation that we present in
Section 5.

We have the following standard theorems with standard proofs. Gentzen’s original sequent
calculus had explicit structural rules and used an intermediate system with a rule called Mix
in the proof of cut elimination [11]. We sketch the proofs of admissibility of cut and cut
elimination [21] that are more closely related in structure to the proof in Sax in Section 3.

I Theorem 1 (Admissibility of Cut in G3 [11, 21]). If there are cut-free derivations Γ ` A
and Γ, A ` C then there is a cut-free derivation of Γ ` C.

Proof. By nested induction on the structure of A and then simultaneously on the derivations
of Γ ` A and Γ, A ` C. J

I Theorem 2 (Cut Elimination [11, 21]). If Γ ` A then there is a cut-free derivation of Γ ` A.

Proof. By induction on the structure of the given derivation, using Theorem 1 for cut. J

It is evident that the cut-free sequent calculus has the subformula property since, except
for cut, the premises of all rules are subformulas of the propositions in the conclusions.
This allows us to view the right- and left-rules for the logical connectives in G3 as a
compositional explanation for the meaning of propositions [10, 19]. Another component of
such an interpretation is identity expansion (we require the identity rule IdA only for atomic
propositions), which is significant from the foundational perspective but not computationally
interesting since identity expansions correspond to extensional equalities.

FSCD 2020
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Γ, A ` A
IdA

Γ ` A Γ, A ` C

Γ ` C
CutA

Γ, A ` B

Γ ` A ⊃ B
⊃R

Γ, A,A ⊃ B ` B
⊃L0

Γ, A,B ` A⊗B
⊗R0

Γ, A⊗B,A,B ` C

Γ, A⊗B ` C
⊗L

Γ ` 1
1R0

Γ,1 ` C

Γ,1 ` C
1L

Γ ` A Γ ` B
Γ ` ANB

NR
Γ, ANB ` A

NL0
1 Γ, ANB ` B

NL0
1

Γ, A ` A ∨B
∨R0

1 Γ, B ` A ∨B
∨R0

2

Γ, A ∨B,A ` C Γ, A ∨B,B ` C

Γ, A ∨B ` C
∨L

Figure 2 The Semi-Axiomatic Sequent Calculus (Sax)

3 The Semi-Axiomatic Sequent Calculus

The connectives in intuitionistic logic can be divided into positive (A⊗ B, 1, A ∨ B) and
negative (A ⊃ B, A N B), where we have split conjunction into two. The right rules for
negative connectives and the left rules for the positive connectives are asynchronous (in
the terminology of Andreoli [1]) in the sense that a negative connective in the succedent
and a positive connective in the antecedent can always be broken down eagerly with the
corresponding rule when constructing a proof bottom-up. Conversely, the right rules for
positive connectives and the left rules for negative connectives may have to be postponed
until they can be applied. Even though in the formulation in G3 this is not strictly accurate,
we say that negative right and positive left rules are invertible while positive right and
negative left rules are noninvertible (see, for example, the analysis by Liang and Miller [17]).

The semi-axiomatic sequent calculus Sax arises from G3 by replacing all the noninvertible
rules (⊃L,NL,⊗R,1R,∨R) by corresponding axioms while leaving all the invertible rules
(⊃R,NR,⊗L,1L,∨L) unchanged. Identity and cut also remain unchanged. We annotate all
the rules that are now axioms with the superscript 0, indicating the zero premises of the
rule. A summary of the rules can be found in Figure 2.

First, we should convince ourselves that G3 and Sax have the same derivable sequents.

I Theorem 3 (Translations between G3 and Sax). Γ ` A in G3 iff Γ ` A in Sax.

Proof. In one direction, we can derive each new Sax axiom using the corresponding rules of
G3 and the identity. For example, we can derive ⊃L0 in G3 as follows:

Γ, A,A ⊃ B ` A
IdA Γ, A,A ⊃ B,B ` B

IdB

Γ, A,A ⊃ B ` B
⊃L

The other direction requires the uses of cut in Sax to derive the rules of G3. For example,
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we can derive ⊃L in Sax as follows:

Γ, A ⊃ B ` A Γ, A,A ⊃ B ` B
⊃L0

Γ, A ⊃ B ` B
Cut

Γ, A ⊃ B,B ` C

Γ, A ⊃ B ` C
Cut

All other cases are similar. J

Sax does not satisfy the standard cut elimination theorem. For example, there is no
cut-free proof of A ⊃ B,B ⊃ C ` A ⊃ C. Instead, we have the following proof (omitting
some unused antecedents):

A,A ⊃ B ` B
⊃L0

B,B ⊃ C ` C
⊃L0

A,A ⊃ B,B ⊃ C ` C
CutB

A ⊃ B,B ⊃ C ` A ⊃ C
⊃R

Despite not being cut-free, this proof does exhibit the subformula property—its only cut is
analytic. However, we find admitting arbitrary analytic cuts in the normal forms of proofs
is too lenient and does not provide a good correspondence to operational behavior under
the Curry-Howard interpretation. Instead, we would like to recognize the subformulas of
the principal formula of each axiom as specific formulas that we may cut without losing the
subformula property. We then have a restricted form of cut we call Snip which requires that
the cut formula in one (or both) of the premises originates from an axiom in this way.

In order to make this precise we need to track specific formula occurrences, so we label
each antecedent and the succedent of each sequent in a derivation with variables, where all
variables in a sequent are distinct. As a representative example of an axiom, we will examine
the ⊃L0 axiom. We call the variables y : A and z : B in

Γ, y : A, x : A ⊃ B ` z : B
⊃L0

eligible for a Snip (or just eligible) and propagate this information through the derivation. In
a rule with two premises a variable is eligible in the conclusion if it is eligible in at least one
of the premises. If we assume or prove that an antecedent or succedent is eligible we mark
it with x∗ : A (although the absence of a ∗ does not mean that it is ineligible). This mark
is not part of the syntax of sequents, just expressing an assumed or known property of its
derivation.

