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Abstract

This thesis is intended to help develop the theory of coalgebras by, first, taking

classic theorems in the theory of universal algebras and dualizing them and, second,

developing an internal logic for categories of coalgebras.

We begin with an introduction to the categorical approach to algebras and the

dual notion of coalgebras. Following this, we discuss (co)algebras for a (co)monad

and develop a theory of regular subcoalgebras which will be used in the internal

logic. We also prove that categories of coalgebras are complete, under reasonably

weak conditions, and simultaneously prove the well-known dual result for categories

of algebras. We close the second chapter with a discussion of bisimulations in which

we introduce a weaker notion of bisimulation than is current in the literature, but

which is well-behaved and reduces to the standard definition under the assumption

of choice.

The third chapter is a detailed look at three theorem’s of G. Birkhoff [Bir35,

Bir44], presenting categorical proofs of the theorems which generalize the classical

results and which can be easily dualized to apply to categories of coalgebras. The

theorems of interest are the variety theorem, the equational completeness theorem and

the subdirect product representation theorem. The duals of each of these theorems

is discussed in detail, and the dual notion of “coequation” is introduced and several

examples given.

In the final chapter, we show that first order logic can be interpreted in categories

of coalgebras and introduce two modal operators to first order logic to allow reasoning

about “endomorphism-invariant” coequations and bisimulations internally. We also

develop a translation of terms and formulas into the internal language of the base

category, which preserves and reflects truth. Lastly, we introduce a Kripke-Joyal style

semantics for L(E � ), as well as a pointwise semantics which reflects the intuition of

coequation forcing at a point or subset of a coalgebra.
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Introduction

The theory of universal algebras has been well-developed in the twentieth cen-

tury. The theory has also proved especially fruitful, with early results (like Birkhoff’s

variety theorem) providing a basis for model theory and other results providing an

abstract understanding of familiar principles of induction, recursion and freeness.

The theory of coalgebras is considerably younger and less well developed. Coalgebras

arise naturally, as Kripke models for modal logic, as automata and objects for object

oriented programming languages in computer science, etc. Hence, one would like a

unified theory of coalgebras to play a role analogous to that of the theory of algebras.

This goal is aided by the duality between algebras and coalgebras. Statements about

categories of algebras yield dual statements about categories of coalgebras. One can

then investigate whether there are reasonable assumptions about the categories of

coalgebras that yield the dual theorems.

Algebras, in their commonest form, can be understood as a set together with some

operations on the set. In other words, algebras are structures for a signature. The

term algebras are examples of free algebras, where freeness is easily expressed in terms

of adjoint functors. Such free algebras (which are initial objects in a related category

of algebras) come with the proof principle of induction, which can be understood in

terms of minimality. That is, the principle of induction is equivalent to the property

that an algebra has no non-trivial subalgebras. The property of definition by recursion

is exactly the property that an algebra is an initial object. Thus, these familiar topics

of universal algebra are well-suited for a categorical setting. We can use the tools

of category theory to investigate freeness, induction and recursion as special cases

of adjointness, minimality and initiality, respectively. In particular, these algebraic

properties can be represented as standard categorical properties applied to categories

of algebras (in which the structure of the category leads to the well-known algebraic

properties).

Coalgebras can also be regarded as a set together with certain operations on it,

but with a key difference. Where an algebra is intended to model combinatorial op-

erations, a coalgebra models a set with various unary operations whose codomain is a

(typically) more complex structure. These operations can be viewed as “destructors”

which take an element of the coalgebra to its constituent parts. Compare this view
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2 INTRODUCTION

with the notion that an algebras operations give a means (not necessarily unique) of

“constructing” an element out of a tuple.

Consider, for instance, a set S of A-labeled binary trees1 which is closed under

the “childOf” relation. That is, if x ∈ S, then both the left and right subtrees of x

(if they exist) are also in S. Then S has a natural coalgebraic structure consisting

of three destructor functions. Given any x ∈ S, we may ask for the label of x. We

may also ask for the left child or right child of x, assuming that there is an “error

state” which can be returned if x has no such child . These three structure maps

define a signature Σ for a category of coalgebras in the same way that a set with

some combinatorial operations define a signature for a category of algebras (i.e., a

similarity type). Any set X, together with three operations,

a :X //A,

l :X //X + 1,

r :X //X + 1,

is a Σ-coalgebra. Equivalently, any set X with a single map

〈a, l, r〉 :X //A× (X + 1) × (X + 1)

is a coalgebra of the same type as our set S of binary trees. Indeed, any such

structured set can be regarded as a set of trees itself.

We can use the theory of algebras in order to develop the theory of coalgebras.

The duality is apparent in the distinguished initial algebra/final coalgebra. The

initial algebra is the initial (i.e., “least”) fixed point of the associated functor, while

the final coalgebra is the final (i.e., “greatest”) fixed point. The initial algebra comes

equipped with principles of recursion and induction, while the final coalgebra satisfies

the principles of corecursion and coinduction, that is, principles which are appropriate

to collections of non-well-founded structures. Intuitively, the elements of the initial

algebra are those which can be constructed from some set of basic elements in a finite

number of steps, while the elements of the final coalgebra are all of those structures of

the appropriate signature, including those for which no finite construction is apparent

(think of the distinction between well-founded binary trees and non-well-founded

binary trees). Of course, the extent to which this intuition is appropriate depends

on the functor (i.e., signature) at hand. But the point of this comparison remains:

To construct a theory of coalgebras, one may take the theory of algebras and dualize

the central theorems. One then interprets the result in order to make sense of it –

the traditional statement of the principle of coinduction, for instance, does not make

apparent its duality with induction. Similarly, the description of a cofree coalgebra

1In this example, we do not require that a tree have both a left and a right child if it has any
children.
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bears little superficial analogy to the corresponding view that free algebras are term

algebras. Instead, some work was required to give a useful description of cofreeness,

apart from the categorical task of “turning the arrows around”.

The categorical task can be non-trivial as well. Classical results in universal

algebra theory were proved in a fairly narrow (from a categorical perspective) setting.

In order to dualize these classical theorems, one must first translate the proof into

categorical terms, in order to see which properties of Set and polynomial functors

are relevant to the theorem. Then, one may dualize these properties – and hope that

the result yields reasonable assumptions for the category of coalgebras! If not, then

a bit more work may be required to ensure that the proof goes through.

This method has special difficulties when the algebraic proof intrinsically involves

elements of algebras. Unfortunately, the dual of “global elements” yields nothing

worthwhile and one must find other means of proving the dual theorem. This prob-

lem can be seen in the proof of Birkhoff’s “co-subdirect product” theorem in Sec-

tion 3.7.1. The proof of this theorem bears no real resemblance to the proof of its

algebraic counterparts. Furthermore, the statement of the theorem required assump-

tions beyond those in the original theorem. These differences reflect the difficulty of

dualizing a theorem whose proof involves reasoning about elements of algebras.

This thesis is largely an extended exercise in the program of dualizing algebraic

results in order to understand categories of coalgebras. The main result in this

direction is the dual of Birkhoff’s variety theorem, which we treat in considerable

detail in Chapter 3. In addition, we consider his deductive completeness theorem and

dualize this theorem, yielding a modal operator on categories of coalgebras which is

the dual of closing sets of equations under deductive consequence, and his subdirect

product theorem.

One may hope, as well, that as the theory of coalgebras matures, developments

in the theory may lead to corresponding results for algebras. This thesis features two

modest steps in that direction. First, the modal operator for bisimulations dualizes

to a closure operator on relations over coproducts of algebras – but it’s unclear what

applications this closure might have. Second, in Section 3.9.3, we consider classes of

algebras defined by equations with no variables (just constants) and show that these

are exactly the varieties closed under codomains of homomorphisms. This theorem

may be well-known (although a search turned up nothing), but illustrates the way in

which a coalgebraic topic (covarieties closed under bisimulation) can, when dualized,

yield natural algebraic results.

Birkhoff’s variety and completeness theorems are fundamental to the theory of

algebras, establishing equational reasoning as the “right” logic for algebras. Hence, it

is natural to suppose that “coequations” will play an important role in understanding

categories of coalgebras. The work in proving the “co-Birkhoff” theorems yields a
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definition of coequation which is easily understood: A coequation over C is a predicate

on the cofree coalgebra over C (where “cofreeness” now requires some explanation,

of course!). Then, to the extent that coequations are central to reasoning about

coalgebras, one can infer that the “right” logic for coalgebras is a predicate (not

“equational”) logic.

This inference helps motivate the final chapter, in which we develop a logic which

can be interpreted in categories of coalgebras (i.e., an “internal” logic). In addition

to the first order core of the logic, we introduce a modal operator arising from the

dual of Birkhoff’s completeness theorem. Furthermore, we make use of a translation

of statements in the logic of the category E � of coalgebras to the base category E .

This translation allows “transition” rules which take as premises statements in L(E)

and form conclusions in L(E � ) (and vice versa). We also give a Kripke-Joyal style

semantics which arises naturally from pointwise satisfaction of equations.