Since we are not in a linear logic, the cut elimination proof also seems to require that we
track irrelevant antecedents in sequents, those that are never used. These are the (ineligible)
side formulas of axioms and Id, which then propagate through the derivation. In a rule
with two premises, a variable is only irrelevant in the conclusion if it is irrelevant in both
premises. If we assume or prove that an antecedent is irrelevant, we mark it with x0 : A
(although again the absence of the mark does not mean it is relevant). We also write Γ0 if all
variables in Γ are irrelevant. Again, the superscript 0 is not part of the syntax of sequents,
just expressing an assumed or known property of its derivation.

We refer to the status of variables as irrelevant or relevant and eligible or ineligible, where,
by its definition, an eligible variable is automatically relevant.

In the normal form of derivations we now permit cuts where at least one of the two
occurrences of the cut formula is eligible for a snip. The rules can be found in Figure 3.

FSCD 2020
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Γ0, x : A ` y : A
IdA

Γ ` x : A Γ, x : A ` z : C

Γ ` z : C
CutA

Γ ` x∗ : A Γ, x : A ` z : C

Γ ` z : C
Snip1

A

Γ ` x : A Γ, x∗ : A ` z : C

Γ ` z : C
Snip2

A

Γ, y : A ` z : B

Γ ` x : A ⊃ B
⊃R

Γ0, y∗ : A, x : A ⊃ B ` z∗ : B
⊃L0

Γ0, y∗ : A, z∗ : B ` x : A⊗B
⊗R0

Γ, x : A⊗B, y : A, z : B ` w : C

Γ, x : A⊗B ` w : C
⊗L

Γ0 ` x : 1
1R0

Γ, x : 1 ` w : C

Γ, x : 1 ` w : C
1L

Γ ` y : A Γ ` z : B

Γ ` x : ANB
NR

Γ0, x : ANB ` y∗ : A
NL0

1

Γ0, x : ANB ` z∗ : B
NL0

2

Γ0, x∗ : A ` z : A ∨B
∨R0

1

Γ0, y∗ : B ` z : A ∨B
∨R0

2

Γ, z : A ∨B, x : A ` w : C Γ, z : A ∨B, y : B ` w : C

Γ, z : A ∨B ` w : C
∨L

Figure 3 Sax in Labeled Form

The implementation of ⊃L from ⊃L0 has two uses of cuts, but both of them are on
eligible formulas and are therefore snips.

Γ, y : A ⊃ B ` x : A Γ, x∗ : A, y : A ⊃ B ` z∗ : B
⊃L0

Γ, y : A ⊃ B ` z∗ : B
Snip2

A Γ, y : A ⊃ B, z : B ` w : C

Γ, y : A ⊃ B ` w : C
Snip1

B

From now on when we say “cut-free” we mean that a derivation may not use Cut, but is
allowed to use Snip in both of its forms. In its most pedantic version, the cut-free proof of
our example would be

u∗ : A, x : A ⊃ B, y0 : B ⊃ C ` t∗ : B
⊃L0

u0 : A, x0 : A ⊃ B, t∗ : B, y : B ⊃ C ` w∗ : C
⊃L0

u∗ : A, x : A ⊃ B, y : B ⊃ C ` w∗ : C
SnipB

x : A ⊃ B, y : B ⊃ C ` z : A ⊃ C
⊃R

It so happens that in this example, the Snip is an instance of both Snip1 and Snip2. Also, in
the final conclusion none of the variables are eligible or irrelevant.

The translations between Sax and G3 give us one way to prove cut elimination for Sax.

I Theorem 4 (Cut Elimination in Sax, v1). If Γ ` x : A in Sax then there is a cut-free
derivation of Γ ` x : A in Sax.
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Proof. We translate the given derivation from Sax to G3. This introduces additional uses
of the identity but mostly preserves the structure of the derivation. Now we apply cut
elimination (Theorem 2) to obtain a cut-free derivation in G3. The backwards translation
(see the proof of Theorem 3) of the result to Sax introduces some snips but no cuts. The
result is therefore cut-free in Sax. J

This proof induces a simple algorithm for cut elimination but it does so in an indirect
way, via two translations. We are instead interested in understanding the computational
behavior of Sax directly, so we look for a direct algorithm for cut elimination. This proof
(and the algorithm it embodies) is somewhat more complex for Sax than for G3 because it
needs to allow snips but not general cuts.

As with G3, we proceed in two steps: first, we show the admissibility of cut in the cut-free
calculus, and then we prove cut elimination using the admissibility of cut.

I Theorem 5 (Admissibility of Cut in Sax). If there are cut-free derivations Γ ` x : A and
Γ, x : A ` z : C then there exists a cut-free derivation of Γ ` z : C.

Proof. For readability, we express the construction of F from D and E in the form

D
Γ ` x : A

E
Γ, x : A ` z : C

Γ ` z : C
CutA =⇒

F
Γ ` z : C

The proof proceeds by a nested induction, first on the structure of A and then on the
structure of the first and second given derivations, D and E . We exploit that adding or
subtracting an irrelevant antecedent (D + {y0 : B} and D − {y0 : B}) does not change the
structure of a derivation.

However, a direct proof does not work — we need to generalize our induction hypothesis.
We observe that in the resulting derivation F , the status of variables in Γ and z : C may
be different from their status in D and E . If a variable becomes irrelevant we impose no
condition. If a variable y : B transitions from eligible in D or E to ineligible but relevant in
F , then we demand that B < A, that is, B be a strict subformula of A. This will allow us to
apply the induction hypothesis to B in these cases, but it also requires that this condition is
preserved in each case of the proof. See Appendix A for additional proof details. J

I Theorem 6 (Cut Elimination in Sax, v2). If there is a derivation of Γ ` x : A then there is
a cut-free derivation of the same sequent.

Proof. By a standard induction on the structure of the deduction, appealing to the admissi-
bility of cut in the case of a cut. A cut in the original derivation could turn into a snip or
be eliminated entirely, based on the eligibility of the cut formula in the two premises after
appeals to the induction hypothesis. J

I Theorem 7 (Subformula Property in Sax). All formulas in a cut-free derivation of Γ ` x : A
are subformulas of formulas in Γ or A.

Proof. We generalize the induction hypothesis to include:

For any eligible antecedent or succedent y∗ : B in any sequent in the derivation, B is
a subformula of at least one of the remaining (ineligible) formulas in the sequent.