Throughout, we work to develop results which apply to as broad a setting as pos-

sible. While most research in categories of coalgebras take the base category Set as

the starting point (and perhaps even limit discussion to an inductively specified set

of functors), we work to develop results which apply to a wide number of categories

and functors. One topic in which the difference is most apparent is the notion of

bisimulation. Because we do not assume choice, the traditional notion of bisimula-

tion is too restrictive – two elements which are behaviorally indistinguishable need

not be “bisimilar” under that definition. Consequently, we offer a new definition of

bisimulation in Section 2.5. We show that the new definition reduces to the tradi-

tional definition under the axiom of choice. Regardless of the axiom of choice, the

new definition is reasonably well-behaved (although without choice or preservation

of pullbacks, it’s not clear the bisimulations compose), which cannot be said for the

old definition.

In summary, then, this thesis has three primary goals. First, help develop a theory

of coalgebras by dualizing results in algebra theory and, when appropriate, dualizing

new coalgebraic results and interpret them as theorems about algebras. Second,

develop an internal (modal) logic for categories of coalgebras in which coequations

play a central role and in which there is an interplay between derivations in the

base category and derivations in the category of coalgebras. Third, do the above

in as general a setting as practicable, modifying previous definitions, if necessary,

to be suitable for the general setting (always ensuring that they reduce to familiar

definitions in the familiar setting).

Chapter synopsis

Chapter 1: In this chapter, we introduce the categorical definitions of algebra

and coalgebra. We discuss some basic structural features of the category
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of algebras, EΓ, and the category of coalgebras, EΓ. We spend some time

discussing subalgebras, congruences and exactness properties in EΓ as an

exercise in applying categorical reasoning to this generalization of universal

algebras. Finally, we discuss the initial algebra and final coalgebra. Each

of these come equipped with certain proof principles. The initial algebra

satisfies the proof principles of induction and definition by recursion, while

the final coalgebra satisfies the dual principles of coinduction and definition

by corecursion. We highlight the duality when presenting these principles.

Chapter 2: We discuss the relationship between algebras for a monad and free

algebras for an endofunctor and the dual result involving coalgebras for a

comonad and cofree coalgebras. Following this, we introduce subcoalgebras

and discuss a left and a right adjoint to the subcoalgebraic forgetful functor.

We use the right adjoint to prove that, in the presence of cofree coalgebras,

the category EΓ is as complete as E . The presence of products in EΓ leads

to a discussion of relations over coalgebras. In Section 2.5, we introduce a

new definition of bisimulation – one which is appropriate to coalgebras in

categories without the axiom of choice. We close with a discussion of the

relation between coinduction and bisimulations.

Chapter 3: In this section, we primarily discuss Birkhoff’s variety theorem

[Bir35] and its dual. To begin, we discuss a generalization of equation

satisfaction that is more suitable for a categorical analysis – namely, orthog-

onality conditions. This leads to an abstract proof of Birkhoff’s theorem

which applies to a wide range of categories, and in particular applies to cer-

tain categories of algebras. This approach naturally dualizes to provide the

“co-Birkhoff” theorem for covarieties of coalgebras. In addition, we consider

Birkhoff’s deductive completeness theorem, ibid, and show how its dual leads

to a natural modal operator on coalgebraic predicates. In addition, we dis-

cuss the dual of Birkhoff’s subdirect product theorem, extending the work

in [GS98].

Chapter 4: We show that, given some reasonably weak assumptions on E and

Γ, the category EΓ can interpret first order logic. We provide a translation

from the internal language of EΓ to the internal language of E which preserves

entailment. This translation explicitly involves augmenting the language E

with the modal operator � from Chapter 2. We close with a brief discussion

of Kripke-Joyal semantics and pointwise semantics which are suggested from

the coequation-as-predicate viewpoint.





CHAPTER 1

Algebras and coalgebras

In this chapter, we present some preliminary definitions and results for categories

of algebras and coalgebras. We begin by developing the theories side by side, using

the natural dualities to derive results for coalgebras by dualizing results for algebras.

In Section 1.2, we discuss limits and colimits in categories EΓ and EΓ, focusing on

those (co-)limits which are created by the respective forgetful functor. We also discuss

factorizations in EΓ and EΓ which are inherited from the base category. In Section 1.3,

we discuss subalgebras, postponing the dual notion until Chapter 2. Similarly, in

Section 1.4, we present the standard (categorical) development of algebraic relations

(i.e., pre-congruences), while postponing the introduction of coalgebraic relations

and bisimulations until the following chapter, when we have already constructed

products. We conclude with a discussion of initial algebras and final coalgebras

and the characteristic properties (induction/recursion and coinduction/corecursion,

respectively).

1.1. Algebras and coalgebras for an endofunctor

We start with the definitions of Γ-algebras and Γ-coalgebras for endofunctor Γ.

Note that this is not the same definition as (co)algebras for a (co)monad, which we

discuss in Chapter 1.1. Essentially, a category of (co)algebras for an endofunctor is

equivalent to a category of (co)algebras for a (co)monad just in case there are (co)free

(co)algebras for each object in the base category.

1.1.1. Definitions. We briefly state the definitions of Γ-algebra, Γ algebra-

homomorphism and EΓ and then dualize. The aim is that the reader, who is likely

familiar with universal algebras in some form, should find the definition of coalgebra

familiar and natural as the dual of an algebra. In Section 1.1.3, we will give some

examples of coalgebras to show that coalgebras arise naturally.

Definition 1.1.1. Let E be any category. Given an endofunctor Γ:E //E , a Γ-

algebra consists of a pair 〈A, α〉, where A is an object of E and α :ΓA //A an arrow

in E . We call A the carrier and α the structure map of the algebra

Given two Γ-algebras, 〈A, α〉 and 〈B, β〉, a Γ-algebra homomorphism,

f :〈A, α〉 //〈B, β〉,

7



8 1. ALGEBRAS AND COALGEBRAS

is a map f :A //B in E such that the following diagram commutes.

ΓA

α

��

Γf // ΓB

β

��
A

f
// B

The Γ-algebras and their homomorphisms form a category, denoted EΓ.

The concept of Γ-coalgebras is formally dual to the definition of Γ-algebra above.

Specifically, the category EΓ of coalgebras arises formally as the category ((E op)Γop

)op.

Of course, interest in coalgebras comes from the fact the these structure arise inde-

pendently as well, from computer science semantics, Kripke frames and models, and

other sources.

Definition 1.1.2. A Γ-coalgebra is a 〈A, α〉, where α :A //ΓA . Again, A is the

carrier and α the structure map of the coalgebra. A Γ-coalgebra homomorphism is

again a commutative square:

ΓA
Γf // ΓB

A

α

OO

f
// B

β

OO

The Γ-coalgebras and their homomorphisms again form a category, denoted EΓ.

Note: We often refer to Γ-algebra homomorphisms as Γ-homomorphisms or just

homomorphisms. We do the same for coalgebra homomorphisms. The kind of homo-

morphism we mean should be clear from the context.

For each of these categories, there is an evident forgetful functor, U , taking a

(co)algebra 〈A, α〉 to A. Properly, we should write

UΓ :EΓ //E ,

UΓ :EΓ
//E ,

to indicate that these are different functors, depending on whether we are interested

in algebras or coalgebras and also depending on the functor Γ. Of course, we will

avoid such complications and the meaning of U should be clear from context.

In Section 1.2, we will give some of the features of the categories EΓ and EΓ.

In particular, the forgetful functor creates limits (colimits, resp.) in categories of

algebras (coalgebras, resp.). Before exploring these features, we give some examples

of categories of algebras and coalgebras.
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Remark 1.1.3. The notation for a Γ-algebra is the same as that for a Γ-coalgebra.

Namely, each is a pair 〈A, α〉, where

α :ΓA //A

in the algebraic case, and

α :A //ΓA

in the coalgebraic case. Most often, whether we mean 〈A, α〉 to be an algebra or a

coalgebra will be clear from context. However, we sometimes use this ambiguity of

notation to our advantage. For example, in Section 1.3, we note that a subobject in

EΓ is a monic algebra homomorphism

〈B, β〉 // //〈A, α〉 .

Also, a subobject in EΓ is a monic coalgebra homomorphism

〈B, β〉 // //〈A, α〉 .

Since the notation for each is the same, we can draw the diagram just once and say

A subobject of a Γ-(co)algebra is a monic homomorphism

〈B, β〉 // //〈A, α〉 .

1.1.2. Some examples of algebras. In this section, we begin with some ex-

amples of algebras for various functors. We will, in each case, make clear what the

homomorphisms in EΓ are.

Example 1.1.4. Consider the functor Γ:Set //Set given by

ΓA = 1 + A× A.

An algebra for this functor consists of a set A together with a structure map

α :A× A+ 1 //A.

Such a map α is equivalent to a pair of maps

·α :A× A //A, and

a :1 //A

In other words, a Γ-algebra is a triple 〈A, ·α, a〉, where ·α is a binary operation on A

and a is a distinguished element of A. This is also called a Σ-model or Σ-structure

for the signature

Σ = {·(2), e(0)}.

See Example 1.1.5 for details.
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Given another Γ-algebra, 〈B, ·β, b〉, a Γ-homomorphism 〈A, ·α, a〉 //〈B, ·β, b〉

is a map f :A //B such that the following diagram commutes:

A× A + 1
f×f+id1//

〈·α, a〉

��

B × B + 1

〈·β , b〉

��
A

f
// B

This entails that

f(s·αt) = f(s)·βf(t), and

f(a) = b.

In other words, a homomorphism is a map that respects the binary operation and

constant. The next example generalizes this result to arbitrary universal algebras.

Example 1.1.5. Much of this dissertation is devoted to taking well-known results

in universal algebra, translating them to a categorical setting and dualizing. This

approach relies on the fact that the categorical notion of algebra for an endofunctor

is a proper generalization of the notion of universal algebra. In particular, given

any signature Σ, there is a polynomial functor P such that the category Set
�

is

the category of universal Σ-algebras. This result is well-known, but it is useful to

work through the details here, in order to gain some familiarity with the categorical

notions.

These definitions can be found in [MT92], [Grä68] and elsewhere.

A signature Σ is a set of function symbols together with associated (finite) arities.

We write f (n) to indicate that f is a function symbol of arity n. If the arity of a

function symbol c is 0, then we call c(0) a constant symbol.

A Σ-algebra is a pair

S = 〈S, {f
(n)
S :Sn //S |f (n) ∈ Σ}〉,

where S is a set (called the carrier of the algebra). Notice that the interpretation of

a constant symbol is an element of S.

Given two Σ algebras S and T , we say that a set function φ :S //T is a Σ-

homomorphism if, for every function symbol f (n) in Σ, and every s1, . . . , sn ∈ S,

f
(n)
T (φ(s1), . . . , φ(sn)) = φ(f

(n)
S (s1, . . . , sn)).

In particular, this means that for every constant symbol c(0), φ(c
(0)
S ) = c

(0)
T .

Given a signature Σ, consider the polynomial functor P :Set //Set given by

PS =
∐

f(n)∈Σ

Sn.
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Of course, if Σ is infinite, then this functor involves an infinite coproduct, so perhaps

the term “polynomial functor” is misleading here. It is easy to show that the category

of Σ-algebras, Alg(Σ), is isomorphic to the category of P-algebras, Set
�
. For each

Σ-algebra S and each f (n) ∈ Σ, we have the interpretation of f (n) in S,

f
(n)
S :Sn //S .

Hence, there is a unique P-algebra structure map σ :PS //S making the diagram

below commute.

Sn // //

f
(n)
S %%JJJJJJJJJJJJ

∐
f(n)∈Σ S

n

σ

��
S

Conversely, any 〈S, σ〉 in Set
�

corresponds to a Σ-algebra with f
(n)
S given by

Sn // //
∐

f(n)∈Σ S
n α //S.

It’s easy to see that Σ-homomorphisms are P-homomorphisms, and vice-versa, so

that this correspondence is an isomorphism of categories

Alg(Σ) ∼= Set
�
.

Besides providing motivation for the approach of this dissertation, this example

should convince the reader that algebras for an endofunctor are familiar territory.

Sets and operations on sets are familiar enough, and these structures gave rise to the

notion of universal algebras. The categorical notion of algebras for an endofunctor is

simply a generalization of universal algebras, as we’ve seen here.

Example 1.1.6. Let Z be a set and consider the Set functor

ΓA = Z × A+ 1.

An algebra for this functor consists of a pair 〈A, α〉 where α :Z × A+ 1 //A . We

decompose α into two maps,

∗α :Z × A //A , and

()α :1 //A.

A homomorphism from the Γ-algebra 〈A, α〉 to 〈B, β〉 is a set function

f :A //B

such that, for all z ∈ Z and a ∈ A,

f(z ∗α a) = z ∗β f(a),

f(()α) = ()β.
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We will see in Example 1.5.6 that the initial algebra for this functor is the collec-

tion of all finite streams over Z, which we denote Z<ω. We can see now that Z<ω is

a Γ-algebra, with the structure map given by

push :Z × Z<ω //Z<ω , and

() :1 //Z<ω ,

where push returns the result of pushing a new letter onto a stream and () returns

the empty stream. More specifically,

push(x, σ :n //Z ) = λk .

{
x if k = 0

σ(k − 1) else

and () is the unique map 0 //Z .

1.1.3. Some examples of coalgebras. The dual category of coalgebras for

an endofunctor may seem less familiar. In this section, we will give a few common

examples of SetΓ for a variety of endofunctors on Set. In many these examples, the

reader should notice that the structure map α :A //ΓA acts as a destructor. It takes

an element of the coalgebra and decomposes the element into its constituent parts.

This is a common feature of coalgebras and this point of view is dual to the point of

view that algebras are objects together with combinatory principles. However, the

examples of Kripke models (Example 1.1.10) and topological spaces (Example 1.1.12)

show that one can take talk of destructors too seriously.

Example 1.1.7. Consider the set functor

ΓA = Z × A

for a fixed set Z. A coalgebra for this functor consists of a set A and a structure map

α :A //Z × A.

Equivalently, a coalgebra is given by a set A and two maps

hα :A //Z , and

tα :A //A.

Given any such coalgebra, each a ∈ A gives rise to an infinite stream over Z, namely

the stream

hα(a), hα ◦ tα(a), hα ◦ t
2
α(a), . . .

So, for any Γ-coalgebra 〈A, α〉, we can define a mapping ! from A to the collection

of streams over Z, Zω, by defining

!(a) = λn . hα ◦ t
n
α(a).
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It is worth noting, however, that this map is not necessarily one-to-one. Distinct

elements of A may give rise to the same stream. For instance, consider the coalgebra

〈A, α〉 where

A = {a, b, c}

and

α(a) = 〈17, c〉,

α(b) = 〈17, c〉,

α(c) = 〈17, c〉.

Then, one can see from the above definition of !, that

!(a) =!(b) =!(c).

Indeed, each of the elements of A maps to the constant 17 map.

We will see in Example 1.5.19 that the function ! is defined by corecursion on the

collection of streams Zω.

A homomorphism between two Γ-coalgebras, 〈A, 〈hα, tα〉〉 and 〈B, 〈hβ, tβ〉〉 is a

map f :A //B satisfying

hα(a) = hβ(f(a)),

f(tα(a)) = tβ(f(a)).

The map ! is an example of such a homomorphism.

Example 1.1.8. Consider again the functor

ΓA = Z × A + 1

from Example 1.1.6. A coalgebra for this functor consists of a set A together with a

map

α :A //Z × A+ 1 .

So, each element a of such a coalgebra 〈A, α〉 either maps to ∗, the unique element

of 1, or to an ordered pair 〈z, a′〉, where z ∈ Z and a′ ∈ A. We can again interpret

the coalgebras as collections of streams over Z if we allow each stream to be finite or

infinite (above, we mapped coalgebras to collections of infinite streams). If α(a) = ∗,

then we take a to represent the empty stream. Otherwise, α(a) = 〈z, a′〉 for some z

and a′. Let σ′ be the stream represented by a′. We say that a represents the stream

push(z, a′), where push is the stream with head z and tail a′. In this way, we define

a mapping

! :A //Z≤ω
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satisfying

!(a) =

{
() if α(a) = ∗

push(z, !(a′)) else

This map is again defined corecursively and is described in detail in Example 1.5.21.

We mention it here to give the reader an intuition for the Γ-coalgebras. A Γ-coalgebra

is a collection of finite and infinite streams over Z.

A homomorphism between two Γ-coalgebras must satisfy the same equations as

in Example 1.1.7, if α(a) ∈ Z × A, and, if α(a) = ∗, then β(f(a)) = ∗.

Example 1.1.9. Let P be a polynomial functor on Set, which we’ll write as

P(A) =
∐

i<ω

Zi × Ai.

A P coalgebra consists of a set A, together with a structure map α :A //P(A). Given

such a coalgebra 〈A, α〉, for each a ∈ A, define br(a) to be the unique i such that

α(a) ∈ Zi × Ai.

We call the elements of πAi ◦ α(a) the children of a. We denote the jth child,

πj ◦ πAi ◦ α(a),

by childj(a). We call πZi
◦α(a) the label of a, denoted label(a). In this way, we think

of a Γ-coalgebra as a collection of labeled trees. Each element a ∈ A is the root of

a tree, where the immediate subtrees have the children of a as roots. The number

of children is given by br(a), and the set of valid labels of a is given by Zbr(a). Take

this description of coalgebras as trees as purely motivational for now — there will be

more discussion on this in Example 1.5.22.

Examples 1.1.7 and 1.1.8 give a detailed account of two polynomial functors. In

the former example, each node of the “tree” is labeled with an element of Z and has

exactly one child. In the latter, each node has either 0 or 1 child. If it has 0 children,

it is unlabeled (or, if you prefer, labeled with ∗). If it has 1 child, it is labeled with

an element of Z, as before.

Example 1.1.10. Given a set of atomic propositions AtProp, we can define an

infinitary modal language L(AtProp) to be the least class containing AtProp and

closed under the rules

• > ∈ L(AtProp).