Then we proceed by induction over the structure of the derivation. For a snip, we use the
eligibility requirement and the second part of the induction hypothesis to conclude that
the cut formula is a subformula in both premises. Also, the second part of the induction
hypothesis is manifestly true in all axioms and propagated by all the rules. J

FSCD 2020
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4 Some Example Derivations

As an example, we show that A ⊗ B a` A N B. These proofs will have some interesting
computational content examined in Appendix B. The first proof has three axioms and two
uses of snip.

x : ANB ` y∗ : A
NL0

1

x : ANB ` z∗ : B
NL0

2
x0 : ANB, y∗ : A, z∗ : B ` w : A⊗B

⊗R0

x : ANB, y∗ : A ` w : A⊗B
Snip

x : ANB ` w : A⊗B
Snip

We have annotated the proof with eligibility information and notice that in both snips it
so happens the variables are eligible on both sides. This proof is cut-free according to our
criterion since it only contains snips and not general cuts. The following proof for the other
direction is also cut-free, but contains only rules from the usual sequent calculus.

x0 : A⊗B, y : A, z0 : B ` u : A
IdA

x0 : A⊗B, y0 : A, z : B ` v : B
IdB

x0 : A⊗B, y : A, z : B ` w : ANB
NR

x : A⊗B ` w : ANB
⊗L

As a final example, consider (this portion of) the proof of (A ⊃ C) N (B ⊃ C) ` (A∨B) ⊃ C:

p : (A ⊃ C) N (B ⊃ C) ` r∗ : A ⊃ C
NL0

1
r : A ⊃ C, x∗ : A ` z∗ : C

⊃L0

p : (A ⊃ C) N (B ⊃ C), x∗ : A ` z∗ : C
Snip ...

p : (A ⊃ C) N (B ⊃ C), s : A ∨B ` z∗ : C
∨L

p : (A ⊃ C) N (B ⊃ C) ` q : (A ∨B) ⊃ C
⊃R

5 A Shared Memory Interpretation

The key idea behind the shared memory interpretation is that at runtime, variables will be
substituted by addresses in shared memory. Moreover, a sequent

x1 : A1, . . . , xn : An ` z : C

defines the interface to a process P that reads from addresses x1, . . . , xn and writes to
address z. The types of the variables define the shape of the contents of memory at the given
address. Once z has been written to, the process P terminates because it has completed its
task. We sometimes refer to x1, . . . , xn as the sources and z as the destination for P .

True to the Curry-Howard interpretation, P can be read off from the derivation of the
sequent. We incorporate a process expression P into the judgment by writing

x1 : A1, . . . , xn : An ` P :: (z : C)

Now, the sequent can be seen as a typing judgment for the process expression P .

Cut. To understand the operational behavior of the processes assigned to sequents, we have
to study the cut reductions. We begin with the rule of cut itself, without distinguishing snip
as a special case. Cut is a first-class rule (unlike in the proof of admissibility of cut), so it
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has a corresponding process. This is because cut reduction corresponds to computation, so if
we did not have cut we would have no computation.

Γ ` P :: (x : A) Γ, x : A ` Q :: (z : C)

Γ ` (x← P ; Q) :: (z : C)
CutA

A process executing x ← P ; Q will allocate a new cell in memory with address a, then
spawn a new process [a/x]P (which will write a), and continue as [a/x]Q (which may read
from a). Reading from a will be an act of synchronization, because [a/x]Q cannot read from
a until the value has been written by [a/x]P .

This is the only point in the dynamics where a new memory cell is allocated. Initially,
it is shared between two processes, [a/x]P and [a/x]Q. However, we also notice that Γ,
in accordance with the usual presentation of (nonlinear) intuitionistic sequent calculus, is
propagated to both premises. Dynamically, this means any cell with an address in Γ is
accessible to both new processes. On the other hand, the succedent of a sequent is always a
singleton, which leads us to the conclusion:

A cell with address a will be written by one distinguished process and may be read by
many different processes.

This observation will have consequences when we consider other rules.

Identity. The rule of identity has a straightforward operational interpretation.

Γ, x : A ` (yW ← xR) :: (y : A)
IdA

The process we assign reads from x and writes to y which amounts to just copying the
value at address x to memory at address y. After it has written to y it terminates. The
superscripts W and R would presumably not be part of the concrete syntax of a language,
but remind us that this process reads from x and writes to y.

If we examine the cut reductions _/Id and Id/_ in the proof of Theorem 5 (shown in
Appendix A) we see that this is a considerable restriction of the general reduction rules. This
exemplifies a common phenomenon when we relate pure proof theory to computation: some
rules of cut reduction may be entirely dropped (such as the so-called permutative reductions),
while others are restricted to superimpose a particular strategy on the general notion of
reduction.

Logical Rules. The general interpretation of the left and right rules is:

Process expressions assigned to right rules will write to memory while expressions
assigned to left rules will read from memory.

The question in each case is what to write to or read from memory, and how to subsequently
continue execution. We will examine this for each connective in turn.

Positive Conjunction. We start with the positive conjunction A⊗B because it is a little
easier to understand than implication. As one might expect given the general guideline, the
right rule should write a pair to memory, and it does!

Γ0, x∗ : A, y∗ : B ` zW .〈x, y〉 :: (z : A⊗B)
⊗R0

FSCD 2020
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The expression zW .〈x, y〉 writes the pair 〈x, y〉 to the cell at location z and terminates. The
superscript W is there to remind us that we write to the cell z. No other cell is written to
or read from. It may also be helpful to directly think of zW .〈x, y〉 as a representation of
the memory cell z with contents 〈x, y〉. Note that the value 〈x, y〉 itself just contains two
addresses x and y, not complex terms. The cells with these addresses may still be empty
when we write the pair to z, which allows for a high degree of parallelism.

Conversely, the expression assigned to the rule ⊗L

Γ, z : A⊗B, x : A, y : B ` P :: (w : C)

Γ, z : A⊗B ` case zR (〈x, y〉 ⇒ P ) :: (w : C)
⊗L

reads such a pair from memory at location z, matches, it against 〈x, y〉 to extract the
components (say addresses a and b) and continues with [a/x, b/y]P . The cell z is persistent,
so it may be read again later, either by this process or by another one. Again, the cells
at addresses x and y may not yet have been filled, but we can nevertheless extract and
manipulate their addresses.