• If φ ∈ L(AtProp), then so is ¬φ and ♦φ.

• If S ⊂ L(AtProp), then
∧
S ∈ L(AtProp).

A Kripke model for the language L(AtProp) is given by a pair A = 〈A, α〉, where

A is a set and

α :A //P(A) × P(AtProp).
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The idea is that the first component of α(s) is the set of worlds accessible to s and

the second component is the set of atomic propositions that hold in s. Accordingly,

one defines a satisfaction relation |= � by the following:

• a |= � >.

• a |= � φ for φ ∈ AtProp iff φ ∈ π2 ◦ α(a).

• a |= � ¬φ iff a 6|= � φ.

• a |= � ♦φ iff there is some b ∈ π1 ◦ α(a) such that b |= � φ.

• a |= � ∧
S iff a |= � φ for each φ ∈ S.

So, we see that Kripke models can be viewed as coalgebras for a particular functor in

a straightforward manner, and that the resulting satisfaction relation comes directly

from the coalgebraic structure map.

This example is covered in detail in [BM96, Chapter 11]. In the case that

AtProp is empty, so the functor is just A 7→ P(A), the coalgebras are called Kripke

structures or Kripke frames. These are discussed in detail in [Jac00, Che80, HC68].

Example 1.1.11. Fix a set of “inputs”, I and let Γ:Set //Set be defined by

ΓS = (PfinS)I,

where Pfin is the covariant finite powerset functor. A Γ-coalgebra 〈S, σ〉 can be

regarded as a non-deterministic automaton over I, where the structure map gives

the transition function. Explicitly, for each state s ∈ S and each input i ∈ I, we

write

s
i //s′

just in case s′ ∈ σ(s)(i).

Example 1.1.12. We take this example from [Gum01b].

Let A be a set. A filter on PA is a collection U ⊆ PA if U is closed under finite

intersections and supersets. In other words, U is a filter on PA just in case

• If S, T ∈ U , then S ∩ T ∈ U , and

• If S ∈ U and S ⊆ T , then T ∈ U .

We define a functor F :Set //Set taking each set A to the collection of filters on A.

If f :A //B is a map in Set, then for each S ∈ PA, Ff(S) is the filter generated by

Pf(S). See [Gum01b] for details on the functor F .

Each topological space 〈A, OA〉 gives rise to an F -coalgebra, as follows. We define

the structure map α :A //FA on elements a ∈ A by

α(a) = {S ⊆ A | ∃U ∈ OA . a ∈ U ⊆ S}.
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In other words, α(a) is the neighborhood filter 1 of a. It is easy to see that, if 〈A, α〉

and 〈B, β〉 are F -coalgebras arising from topological spaces 〈A, OA〉 and 〈B, OB〉,

respectively, then a map f :A //B is a coalgebra homomorphism just in case f is an

open, continuous map. Thus, we have an inclusion

Topopen //SetF ,

where Topopen is the category of topological spaces and open, continuous maps.

Example 1.1.13. Consider the functor ΓA = Z ×A on the category Top, where

Z is a fixed T1 space (so points are topologically distinguishable). A Γ-coalgebra

consists of a pair 〈A, α〉 where A is a topological space and α :A //ΓA is continuous.

We will consider some carrier spaces for Γ-coalgebras and describe the Γ-structure

map that can be imposed on the space.

Let I be the unit interval [0, 1]. Then a Γ-coalgebra with carrier I is just a path

in the space Z × I.

Let 2 denote the Sierpinski space and let σ :2 //R × 2 be continuous. Let π1 ◦

σ(0) = z0 and π2 ◦ σ(0) = z1. For every open U containing z0, π
−1
1 (U × 2) is open

and so z1 ∈ U . Hence, z0 = z1. So, a Γ-coalgebra with carrier 2 is specified by an

element of Z and a map 2 //2.

1.2. Structural features of EΓ and EΓ

The categories EΓ and EΓ inherit much of the structure from the underlying cat-

egory E . In particular, EΓ has whatever limits E has, and EΓ has whatever colimits

E has. If the functor Γ preserves colimits, then these are available in EΓ, and the

dual result holds for EΓ. All of this is well-known and can be found in, for instance,

[Bor94, Volume 2, Chapter 4], where these results are presented for algebras for a

monad. The same proofs imply the following results for algebras for an endofunctor2.

We present the main theorems here, without proof.

1.2.1. Creating (co)limits in categories of (co)algebras. The following def-

initions can be found in most standard category theory texts, including [Lan71].

Definition 1.2.1. Let G :C //C ′ be a functor. We say that G preserves D-limits

if, for every diagram J :D //C , whenever

τ :A +3J

is a limiting cone, then

Gτ :GA +3G ◦ J
1A neighborhood of a is any set S ⊆ A containing an open set which contains a. We do not

require that S itself is open.
2The key step is showing the existence of a structure map for the (co)limit. This step is

essentially the same for both algebras for an endofunctor and algebras for a monad.
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is a limiting cone for G ◦ J .

We say that G reflects D-limits if, for every J :D //C , whenever

Gτ :GA +3G ◦ J

is a limiting cone for G ◦ J , then

τ :A +3J

is a limiting cone for J .

Similarly, we define the statements G preserves/reflects D-colimits.

If a functor preserves/reflects all (co)limits (regardless of the diagram category),

we say the functor preserves/reflects (co)limits.

Definition 1.2.2. We say that G :C //C ′ creates D-limits if, whenever

J :D //C

and

τ ′ :A′ +3G ◦ J

is a limiting cone in C ′, then there is a unique limiting cone

τ :A +3J

in C such that GA = A′ and Gτ = τ ′.

Similarly, we define the statements G creates D-colimits and G creates (co)limits.

So, if a functor G :C //C ′ creates D-limits, then C has “as many” D-limits as C ′

does. It is easy to see that if G creates D-limits, then G reflects D-limits. Also,

if G creates D-limits and C ′ has all D-limits (is D-complete), then G also preserves

D-limits and C is D-complete.

Definition 1.2.3. Additionally, we say that G preserves regular epis if, whenever

p is a regular epi, then G(p) is a regular epi.

Similarly, we define G reflects regular epis.

More generally, we define G preserves/reflects maps of type Θ, where Θ is some

class of arrows (say, regular monos, isomorphisms, etc.)

It is worth noting that preservation of regular epis is weaker than preservation of

coequalizers. If G preserves coequalizers, then any coequalizer diagram

B
f //
g

// A
q � ,2 Q

is taken to a coequalizer diagram

GB
Gf //
Gg

// GA
Gq � ,2 GQ .
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If G preserves regular epis, however, we can only conclude that Gq is a coequalizer

for some pair of maps. We cannot conclude that Gq is the coequalizer of Gf and Gg.

Theorem 1.2.4. Let E and Γ:E //E be given. The algebraic forgetful functor

U :EΓ //E

creates limits. Dually, the coalgebraic forgetful functor

U :EΓ
//E

creates colimits.

We interpret this theorem as saying that EΓ has whatever limits E has, and that,

furthermore, these limits are computed in E . We apply this result in Section 1.5, for

instance, to conclude that the initial coalgebra (final algebra, resp.) are trivial if E

has an initial object (final object, resp.).

Example 1.2.5. Let E have all κ-indexed products and let {〈Ai, αi〉}i∈κ be an

κ-indexed collection of Γ-algebras. Then the product
∏

i∈κ

〈Ai, αi〉

is defined in EΓ and is given by

〈
∏

i∈κ

Ai, 〈αi〉i∈κ〉,

where

〈αi〉i∈κ :Γ
∏

i∈κAi
//
∏

i∈κAi

is the unique map such that, for all i ∈ κ,

πi ◦ 〈αi〉i∈κ = αi.

This is a generalization of the statement that products of universal algebras are

the products of the underlying sets, with operations determined pointwise.

Example 1.2.6. Dually, let E have all κ-indexed coproducts and let {〈Ai, αi〉}i∈κ
be an κ-indexed family of Γ-coalgebras. We have a family of maps

Ai
αi //ΓAi

Γκi //Γ
∐

i∈κAi ,

inducing a structure map
∐

i∈κAi
//Γ

∐
i∈κAi .

It is easy to confirm that this coalgebra is a coproduct in EΓ.
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1.2.2. Colimits in EΓ, limits in EΓ. Again, this theorem can be found in

[Bor94, Volume 2, Chapter 4], where the result is proved for categories of algebras

for a monad.

Theorem 1.2.7. Let D be a category and Γ:E //E . If Γ preserves D-colimits

then the forgetful functor U :EΓ //E creates such colimits. Similarly, the coalgebraic

forgetful functor U :EΓ
//E creates any limits preserved by Γ.

So, for instance, if Γ preserves coequalizers, then EΓ has all coequalizers and these

are created by U . Unfortunately, the preservation of coequalizers seems a strong

condition. However, we will get considerable mileage out of a weaker condition:

preservation of regular epis.

In the coalgebraic setting, one often wants that the forgetful functor preserves

pullbacks along regular monos. Other authors have ensured that this condition holds

by assuming that Γ preserves weak pullbacks, We take the shorter path to the goal

and assume that Γ preserves the appropriate pullbacks, since other weak pullbacks do

not play a central role in this thesis. Applying Theorem 1.2.7, we have the following

useful corollary.

Corollary 1.2.8. If Γ preserves pullbacks along (regular) monos, then U creates

pullbacks along (regular) monos.

1.2.3. Factorizations of (co)algebras. In this section, we show how a category

of (co)algebras can inherit a factorization system from its base category (see Appendix

for a brief discussion of factorization systems). Explicitly, if E has regular epi-mono

factorizations and kernel pairs and if Γ preserves regular epis, then the category of

algebras EΓ also has regular epi-mono factorizations, created by U . Furthermore,

the forgetful functor preserves and reflects regular epis, monos and exact coequalizer

sequences. Since every functor Γ:Set //Set preserves regular epis, this implies in

particular that SetΓ has regular epi-mono factorizations.

Dually,we learn that if E has epi-regular mono factorizations and cokernel pairs,

and Γ preserves regular monos, then EΓ has epi-regular mono factorizations, created

by U .

The following lemma and its dual are useful in verifying that certain maps in E

are homomorphisms.

Lemma 1.2.9. Suppose that p :〈A, α〉 //〈B, β〉 be a Γ-algebra homomorphism and

let f :B //C be given, where C = U〈C, γ〉. Suppose further that Γp is epi. If f ◦ p is

a homomorphism, then so is f .

In particular, if Γ preserves epis (takes regular epis to epis, resp.) and p is an epi

(regular epi, resp.) in E , then f is a homomorphism whenever f ◦ p is.
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Proof. Consider Figure 1. A simple diagram chase confirms that

γ ◦ Γf ◦ Γp = f ◦ β ◦ Γp.

Since Γp is an epi, f is a homomorphism. �

ΓA

α

��

Γp // // ΓB

β

��

Γf // ΓC

γ

��
A p

// B
f

// C

Figure 1. If f ◦ p is a homomorphism, then so is f .

Corollary 1.2.10. Let i :〈B, β〉 //〈C, γ〉 be a coalgebra homomorphism, and let

f :A //B be a map in E , where A = U〈A, α〉. If Γi is monic and i ◦ f a coalgebra

homomorphism, then f is a coalgebra homomorphism.

In particular, if Γ preserves monos (takes regular monos to monos, resp.) and i

is mono (regular mono, resp.) in E , then f is a homomorphism whenever i ◦ f is.

Proof. By duality. �

If Γ preserves epis, then U :EΓ //E reflects strong epis, as can easily be verified.

Lemma 1.2.11 gives the analogous claim for regular epis, which we will use to prove

that EΓ has regular epi-mono factorizations given certain conditions on E and Γ (see

Theorem 1.2.13).

Throughout, we will prefer regular epi-mono factorization systems over strong

epi-mono factorization systems, but this is largely a matter of choice. As one can see

in explicitly in [Kur00, Kur99], the basic theorems go through just as easily with

strong epis in the place of regular epis. We stick with the regular epis because of the

connection between coequalizers and sets of equations in Chapter 3. For the sake of

duality, we also stress regular monos in the coalgebraic cases.

Lemma 1.2.11. Let E have kernel pairs and Γ:E //E take regular epis to epis.

Then

U :EΓ //E

reflects regular epis.

Proof. Let p :〈A, α〉 //〈B, β〉 be a map in EΓ and suppose that p is a regular

epi in E . Let

〈K, κ〉
k1 //
k2

//〈A, α〉
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be the kernel pair of p and suppose f :〈A, α〉 //〈C, γ〉 coequalizes the kernel pair (see

Figure 2). Since U preserves kernel pairs, p is the coequalizer of k1 and k2 in E . Hence,

ΓB

��

Γg

��
ΓK

Γk1 //
Γk2

//

κ

��

ΓA

Γp 77 77

//

α

��

ΓC

γ

��

B
g

��
K

k1 //
k2

// A

p
- 3:

f
// C

Figure 2. U reflects regular epis.

there is a unique map g :B //C in E such that g ◦ p = f . Apply Lemma 1.2.9. �

The next theorem (about factorizations in EΓ) proves especially useful, as we will

see. Thus, it is worthwhile to attach a name to the conditions that we assume on

E . That these conditions are part of the definition of regular category suggests the

following definition.

Definition 1.2.12. A category C is almost regular if C has kernel pairs and

regular epi-mono factorizations (we don’t require that kernel pairs have coequalizers

or that regular epis are stable under pullbacks).

Dually, a category with cokernel pairs and epi-regular mono factorizations is al-

most co-regular.

Theorem 1.2.13. Let E have be almost regular and let Γ:E //E preserve regu-

lar epis. Then EΓ has regular epi-mono factorizations, preserved and reflected by

U :EΓ //E .

Proof. Let f :〈A, α〉 //〈B, β〉 and take the regular epi-mono factorization, f =

i◦p, in E (as in Figure 3). Because Γp is regular and hence strong, there is a structure

map γ, as shown making both i and p homomorphisms. Since the forgetful functor

reflects regular epis and monos, we see that i ◦ p is a regular epi-mono factorization

in EΓ, obviously preserved by U .

Since regular epi-mono factorizations are unique up to isomorphism, this is suffi-

cient to conclude that U preserves all regular epi-mono factorizations. �

The following definition is found in [Bor94, Volume 2, Chapter 2], where exact

sequences in regular categories are described in detail.
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ΓA
Γp � ,2

α

��

ΓC
Γi //

γ

��

ΓB

β

��
A p

� ,2 C //
i

// B

Figure 3. Regular epi-mono factorization in EΓ.

Definition 1.2.14. A diagram of the form

K
e1 //
e2

//A
q //Q

is an exact sequence if q is the coequalizer of e1 and e2, and e1, e2 is the kernel pair

of q.

We also call a diagram of the form

E
i //A

c1 //
c2

//D

an exact sequence if i is the equalizer of c1 and c2 and c1, c2 the cokernel pair of i.

Corollary 1.2.15. Let E be almost regular and let Γ:E //E preserve regular

epis. Then U :EΓ //E preserves and reflects regular epis, monos and exact sequences.

Proof. By Theorem 1.2.13 and uniqueness of regular epi-mono factorizations,

U preserves regular epis and monos.

Because U preserves and reflects kernel pairs and regular epis, and regular epis

are coequalizers of their kernel pairs, U preserves and reflects exact sequences. �

Remark 1.2.16. It is important to note that all of these theorems dualize for

categories of coalgebras in an obvious way. Explicitly, if E is almost co-regular and

Γ preserves regular monos, then EΓ inherits epi-regular mono factorizations from E .

1.3. Subalgebras

We have a notion of subobject for any category: namely, a subobject of A is an

equivalence class of monics with codomain A (see Appendix). This definition applies

to the categories EΓ and EΓ to yield:

A subobject of a Γ-(co)algebra 〈A, α〉 is an equivalence class of

monic homomorphisms

〈B, β〉 // //〈A, α〉 .
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In categories of algebras, we are most interested in those subobjects of 〈A, α〉 which

are preserved by U . These can be understood as subobjects of A which are closed

under the algebraic operations.

We postpone the discussion of subcoalgebras until Section 2.2. There, we take the

position that subcoalgebras are best understood as the dual of quotients of algebras.

Consequently, we are interested in regular subobjects of a coalgebra.

Definition 1.3.1. Let 〈A, α〉 be a Γ-algebra. A subalgebra of 〈A, α〉 is a subob-

ject

i :〈B, β〉 // //〈A, α〉

such that Ui :B //A is a subobject of A (Ui is a mono in E).

For each Γ-algebra, there are three related posets. First, there is the poset

SubEΓ(〈A, α〉). This consists of equivalence classes of monos

〈B, β〉 // i //〈A, α〉

in EΓ. We also have the poset SubE(A) of subobjects of the carrier of 〈A, α〉. Lastly,

we have the poset SubAlg(〈A, α〉) of subalgebras of 〈A, α〉. This poset has, as objects,

equivalence classes of monos

〈B, β〉 // i //〈A, α〉

such that Ui is mono in E . Evidently,

SubAlg(〈A, α〉) ⊆ SubEΓ(〈A, α〉).

In the categories in which we are most interested, this inclusion is an isomorphism.

Theorem 1.3.2. If E is almost regular and Γ preserves regular epis, then

SubAlg(〈A, α〉) ∼= SubEΓ(〈A, α〉).

Proof. If Γ preserves regular epis, then U preserves monos (Corollary 1.2.15).

�

We note that any Set functor Γ preserves regular epis and so

SubAlg(〈A, α〉) ∼= SubEΓ(〈A, α〉).

We turn our attention to the relationship between SubAlg(〈A, α〉) and SubE(A)

(hereafter, denoted Sub(A)). In order to determine the structure of the category

SubAlg(〈A, α〉), we look at the structure of Sub(A). We will show that SubAlg(〈A, α〉)

inherits much of the structure of Sub(A). In order to make this clear, we define a

functor

Uα :SubAlg(〈A, α〉) // Sub(A).