The principal cut reduction of ⊗R0 against ⊗L, expressed on processes, becomes

z ← (zW .〈a, b〉) ; case zR (〈x, y〉 ⇒ P ) −→ [a/x, b/y]P

which is precisely the intended operational semantics.

Implication. Implication represents somewhat of a challenge to intuition, and is perhaps
the reason that this form of sequent calculus and its shared memory interpretation has been
overlooked. We start with the left rule ⊃L0 which, according to our guiding principle, should
read from memory.

Γ, y∗ : A, x : A ⊃ B ` xR.〈y, z〉 :: (z∗ : B)
⊃L0

The process expression xR.〈y, z〉 should read a value of type A ⊃ B from location x and pass
it the pair y and z. But what does this pair represent? y is the (usual) argument to the
function, having type A. And z is the destination for the result of the function. As such,
every function takes an additional argument. This is reminiscent of continuation-passing
style [28] except that instead of passing a continuation to accept the function’s result we pass
a destination address to store the function’s result.

Note that we have reused the syntax for pairs, except that the process assigned here
reads from x. It is economical for the ⊃R rule to also reuse the same syntax to describe the
augmented functions which we call continuations.

Γ, y : A ` P :: (z : B)

Γ ` case xW (〈y, z〉 ⇒ P ) :: (x : A ⊃ B)
⊃R

The process case cW (〈y, z〉 ⇒ P ) writes the continuation (〈y, z〉 ⇒ P ) to the cell at address
c and terminates.

The cut reduction for ⊃R against ⊃L0, expressed directly on processes, is symmetric to
the reduction for ⊗R0 against ⊗L:

z ← (case zW (〈x, y〉 ⇒ P )) ; zR.〈a, b〉 −→ [a/x, b/y]P
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Γ, x : A ` (yW ← xR) :: (y : A)
IdA

Γ ` P :: (x : A) Γ, x : A ` Q :: (z : C)

Γ ` (x← P ; Q) :: (z : C)
CutA

Γ, y : A ` P :: (z : B)

Γ ` case xW (〈y, z〉 ⇒ P ) :: (x : A ⊃ B)
⊃R

Γ, y∗ : A, x : A ⊃ B ` (xR.〈y, z〉) :: (z∗ : B)
⊃L0

Γ0, y∗ : A, z∗ : B ` xW .〈y, z〉 :: (x : A⊗B)
⊗R0

Γ, x : A⊗B, y : A, z : B ` P :: (w : C)

Γ, x : A⊗B ` case xR (〈y, z〉 ⇒ P ) :: (w : C)
⊗L

Γ0 ` xW .〈 〉 :: (x : 1)
1R0

Γ, x : 1 ` P :: (w : C)

Γ, x : 1 ` case xR (〈 〉 ⇒ P ) :: (w : C)
1L

Γ ` P :: (y : A) Γ ` Q :: (z : B)

Γ ` case xW (π1(y)⇒ P | π2(z)⇒ Q) :: (x : ANB)
NR

Γ0, x : ANB ` xR.π1(y) :: (y∗ : A)
NL0

1

Γ0, x : ANB ` xR.π2(z) :: (z∗ : B)
NL0

2

Γ0, x∗ : A ` zW .π1(x) :: (z : A ∨B)
∨R0

1

Γ0, y∗ : B ` zW .π2(y) :: (z : A ∨B)
∨R0

2

Γ, z : A ∨B, x : A ` P :: (w : C) Γ, z : A ∨B, y : B ` Q :: (w : C)

Γ, z : A ∨B ` case zR (π1(x)⇒ P | π2(y)⇒ Q) :: (w : C)
∨L

Figure 4 Process Expression Assignment for Sax

Disjunction and Negative Conjunction. Just like implication and positive conjunction
form a symmetric pair of expressions, reversing the role of read and write, so do disjunction
and negative conjunction. The rules can be found in Figure 4, which summarizes all of the
rules for Sax. We show here the reductions for A N B, and the reductions for A ∨ B are
symmetric, as they were for A ⊃ B and A⊗B.

z ← (case zW (π1(x)⇒ P | π2(y)⇒ Q)) ; zR.π1(a) −→ [a/x]P
z ← (case zW (π1(x)⇒ P | π2(y)⇒ Q)) ; zR.π2(b) −→ [b/x]Q

5.1 Values and Continuations, Cells and Processes
The language of process expressions is now complete, but the immediate cut reductions
do not yet fully capture the intended semantics. We first refactor the definition of our
language slightly, by separating small values V from continuations K. Figure 5 also now
shows what the new axioms of Sax represent: values. Meanwhile, the unchanged invertible
rules represent continuations.

A key operation is in the semantics is passing a value to a continuation, which we write
as V . K. It is defined by the following clauses:

〈a, b〉 . (〈x, y〉 ⇒ P ) = [a/x, b/y]P
〈 〉 . (〈 〉 ⇒ P ) = P

π1(a) . (π1(x)⇒ P | π2(y)⇒ Q) = [a/x]P
π2(b) . (π1(x)⇒ P | π2(y)⇒ Q) = [b/y]Q
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Processes P ::= x← P ; Q allocate a, spawn [a/x]P , continue as [a/x]Q
| xW ← yR copy contents of cell y into cell x
| xW .V write V to cell x
| case xR K read value V from cell x and pass it to K
| case xW K write continuation K to cell x
| xR.V read continuation K from x and pass V to it

Continuations K ::= (〈x, y〉 ⇒ P ) (⊗L,⊃R)
| (〈 〉 ⇒ P ) (1L)
| (π1(x)⇒ P | π2(x)⇒ Q) (NR,∨L)

Values V ::= 〈x, y〉 (⊗R0,⊃L0)
| 〈 〉 (1R0)
| π1(x) | π2(x) (NL0,∨R0)

Cell Contents W ::= V | K

Figure 5 The Grammar for Sax Process Expressions

The difficulty with the raw cut reductions in the presence of contraction (whether implicit
as in G3 and Sax, or with an explicit rule) is that some of them duplicate derivations.
Instead, we would like them to be shared, which is exactly what the notion of shared memory
allows us to do. One can feed this back into proof theory using the notion of multicut [24].
Here, we represent multiple cuts, and simultaneous cuts of one derivation against multiple
others with the concept of a configuration. Such a configuration can be unravelled back into
ordinary cuts (and therefore ordinary derivations), but at the cost of duplicating derivations.