This functor takes a subalgebra 〈B, β〉 to its carrier B as a subobject of A.
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Remark 1.3.3. The functor Uα is a component of a natural transformation be-

tween contravariant functors

U :SubAlg +3 Sub,

but we will not make use of this fact.

Theorem 1.3.4. The functor Uα is an injection. In particular, for any B
i //A =

U〈A, α〉, there is at most one structure map β :ΓB //B making i a homomorphism.

Proof. Let 〈B, β〉 and 〈C, γ〉 be subalgebras of 〈A, α〉 and suppose

Uα(〈B, β〉) = Uα(〈C, γ〉).

Then B and C are equal as subobjects of A. Without loss of generality, assume B = C

and let the inclusion be given by i :B //A . By assumption, i is a homomorphism, so

i ◦ β = α ◦ Γi = i ◦ γ,

so β = γ. �

Theorem 1.3.5. Uα creates meets. Thus, if Sub(A) is a complete lattice, then so

is the category SubAlg(〈A, α〉).

Proof. This follows from the fact that U :EΓ //E creates limits (Theorem 1.2.4).

�

1.3.1. Subalgebras generated by a subset. Let 〈A, α〉 be a Γ-algebra and P

a subobject of A (in E). In this section, we discuss the least subalgebra containing

P , which we denote 〈P 〉α or just 〈P 〉. As we will see, this subalgebra exists under

fairly weak assumptions. We give two constructions of 〈P 〉. The first construction

(Theorem 1.3.6) requires that SubE(A) is a complete lattice. The second construction

requires that E is almost regular and Γ preserves regular epis. Further, we assume

that the algebraic forgetful functor U :EΓ //E is monadic (equivalently, U has a left

adjoint). See Section 2.1.2 for a discussion of the left adjoint of U .

We understand the functor 〈−〉α in terms of adjointness. Specifically, if each

subobject P of A is contained in a least subalgebra 〈P 〉α of 〈A, α〉, then we have

an adjoint pair 〈−〉α a Uα (dropping the subscript when convenient). We call the

subalgebra 〈P 〉α the subalgebra generated by P .

Theorem 1.3.6. Let 〈A, α〉 be a Γ-algebra and suppose that Sub(A) is a complete

lattice (say, if E is complete and well-powered). Then the functor

Uα :SubAlg(〈A, α〉) // Sub(A)

has a left adjoint

〈−〉α :Sub(A) // SubAlg(〈A, α〉).
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Proof. We will explicitly construct 〈−〉. Let i :P // //A be a subobject of A. We

take the intersection of all the subalgebras containing P ,

〈P 〉 =
∧

P⊆Q

〈Q, ρ〉.

�

The following theorem is an alternate construction of 〈P 〉 that applies in the

categories in which we are most interested. We also include it because the resulting

construction is very natural: 〈P 〉 arises as the factorization of

FP //〈A, α〉,

where F a U . See Section 2.1 for a discussion of such adjoint functors.

Theorem 1.3.7. Suppose E is almost regular, Γ preserves regular epis and that

U has a left adjoint F (i.e., Γ is a varietor, in the sense of [AP01]. Let 〈A, α〉 be a

Γ-algebra and P be a subobject of A. Then we have an adjoint pair

Sub(A)

〈−〉α ..
⊥ SubAlg(〈A, α〉)
Uα

mm .

Proof. Let ε be the counit of the adjunction F a U . Let i :P // //A be the

inclusion of P into A and take the regular epi-mono factorization j ◦ p of εα ◦ Fi,

shown in Figure 4.

FQ

��

Fk

��
FP

F l
66

//

p

_��

FA

εα

��

〈Q, ν〉
'' k

��
〈P 〉

88

//
j

// 〈A, α〉

Figure 4. The construction of 〈P 〉 as a regular epi-mono factorization.

We first show that P ≤ U〈P 〉. It suffices to show that j ◦p◦ηP = i (see Figure 5).

One calculates

j ◦ p ◦ ηP = Uεα ◦ UFi ◦ ηP

= Uεα ◦ ηA ◦ i = i.
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The inequality P ≤ U〈P 〉 is the unit of the adjunction, of course.

UFP
p

 !*MMM
MM

P

ηP
;;xxxxx

##

i ##F
FF

FF
Uα〈P 〉α
xx
jxxqqq

qqq

A

Figure 5. P is contained in U〈P 〉.

Let k :〈Q, ν〉 // //〈A, α〉 be a subalgebra of 〈A, α〉 and P ≤ Q (with inclusion l).

We wish to show that 〈P 〉 ≤ 〈Q, ν〉. We have

k ◦ εν ◦ F l = εα ◦ Fk ◦ F l

= εα ◦ Fj = j ◦ p,

and so, since p is strong, we have the factorization desired. �

As we will see, in the dual category EΓ, given a coalgebra 〈A, α〉 and a subobject

P ≤ A, the natural construction yields the greatest subcoalgebra contained in P . In

other words, we have a right adjoint to the analogous forgetful functor

Uα :SubCoalg(〈A, α〉) // Sub(A).

We discuss this adjoint pair in Section 2.2.

The adjoint pair 〈−〉α a Uα gives rise to a closure operator

Uα〈−〉α :Sub(A) // Sub(A)

on the subobjects of A. This operator takes a subobject P and closes it under the

operations (structure map) of the algebra. The unit of the monad is the inclusion

P ≤ Uα〈P 〉α.

The multiplication is the identity

Uα〈Uα〈P 〉α〉α = Uα〈P 〉α.

As Theorem 1.3.5 showed, if Sub(A) is complete, then so is SubAlg(〈A, α〉). Gen-

eral results in order theory tell one how to define joins on SubAlg(〈A, α〉), but it is

worth stating the result explicitly: Given a collection

{〈Bi, βi〉}i∈I

of subalgebras of 〈A, α〉, their join is given by
∨

〈Bi, βi〉 = 〈
∨

Bi〉α.
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1.4. Congruences

We generalize the notions introduced above to binary relations here. It should

be clear that these notions generalize to n-ary relations, but we do not do so ex-

plicitly. Binary relations deserve special attention since they arise as the kernels of

homomorphisms.

Recall that a relation on 〈A, α〉 and 〈B, β〉 is a triple 〈〈R, ρ〉, r1, r2〉 where

r1 :〈R, ρ〉 //〈A, α〉,

r2 :〈R, ρ〉 //〈B, β〉

are jointly monic (see the Appendix for a brief review of relations). This definition

works whether we are speaking of algebras or coalgebras, of course. Again, we will

want to pay particular attention to those relations of EΓ which are preserved by U .

We postpone the discussion of relations in EΓ until Section 2.5, where we introduce

bisimulations.

Definition 1.4.1. Let 〈A, α〉 and 〈B, β〉 be Γ-algebras. A relation

〈〈R, ρ〉, r1, r2〉

on 〈A, α〉 and 〈B, β〉 is a pre-congruence if 〈R, r1, r2〉 is a relation on A and B.

Let PreCong(〈A, α〉, 〈B, β〉) be the poset of pre-congruences on 〈A, α〉 and 〈B, β〉.

We will often abbreviate this category as PreCong(α, β). Again, we relate this cate-

gory to the related posets of relations, RelEΓ(α, β) and RelE(A,B).

We also often abbreviate the product of two (co)algebras,

〈A, α〉 × 〈B, β〉,

as α× β.

Theorem 1.4.2. If E is almost regular, has binary products and Γ preserves

regular epis, then

PreCong(α, β) ∼= RelEΓ(α, β) = SubE(α× β).

Proof. A relation 〈R, ρ〉 on 〈A, α〉 and 〈B, β〉 is a subalgebra of the algebra

〈A, α〉 × 〈B, β〉. Because U preserves both products and monos, we see that R is a

subobject of A× B and hence a relation in E . Thus, R is a pre-congruence. �

In Section 1.3, we defined a forgetful functor taking subalgebras of 〈A, α〉 to their

carrier as a subobject of A. We analogously define a forgetful functor here

Uα,β :PreCong(α, β) // Rel(A,B),

taking a pre-congruence 〈R, ρ〉 to its carrier R as a relation on A and B.
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In fact, Uα,β is just

Uα×β :SubAlg(α× β) // SubE(A× B).

Thus, from Theorems 1.3.4 and 1.3.5, we have the following corollaries.

Corollary 1.4.3. The functor Uα,β is an inclusion of PreCongEΓ(α, β) into

RelE(A,B). In other words, the structure map on an algebraic relation is unique.

Corollary 1.4.4. The functor Uα,β creates meets. Hence, if Rel(A,B) (that is,

Sub(A× B)) is complete, then so is PreCong(α, β) (= SubAlg(α× β)).

Remark 1.4.5. Again, we have a natural transformation (natural in both com-

ponents) between the contravariant bifunctors

U :PreCong +3 Rel .

The functor

〈−〉α×β :Sub(A×B) // SubAlg(α× β),

if it exists, gives a construction of least pre-congruences. That is, given any relation

R on A and B (any subobject of A×B), 〈R〉α×β is the least pre-congruence on 〈A, α〉

and 〈B, β〉 containing R (i.e., the least subalgebra of α× β containing R). When we

view 〈−〉α×β as a functor

Rel(A,B) // PreCong(α, β),

we will sometimes write 〈−〉α,β. We drop the subscripts entirely if the meaning of

〈−〉 is clear from context.

We are often interested in pre-congruences on an algebra 〈A, α〉 by itself — that

is, in the category PreCong(α, α). These pre-congruences can be viewed as sets of

equations (see Remark 1.4.7), which will play a central role in Chapter 3. The

following principle is useful for reasoning about 〈R〉α,α.

Theorem 1.4.6. Let E be finitely complete, and Γ:E //E be given. Let 〈A, α〉 be

a Γ-algebra and R a relation on A. Let f :〈A, α〉 //〈B, β〉 be a Γ-homomorphism.

Then the following diagram (in E) commutes

R ////A
f //B(1)

iff the diagram (in EΓ) below commutes.

〈R〉 ////〈A, α〉
f //〈B, β〉(2)

Proof. If (2) commutes, then the fact that R is contained in U〈R〉 ensures that

(1) commutes.

Suppose, conversely, that (1) commutes and take the kernel pair 〈K, κ〉 of f in

EΓ. Because the forgetful functor U :EΓ //E creates kernel pairs, K is the kernel pair
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of f in E , so R is a subrelation of K. Since 〈R〉 is the least pre-congruence containing

R, 〈R〉 is contained in 〈K, κ〉. Thus, f coequalizes 〈R〉 // //〈A, α〉 . �

Remark 1.4.7. Let 〈A, α〉 and R be given as in the statement of Theorem 1.4.6.

We can view R as a set of equations on A — namely, R corresponds to the set of

equations

{r1(x) = r2(x) | x ∈ R}.

We say that B satisfies the equations in R under the assignment f if f equalizes r1

and r2. That is,

B, f |=A R

just in case the diagram

R ////A
f //B

commutes.

In these terms, we can restate Theorem 1.4.6 as follows: For any homomorphism

f :〈A, α〉 //〈B, β〉,

B, f |=A R iff 〈B, β〉, f |=〈A,α〉 〈R〉.

See Chapter 3 for a proper development of equations for categories EΓ.

1.4.1. Exact categories of algebras. Throughout this section, we assume that

E is finitely complete and has regular epi-mono factorizations, so that E is, in partic-

ular, “almost regular”. We also assume that Γ:E //E preserves regular epis, so that

EΓ inherits regular epi-mono factorization from E (Theorem 1.2.13).

A congruence is a pre-congruence which is an equivalence relation. Because pre-

congruences are relations in two different categories (both EΓ and E), there is apparent

ambiguity in this definition. We will show that the ambiguity is illusory — a pre-

congruence which is an equivalence relation in E is also an equivalence relation in EΓ,

and vice versa.

Because U :EΓ //E creates limits and regular epi-mono factorizations, one has the

following theorem.

Theorem 1.4.8. The forgetful functor Uα,β preserves the following structure of

PreCong(α, β).

(1) For any composable pre-congruences 〈R, ρ〉 ∈ PreCong(α, β) and 〈S, σ〉 ∈

PreCong(β, γ),

Uα,γ(〈S, σ〉 ◦ 〈R, ρ〉) = S ◦R.

(2) For any pre-congruence 〈R, ρ〉 on 〈A, α〉 and 〈B, β〉,

Uβ,α(〈R, ρ〉
0) = R0

(where R0 is the twist of relation R — see the Appendix).
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(3) For any algebra 〈A, α〉,

Uα,α∆〈A,α〉 = ∆A

(where ∆A is equality on A — see the Appendix).

Proof. 2 and 3 are obvious. For the first, we use the fact that U creates pull-

backs and finite regular epi-mono source factorizations. It creates the latter because

it creates regular epi-mono factorizations and products (and because E has finite

products). �

Definition 1.4.9. A pre-congruence on 〈A, α〉 which is also an equivalence rela-

tion is a congruence.

The following corollary shows that it is enough for 〈R, ρ〉 to be a pre-congruence

such that R is an equivalence relation (in E).

Corollary 1.4.10. Let 〈A, α〉 be a Γ-algebra and let 〈R, ρ〉 be a pre-congruence.

Then 〈R, ρ〉 is a congruence iff R is an equivalence relation in E .

Proof. By Theorem 1.4.8 and the fact that Uα,α is full. �

The remainder of the section is intended to give an example of reasoning about

algebras in a categorical setting. We present a generalization of a standard theorem in

the study of universal algebras. It states that one can take coequalizers of congruences

in EΓ (i.e., that EΓ is exact — see Definition A.4.4). We will prove that this theorem

holds in a variety of categories and for a variety of functors — namely, it holds in any

exact category if the endofunctor Γ preserves exact sequences. The standard theorem

about algebras over Set is an easy corollary.

Theorem 1.4.11. Let E be an exact category with binary products and Γ:E //E

preserve exact sequences (coequalizers of kernel pairs). The category EΓ is also exact.

Proof. Let p be a regular epi in E . Take the kernel pair of p,

• ////•
p � ,2•.

Since Γ preserves exact sequences, we see that Γp is again a regular epi, so Γ pre-

serves all regular epis. Hence, U preserves and reflects monos, regular epis and exact

sequences (Theorem 1.2.15 — note that any regular category has regular epi-mono

factorizations [Bor94, Proposition 2.2.1]).

Let

〈R, ρ〉 ////〈A, α〉

be an equivalence relation in EΓ. Since

PreCong(〈A, α〉) ∼= RelEΓ(〈A, α〉),
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〈R, ρ〉 is a congruence, and so R is an equivalence relation in E . Since E is exact and

R is an equivalence relation, R is the kernel pair of a regular epi q, as shown below.

R // //A
q � ,2Q

This diagram is an exact sequence (in an exact category, an equivalence relation is

always the kernel pair of its coequalizer), so its image under Γ is again an exact

sequence.

Hence, the top row of the diagram below is a coequalizer.

ΓR
////

ρ

��

ΓA

α

��

Γq � ,2 ΓQ

ν

��
R

//// A q

� ,2 Q

A simple diagram chase shows that there is a unique ν making the right hand square

commute. Because U reflects regular epis, q is a regular epi in EΓ. �

Theorem 1.4.12. Let E be a exact category with binary products and suppose E

satisfies the weak axiom of choice. The category EΓ is also exact.

Proof. It is easy to show that every exact sequence is an absolute coequalizer

(see the proof of [Bor94, Volume 2, Theorem 4.3.5], for instance), and so is preserved

by every functor. �

1.4.2. Least congruence constructions. Given an algebra 〈A, α〉 and a rela-

tion R on A, one is often interested in the least congruence R containing R. These

is the least relation on A such that the quotient A/R can be taken in EΓ. In this

section, we will show that, if E is exact with binary products and Γ preserves exact

sequences, then we can define a functor

Rel(A,A) // Cong(α)

(where Cong(α) is the category of congruences on 〈A, α〉) taking a relation to its

least congruence. This material is included just to complete our development of

congruences. It is a well-known result.

Theorem 1.4.13. Let E be exact, with binary products, and Γ preserve exact

sequences (and, hence, regular epis). Then the inclusion functor

Uα,α :Cong(α) // Rel(A,A)

has a left adjoint.
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Proof. We know from Theorem 1.4.11 that EΓ is exact. We construct a functor

K :PreCong(α, α) // Cong(α), left adjoint to the evident inclusion functor. This con-

struction works in any exact category, just by taking a relation to the kernel pair of

its coequalizer. Now, given a relation R on A and a congruence 〈S, σ〉 on 〈A, α〉, we

see that

R ≤ S ⇔ 〈R〉 ≤ 〈S, σ〉 ⇔ K〈R〉 ≤ 〈S, σ〉.

�

1.5. Initial algebras and final coalgebras

In categories of algebras and coalgebras, the presence of initial objects and termi-

nal objects, respectively, plays an important role. Initial algebras satisfy the induction

proof principle and definition by recursion, while final coalgebras enjoy the analogous

principles of coinduction and definition by corecursion. In this section, we discuss

these principles and the nature of initial algebras and final coalgebras as least and

greatest fixed points, respectively, for the endofunctor Γ.

Recall that in a category C, an initial object A is an object such that, for any

Y ∈ C, there is exactly one arrow A //Y . Dually, a final or terminal object Z

has the property that each Y ∈ C has exactly one arrow Y //Z . Any two initial

(final) objects are clearly isomorphic. If C is a poset, then an initial object is just ⊥

and a final object is just >.

For algebras, the initial algebra is an important object, coming equipped with

certain “proof principles”. However, the final algebra is typically dull. If E has a

final object, 1, then, for any functor Γ, there is a final Γ-algebra, namely 〈1, !1〉,

where !1 is the unique map Γ1 //1 . This is a corollary to the fact that U creates

limits (Theorem 1.2.4). For Set, for example, this means that the one point algebra

is always the final algebra. Dually, if E has an initial object, 0, then 〈0, !0〉 is the

initial coalgebra, where !0 :0 //Γ0. In Set, then, the empty coalgebra is always the

initial coalgebra (whatever the endofunctor Γ:Set //Set).