A configuration consists of allocated memory cells (some of which may have been written
to and some not) and executing processes. We present it as a substructural operational
semantics (SSOS) [5, 27] in the form of multiset rewriting rules [6], using the following
semantic objects.

proc c P process P with destination c
cell c _ memory cell c, allocated but not yet written
!cell c W cell c with contents W

In a configuration, a process proc c P is always paired with an allocated but not yet written
cell c _. We also have cells !cell c W that have been written already. They are persistent
(indicated by the exclamation mark) since they may be read multiple times but cannot be
written again. In the multiset rewriting rules, a left-hand side of the form !φ will remain in
the configuration, while objects ψ are removed and replaced by the objects on the right-hand
side of the rule. All addresses c with objects cell c _ or !cell c W in a given configuration
must be distinct, that is, no two cells in a configuration may share the same address.

The transitions in Figure 6 are multiset rewriting rules describing the dynamics of
configurations. They can be applied to any subconfiguration, which induces a form of
concurrency. However, the rules are confluent (see Theorem 10) so the result of reducing
a configuration via these rules is ultimately deterministic, modulo the names of freshly
introduced variables.
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proc c (x← P ; Q) −→ proc a ([a/x]P ), cell a _, proc c ([a/x]Q) (a fresh)
!cell b W, proc a (aW ← bR), cell a _ −→ !cell a W
proc a (case aW K), cell a _ −→ !cell a K
!cell a K, proc c (aR.V ) −→ proc c (V . K)

!cell a V, proc a (case aR K) −→ proc a (V . K)
proc a (a.V ), cell a _ −→ !cell a V

Figure 6 Dynamic Semantics of Configurations

Γ ` (·) :: Γ
Empty

Γ0 ` C1 :: Γ1 Γ1 ` C2 :: Γ2

Γ0 ` (C1, C2) :: Γ2
Join

Γ ` P :: (a : A)

Γ ` (proc a P, cell a _) :: (Γ, a : A)
Proc

Γ ` aW .V :: (a : A)

Γ ` !cell a V :: (Γ, a : A)
CellV

Γ ` case aW K :: (a : A)

Γ ` !cell a K :: (Γ, a : A)
CellK

Figure 7 Typing Rules for Configurations

5.2 Typing Configurations
Configurations, like cells and processes, are runtime artifacts which can nevertheless be typed
and also put into correspondence with the sequent calculus. First, typing. We have

Configurations C ::= proc a P, cell a _ process with destination a
| !cell a W cell with contents W
| · empty configuration
| C1, C2 joining configurations

The concatenation operator “,” for configurations is commutative and associative with unit
“·”, which makes it a suitable basis for multiset rewriting. However, a typing derivation for
a configuration imposes an order by requiring that the writer of a cell a comes before all
the readers of the cell. We include the rules for typing the contents of cells below those for
typing configurations in Figure 7.

We can now state and prove several key results regarding our dynamics.

I Theorem 8 (Preservation). If Γ0 ` C :: Γ and C −→ C′ then Γ0 ` C :: Γ′ for some Γ′ ⊇ Γ.

Proof. A first key property is that if Γ0 ` C :: Γ then Γ0 ⊆ Γ, which is easily proved by
induction on the typing derivation. Therefore, a cell with address a and any process tasked
with writing to a (which need not exist if the cell has already been filled) will always come
to the left of any reader of a. This and the persistence of !cell a W easily yield preservation
by induction on the typing derivation and inversion on the typing of processes and cell
contents. J

We say a configuration is final if it consists only of cells !cell a W . In other words, there
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are no longer any running processes. We prove progress for closed configurations (· ` C :: Γ)
that do not depend on any undefined addresses.

Note that the typing derivation for a configuration is associative with respect to rule
Join and unit Empty. This has two useful consequences. First, this provides a simple way
to reconstruct a proof tree from a (well-typed) configuration — an empty configuration
yields an empty tree, the Proc and Cell rules are base cases, each becoming the proof tree
in the premise, and the Join rule simply cuts together the proof trees on the left and the
right. Second, because of the associativity, we may perform induction where we isolate the
rightmost cell or process and apply the inductive hypothesis to the remaining configuration
to the left.

I Theorem 9 (Progress). If · ` C :: Γ then either C is final or C −→ C′ for some C′.

Proof. By right-to-left induction over the typing derivation for C.
Case: The rightmost rule is Cell, so C = (C1, !cell a W ). By induction hypothesis, either C1
is final (and so is then C) or C1 −→ C′1 and therefore also C −→ C′1, !cell a W .
Case: The rightmost rule is Proc, so C = (C1, proc a P, cell a _). If C1 −→ C′1 then also
C −→ (C′1, proc a P, cell a _). If C1 is final then we distinguish cases on P . If P is alloc/spawn,
copy, or a process that writes, then C −→ C′ for some C′. If P is a process that reads, then
we apply inversion on the typing derivations of the cell a and the process P to show that a
reduction is once again possible. J

We say C1 ∼ C2 if there is a renaming ρ such that ρ C1 = C2.

I Theorem 10 (Diamond Property). Assume ∆ ` C :: Γ. If C −→ C1 and C −→ C2 such that
C1 6∼ C2. Then there exist C′1 and C′2 such that C1 −→ C′1 and C2 −→ C′2 with C′1 ∼ C′2.

Proof. The proof is straightforward by cases. There are no critical pairs involving ephemeral
(that is, non-persistent) objects in the left-hand sides. J

As usual, confluence of multistep reduction follows by two standard inductions from the
diamond property.

We now return to the distinction between general cuts and snips, which we introduced
in order to establish cut elimination. First, we note that the transition rule for cut applies
equally whether the cut x← P ; Q is a snip or not. In order to discuss the other rules, we
define that an occurrence of an address a is eligible if it is eligible in the typing derivation
according to the rules in Figure 7. This coincides with saying that the corresponding variable
would be eligible if we unwound the configuration into a collection of proofs. We notice that
in an object !cell a W the address a is never eligible because it labels the principal formula
of an inference. Furthermore, none of the reductions besides cut involve an eligible address
a, since they all label either an application of identity or the principal proposition of an
inference.

It remains to characterize final configurations, that is, those consisting only of cells. We
might at first suspect that all remaining cuts are snips, but that is not true because the
dynamics does not reduce continuations K. This reflects a common difference between pure
proof theory (where we show full normalization or cut elimination) and the dynamics of
programming languages (where we do not evaluate under abstractions). We call addresses
that occur in values V observable and those that occur in continuations K hidden.

I Theorem 11 (Observable Addresses). All observable addresses in a well-typed final configu-
ration are eligible.
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Proof. By inversion on the typing of cells containing values V . J

From this, we obtain a simple corollary for purely positive types. In a functional language,
values of purely positive type are observable in their entirety, without any functions or
closures with hidden structure. Here, such values are allocated and distributed into memory
cells, but nevertheless observable in their entirety.

Purely Positive Type A+ ::= 1 | A+
1 ⊗A

+
2 | A

+
1 ∨A

+
2

Purely Positive Context Γ+ ::= · | Γ+, x : A+

We then have the following characterization.

I Corollary 12 (Final Configurations of Purely Positive Type). All cells in a final configuration
· ` F :: Γ+ have the form !cell a V , and therefore all addresses in V are observable and
eligible.

This means if we reconstitute a final configuration into a collection of proofs (one for each
a : A+ in Γ+) by introducing cuts, then all these cuts will be snips.

6 Termination

We prove termination by means of a logical relation (predicate), which we first define for
closed configurations (with no free addresses), and then extend to open configurations. The
definition and proof incorporate ideas from standard logical relations for natural deduction
into those of Pérez et al. [20] in the context of synchronous message-passing concurrency.

I Definition 13. We define two predicates on configurations, Ja : AK and [a : A], by mutual
induction on the structure of the type A.

1. C ∈ Ja : AK iff C −→∗ F where F is final and F ∈ [a : A].

2.a F ∈ [a : B ⊗ C] iff F = F ′, !cell a 〈b, c〉, F ′ ∈ [b : B], and F ′ ∈ [c : C].
2.b F ∈ [a : 1] iff F = F ′, !cell a 〈〉.
2.c F ∈ [a : B ⊃ C] iff for all F ′ such that F ,F ′ ∈ [b : B],

we have F ,F ′, (proc c (a.〈b, c〉), cell c _) ∈ Jc : CK.
2.d F ∈ [a : B N C] iff both F , (proc b (a.π1(b)), cell b _) ∈ Jb : BK

and F , (proc c (a.π2(c)), cell c _) ∈ Jc : CK.
2.e F ∈ [a : B ∨ C] iff either F = FB , !cell a (π1(b)) with FB ∈ [b : B]

or F = FC , !cell a (π2(c)) with FC ∈ [c : C].

We can then extend this definition to specify the behavior of a configuration providing
more than one address.

I Definition 14. We define C ∈ JΓK iff for all a : A ∈ Γ, C ∈ Ja : AK.

Finally, using the above definitions, we can extend the predicate to open configurations.

I Definition 15. We define C ∈ JΓ ` a : AK iff for all C′ ∈ JΓK, C′, C ∈ Ja : AK. Note that
C ∈ J· ` a : AK iff C ∈ Ja : AK.

Given these definitions, we have three key lemmas for the proof of termination.

I Lemma 16 (Weakening). If C ∈ Ja : AK, then for all b, B, and C′ ∈ Jb : BK we have
C′, C ∈ Ja : AK.
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As a corollary, if C ∈ Ja : AK then C ∈ JΓ ` a : AK for any Γ.

I Lemma 17 (Closure). If C −→∗ C′ then C ∈ JΓ ` a : AK iff C′ ∈ JΓ ` a : AK.

I Lemma 18 (Inversion). If a final F ∈ [a : A] then F = F ′, !cell a W for some F ′ and W .

Finally, using these lemmas, we can go on to prove the main theorem of this section,
which state that all well-typed configurations satisfy the termination predicate. We can
apply this to any of the succedents in the general typing judgment for configurations.

I Theorem 19. If Γ ` C :: ∆, then C ∈ JΓ ` a : AK for every (a : A) ∈ ∆.

Proof. This proof proceeds by induction on the multisetM of derivations Γ′ ` P :: (b : B)
and Γ′ `W : B used in the derivation of Γ ` C :: ∆. Derivations are ordered in the standard
way, and we use the multiset ordering derived from this as the basis of our induction. As
noted in the proof of Theorem 9, the typing derivation for a configuration induces an order
on that configuration and we can examine it from right to left. J

A corollary of this theorem is that any closed well-typed configuration terminates in a
final configuration.

7 Conclusion

We defined Sax, a new hybrid form of sequent calculus in which right rules for positive
connectives and left rules for negative connectives are replaced by axioms, that is, inference
rules with no premises. This calculus satisfies a modified cut elimination theorem in which
certain analytic cuts which preserve the subformula property are allowed. We showed how
to assign process expression to derivations in Sax and provided a simple shared memory
semantics for them: cut allocates memory cells, identity copies contents from one cell to
another, processes assigned to right rules write to cells and those assigned to left rules read
from them. Cells may be written at most once, but read many times, which means that they
provide synchronization points between concurrent processes. This seems quite similar to
futures [12], an analogy we have substantiated in an unpublished report [25]. This report
does not investigate the proof-theoretic foundations of Sax but further generalizes the type
system to adjoint logic [26, 18, 23, 24], adds recursive types, and shows that futures can
be embedded into an adjoint formulation of Sax. We further conjecture that functional
programs can be compiled directly into Sax, where a particular schedule for the resulting
concurrent programs corresponds to their sequential execution. This has been developed
(without proof) in some unpublished lecture notes [22, Lectures 19–21].
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A Some Cases in the Proof of Cut Admissibility

Proof. (of Theorem 5)
We consider various classes of cases. These cases are not mutually exclusive, which means

that the algorithm for the construction of F from D and E induced by this constructive
proof is naturally nondeterministic. We restrict ourselves to implication only, but show all
the cases relevant to this fragment. The cases for other connectives follow similar patterns.

The first two cases show the admissibility of cut by building a snip when one (or both) of
the cut formulas are eligible.
Case: ∗/_ (which also covers the cases ⊃L0/_)

D
Γ ` x∗ : A

E
Γ, x : A ` z : C

Γ ` z : C
CutA =⇒

D
Γ ` x∗ : A

E
Γ, x : A ` z : C

Γ ` z : C
Snip1

A

Case: _/∗ (which also covers a subcase of _/⊃0)

D
Γ ` x : A

E
Γ, x∗ : A ` z : C

Γ ` z : C
CutA =⇒

D
Γ ` x : A

E
Γ, x∗ : A ` z : C

Γ ` z : C
Snip2

A

The next case covers a cut against an irrelevant antecedent. This case is not strictly necessary
and could be replaced by several more specialized ones if desired.
Case: _/0 (also covers _/⊃L0 and _/Id where the cut formula is a side formula in E)

D
Γ ` x : A

E
Γ, x0 : A ` z : C

Γ ` z : C
CutA =⇒

E − {x0 : A}
Γ ` z : C

In the next two cases the cut formula is the principal formula of an identity, either in D or E .
Case: _/Id

D
Γ ` x : A Γ, x : A ` z : A

Id

Γ ` z : A
CutA =⇒

[z/x]D
Γ ` z : A

Next is a case where z : C may be eligible in F even if it is not in E . Our proof is not
concerned with variables that may gain eligibility.
Case: Id/_

Γ′, y : A ` x : A
id E

Γ′, y : A, x : A ` z : C

Γ′, y : A ` z : C
CutA

=⇒
[y/x]E

Γ′, y : A ` z : C

The next case is the principal case where the cut formula is inferred in the last inference of
both premises of the cut.
Case: ⊃R/⊃L0

D0

Γ′, y : A1, x1 : A1 ` x2 : A2

Γ′, y : A1 ` x : A1 ⊃ A2
⊃R

Γ′, y∗ : A1, x : A1 ⊃ A2 ` z∗ : A2
⊃L0

Γ′, y : A1 ` z : A2
CutA1⊃A2

=⇒
[y/x1, z/x2]D0

Γ′, y : A1 ` z : A2
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Note that in this case y : A1 and z : A2 may lose eligibility. However, A1 < A1 ⊃ A2 and
A2 < A1 ⊃ A2 so our requirements are satisfied in case they remain relevant.

In the next group of cases, the first derivation D is arbitrary and the cut formula is a side
formula of the last inference in E . Because E is assumed to be cut-free, we get five cases
_/⊃R, _/Snip1, _/Snip2, _/⊃L0, and _/Id, where the last two are already covered by _/0.
Case: _/⊃R

D
Γ ` x : A

E0
Γ, x : A, z1 : C1 ` z2 : C2

Γ, x : A ` z : C1 ⊃ C2
⊃R

Γ ` z : C1 ⊃ C2
CutA =⇒

D + {z0
1 : C1}

Γ, z0
1 : C1 ` x : A

E0
Γ, x : A, z1 : C1 ` z2 : C2

Γ, z1 : C1 ` z2 : C2
CutA

Γ ` z : C1 ⊃ C2
⊃R

Case: _/Snip1 with two subcases.

D
Γ ` x : A

E1
Γ, x : A ` y∗ : B

E2
Γ, x : A, y : B ` z : C

Γ, x : A ` z : C
Snip1

B

Γ ` z : C
CutA =⇒

F
Γ ` z : C

where F is defined in each subcase below from

D
Γ ` x : A

E1
Γ, x : A ` y∗ : B

Γ ` y : B
CutA =⇒

F1
Γ ` y : B

and

D + {y : B}
Γ, y : B ` x : A

E2
Γ, y : B, x : A ` z : C

Γ, y : B ` z : C
CutA =⇒

F2
Γ, y : B ` z : C

There are two subcases depending on properties of F1, obtained from the induction
hypothesis.
Subcase: y is still eligible in F1.
Subcase: y is not eligible in F1 and B < A. Note that in this case we can apply the

induction hypothesis once more.
These two subcases yield the following two definitions of F , respectively:

F =

F1
Γ ` y∗ : B

F2
Γ, y : B ` z : C

Γ ` z : C
Snip1

F =

F1
Γ ` y : B

F2
Γ, y : B ` z : C

Γ ` z : C
CutB

Case: _/Snip2 with three subcases.

D
Γ ` x : A

E1
Γ, x : A ` y : B

E2
Γ, x : A, y∗ : B ` z : C

Γ, x : A ` z : C
Snip1

B

Γ ` z : C
CutA =⇒ F
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We first apply the induction hypothesis twice on smaller derivations.

D
Γ ` x : A

E1
Γ, x : A ` y : B

Γ ` y : B
CutA =⇒

F1
Γ ` y : B

and

D + {y0 : B}
Γ, y0 : B ` x : A

E2
Γ, y∗ : B, x : A ` z : C

Γ, y : B ` z : C
CutA =⇒

F2
Γ, y : B ` z : C

There are three subcases for the status of y : B in F2.
Subcase: y : B becomes irrelevant.
Subcase: y : B remains eligible.
Subcase: y : B is ineligible but relevant and B < A.
These subcases yield the following three definitions for F , respectively:

F =
F2 − {y0 : B}

Γ ` z : C F =

F1
Γ ` y : B

F2

Γ, y∗ : B ` z : C

Γ ` z : C
Snip2

B F =

F1
Γ ` y : B

F2
Γ, y : B ` z : C

Γ ` z : C
CutB

The next set of cases the cut formula is a side formula of the inference in D and E is arbitrary.
Case: Snip1/_.

D1
Γ ` y∗ : B

D2
Γ, y : B ` x : A

Γ ` x : A
Snip1

B
E

Γ, x : A ` z : C

Γ ` z : C
CutA

=⇒

D1
Γ ` y∗ : B

D2
Γ, y : B ` x : A

E + {y0 : B}
Γ, y0 : B, x : A ` z : C

Γ, y : B ` z : C
CutA

Γ ` z : C
Snip1

B

Case: Snip2/_

D1
Γ ` y : B

D2
Γ, y∗ : B ` x : A

Γ ` x : A
Snip2

B
E

Γ, x : A ` z : C

Γ ` z : C
CutA =⇒

F
Γ ` z : C

where

F2 =

D2
Γ, y∗ : B ` x : A

E + {y0 : B}
Γ, y0 : B, x : A ` z : C

Γ, y : B ` z : C
CutA

Again, there are three subcases.
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Subcase: y0 : B is irrelevant in F2.
Subcase: y∗ : B is eligible in F2.
Subcase: y : B is relevant but not eligible in F2 and B < A.
These three subcases yield the following three definitions for F , respectively:

F =
F2 − {y0 : B}

Γ ` z : C F =

D1
Γ ` y : B

F2

Γ, y∗ : B ` z : C

Γ ` z : C
Snip2

B F =

D1
Γ ` y : B

F2
Γ, y : B ` z : C

Γ ` z : C
CutB

J

B Some Example Programs

The following are the process expressions assigned to the proofs in Section 3 and Section 4.

x : A ⊃ B, y : B ⊃ C ` z : A ⊃ C

case zW (〈u,w〉 ⇒ b← xR.〈u, b〉 ;
yR.〈b, w〉)

This process terminates immediately after writing a continuation to z. When this continuation
is called with an argument u and destination w, it allocates a fresh cell b and passes u to
x with instructions to place the result in b. While this continuation executes, it passes the
address b (which may not be filled yet) to y and jumps to that continuation in order to write
its answer into w. Note that two processes may execute concurrently here: intuitively, one
executing the function x and the other executing the function y. They are connected via a
common reference to a fresh cell b, to be written by x and read by y.

x : ANB ` w : A⊗B

y ← xR.π1(y) ;
z ← xR.π2(z) ;
wW .〈y, z〉

This process reads the continuation at x twice, requesting that the first component of the
pair be written to a freshly allocated cell y, the second to a freshly allocated cell z. While
these processes execute, it writes the pair 〈y, z〉 to the required destination w and terminates.
Note that both y and z have been allocated, but neither needs to have been filled by the
time this process terminates, since the two processes executing with the destinations y and z
can continue to run.

x : A⊗B ` w : ANB

case xR (〈y, z〉 ⇒
case wW (π1(u)⇒ uW ← yR

| π2(v)⇒ vW ← zR ))

This process reads the pair 〈y, z〉 from x and then terminates by writing a continuation to w.
If this continuation is invoked by a reader requesting the first component of ANB to be put
into u, this is satisfied by copying the contents of y; if the second component is requested we
copy the contents of z. This program is essentially sequential.
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p : (A ⊃ C) N (B ⊃ C) ` q : (A ∨B) ⊃ C

case qW (〈s, z〉 ⇒
case sR (π1(x)⇒ r ← pR.π1(r) ; rR.〈x, z〉

| π2(y)⇒ t← pR.π2(t) ; tR.〈y, z〉 ))

This process writes a continuation to q and terminates. This continuation represents a
function with argument s and destination z. If it is invoked, it distinguishes two cases for
the contents of s. If it is π1(x) for some address x, it obtains the first component of p (call it
r) and invokes that with x, requesting the result to be put into z. If it is π2(y), it takes a
symmetric action with the second component of p. This example has little parallelism: even
though a fresh process is spawned to fill r and t in the two branches of the inner case, they
are immediately read which will block until r and t have been filled, respectively.

C More Details in the Termination Proof

Proof. (Sketch of Theorem 19)
The case of an empty configuration is straightforward, as is the case where the rightmost

object in C provides an address d 6= a. In all remaining cases, we may therefore assume that
C is non-empty, and that its rightmost part (either a cell !cell a W or a process with its
unfilled destination cell at a) provides a. We refer to this component as φa and the remainder
of C as C′.

If the typing derivation for φa ends with an id rule, then φa = (proc a a ← b, cell a _)
for some b : B in ∆. We therefore have (by the inductive hypothesis) that C′ ∈ JΓ ` b : AK.
Let C′′ ∈ JΓK. Now, by definition, (C′′, C′) ∈ Jb : AK, and so (C′′, C′) −→∗ F for some F
final and F ∈ [b : A]. Lemma 18 gives us that F contains !cell b W for some W . We
therefore have that (C′′, C) −→∗ F , !cell a W . Now, split C′ into C1, C2, where C2 contains
exactly the objects which mention or provide b. We may now apply the inductive hypothesis
to C1, !cell a W to get that C1, !cell a W ∈ JΓ ` a : AK. Lemma 16 then allows us to
conclude that C′, !cell a W ∈ JΓ ` a : AK. Thus, C′′, C′, !cell a W −→∗ F ′, !cell a W and
F ′, !cell a W ∈ [a : A]. Confluence (an easy consequence of Theorem 10) gives us that
F = F ′, and Lemma 17 completes this case.

If the typing derivation for φa ends with a cut rule, we may simply apply to the inductive
hypothesis after taking a step.

If the typing derivation for φa ends with ⊃L, NL, 1R, ⊗R, or ∨R, then we simply take
either zero or one steps (depending on exactly which rule it is and what form C has), invoke
the inductive hypothesis up to two times on C′, and then conclude using Lemma 17.

If the typing derivation for φa ends with 1L, ⊗L, or ∨L, we proceed much as in the case
of id. We set up a configuration Ĉ which is our candidate for what C would look like if we
were able to step in φa, and using the inductive hypothesis both on Ĉ and on C′, we are able
to show that given C′′ ∈ JΓK, both (C′′, C) and (C′′, Ĉ) reduce to the same configuration C̃
(taking advantage of confluence and Lemma 18 to do so). As in the identity case, Lemma 17
completes these cases.

If the typing derivation for φa ends with ⊃R or NR, we proceed largely similarly,
constructing a candidate Ĉ for the result of stepping φa in C. The only difference is that
here, we need to augment C with an additional process which reads from the cell a, rather
than working with C on its own. J
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