1.5.1. Fixed points for a functor. Given a functor Γ:E //E , we can consider

the collection of fixed points of Γ, i.e., those C ∈ E such that ΓC ∼= C. Such

objects can be regarded as both Γ-algebras and Γ-coalgebras. Let Fix(Γ) be the full

subcategory of EΓ consisting of those algebras for which the structure map is an

isomorphism. Equivalently, we could take the same full subcategory of EΓ, since Γ

algebra homomorphisms between fixed points are Γ coalgebra homomorphisms and

vice-versa. Lambek’s lemma [Lam70] states, first, that the initial algebra (final

coalgebra), if it exists, is in Fix(Γ). It easily follows that the initial algebra is also
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ΓA

α

��

Γ! // Γ2A
Γα //

Γα
��

ΓA

α

��
A

!
// ΓA α

// A

Figure 6. Initial algebras are fixed points.

initial in Fix(Γ), and the final coalgebra is final in Fix(Γ) (See Section 1.5.4 for a

discussion of the unique homomorphism between the two).

Lemma 1.5.1 (Lambek’s lemma). If 〈A, α〉 is an initial Γ-algebra, then α is an

isomorphism. Dually, the structure map of a final coalgebra is also an isomorphism.

Proof. Because 〈A, α〉 is initial, there is a unique homomorphism ! from 〈A, α〉

to the algebra

〈ΓA, Γα :Γ2A //ΓA〉.

In Figure 6, the bottom composite is the identity, by the uniqueness condition for

initiality. Because ! is a Γ-homomorphism, the left hand square commutes. Conse-

quently,

! ◦ α = Γα ◦ Γ! = idΓA .

�

This result brings out a central fact about initial algebras/final coalgebras —

namely, they are the same thing as initial fixed points/final fixed points for an

endofunctor. In many cases (though, not all cases), they are in fact least fixed

points/greatest fixed points for the endofunctor in the usual sense. In this respect,

at least, initial algebras should seem familiar objects of study. Languages specified

by a syntax are given as a least fixed point for an endofunctor on Set, for instance.

In particular, the modal language L(AtProp) was described earlier as a least fixed

point. Hence, we may regard this and similar languages as initial algebras for suitable

functors.

Lambek’s lemma also gives us a negative result regarding initial algebras and final

coalgebras. If a functor has no fixed points, then it has no initial algebra or final

coalgebra. Of course, the power set functor, P :Set //Set, has no fixed points (due

to Cantor’s theorem). Consequently, there is no initial algebra/final coalgebra for

this functor as a functor on Set.

However, there is a closely related functor for which the initial algebra and final

coalgebra both exist and are well known. Consider the category SET of all sets

and classes (without the axiom of foundation). We can extend the functor P to a
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functor (also denoted P) on this category taking each class to its class of subsets

(note: subsets, not subclasses). See [BM96] for details on the extension of set-based

functors to the category SET. The initial algebra for this functor is the class WF

of well-founded sets, with identity as the structure map. The final coalgebra for

this functor is NWF, the category of sets with the anti-foundation axiom, again

with identity as the structure map. For additional reading on fixed points for P, see

[BM96], [Acz88] and [Tur96].

For existence theorems for both initial algebras and final coalgebras, see [Bar92].

James Worrell extends this discussion in [Wor00].

1.5.2. Induction and recursion. See also [JR97] for a nice exposition of this

material.

The principle of definition by recursion is an explicit application of the property

of initiality. Given any Γ-algebra 〈B, β〉, there is a unique homomorphism from the

initial Γ-algebra 〈I, ι〉 to 〈B, β〉 (just by definition of initiality). This categorical

property leads to familiar principles in application.

Example 1.5.2. For instance, consider the successor functor S :Set //Set taking

a set X to the set X + 1 (the disjoint union of X and {∗}). The initial algebra for

this functor is 〈N, [s, 0]〉, where

s(n) = n + 1,

0(∗) = 0.

Indeed, the initial algebra for S in any category with + is called the natural numbers

object (NNO).

To justify this terminology, consider the usual statement of definition by recursion

on N. Namely, given any set A together with an element a ∈ A and a map f :A //A,

there is a unique map ! :N //A such that

!(0) = a,

!(n+ 1) = f(!(n)).

(We’ll ignore the apparently stronger statement of definition by recursion with pa-

rameters for now.) But, specifying a and f is just the same as specifying a map

[f, a] :A+ 1 //A.

Also, the equations above exactly require the diagram below

N + 1

[s,0]

��

!+id // A+ 1

[f,a]

��
N

!
// A
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to commute, i.e., require that ! is an S-homomorphism.

Example 1.5.3. In Example 1.5.2, we showed that the statement that N is an

initial algebra for the successor functor is equivalent to the statement that for each

a ∈ A and f :A //A , there is a unique map ! :N //A such that

!(0) = a,

!(n+ 1) = f(!(n)).

Of course, one usually wants to define more complicated functions recursively. In this

example, we will show that the statement that N is an initial algebra for S allows the

recursive definition of functions with parameters. Specifically, given two functions,

g :A //A, and

h :A× A //A

we will show that there exists a unique f :N × A //A such that

f(0, a) = g(a),(3)

f(s(n), a) = h(f(n, a), a).(4)

Initiality guarantees maps with domain N, so we will define a map f̃ :N //AA and

show that its transpose is the map f we desire. To define such a f̃ by recursion,

we must find a structure map α :AA + 1 //AA such that the unique homomorphism

N //AA , guaranteed by initiality, is the f̃ we desire.

Let α be defined by

α(∗) = g :A //A,

α(k) = λa . h(k(a), a) for all k :A //A.

Then, by initiality, there is a unique f̃ such that

f̃(0) = g,

f̃(n+ 1) = λa . h(f̃(n)(a), a).

Consequently, the transpose of f̃ satisfies (3) and (4).

In a similar manner, we can show that there is a unique f :N //A such that

f(0, a) = g(a),

f(s(n), a) = h(f(n, a), n, a).
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For this, we must define a structure map α for (A × N)A so that the unique map f̃

making the square below commute

N + 1

�
f+id1 //

[s,0]

��

(A× N)A + 1

α

��

N α
// (A× N)A

satisfies the appropriate equations. This is left as an exercise for the reader.

Example 1.5.4. In the category Poset, the natural numbers object (initial al-

gebra for S) is again the algebra 〈N, [s, 0]〉. As a poset, we take the trivial ordering:

x ≤ y iff x = y.

The natural numbers with the standard ordering (which we denote ω) is also

an initial algebra in Poset, but for a different functor. Consider the lifting functor

−⊥ :Poset //Poset that takes a poset and adjoins a new bottom element. The initial

algebra for this functor is ω. The structure map

ω⊥
//ω

takes ⊥ to 0 and takes each n ∈ ω to s(n).

Example 1.5.5. Example 1.5.2 shows that N is an initial algebra for the polyno-

mial functor S. Here, we examine the general case.

Let P be a polynomial functor and define a signature Σ so that P is the polynomial

functor for Σ, i.e., so that

P(A) =
∐

f(n)∈Σ

An.

Let L(Σ) be the collection of all Σ-terms. Explicitly, L(Σ) is the least set such that

the following holds:

• If f (n) ∈ Σ and τ1, . . . , τn ∈ L(Σ), then f (n)(τ1, . . . , τn) ∈ L(Σ).

Of course, this entails in particular that any constants (that is, zero-ary function

symbols) of Σ are in L(Σ). One should also notice that, if Σ has no constants, then

L(Σ) is empty.

We impose an algebraic structure on L(Σ) in the obvious manner. For each

f (n) ∈ Σ, we must define a map

L(Σ)n //L(Σ) .

Let τ1, . . . , τn be in L(Σ) and define the interpretation of f (n) to be

〈τ1, . . . , τn〉 7→ f(τ1, . . . , τn).

It is routine to check that L(Σ) together with this structure map is an initial P-

algebra.
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There is another description of the initial P-algebra. Namely, we consider L(Σ)

as a family of finitely branching, Σ-labeled trees, subject to the condition:

• If a node is labeled f (n), then the node has exactly n children (consequently,

a node labeled with a constant c(0) is a leaf).

We have, then, that L(Σ) is the least collection of trees such that

• For each f (n) ∈ Σ and each τ1, . . . , τn ∈ L(Σ), the tree with root labeled f (n)

and with children τ1, . . . , τn is in L(Σ).

Again, we stress that, in particular, for each constant c(0) in Σ, the tree consisting of

a node (with no children) labeled c(0) is in L(Σ).

Example 1.5.6. We show now that 〈Z<ω, [push, ()]〉 is an initial algebra for ΓA =

Z×A+1 (see Example 1.1.6). Let 〈A, 〈∗α, ()α〉〉 be any Γ-algebra. Define a sequence

of maps !n :Zn //A as follows:

!0(()) = ()α,

!n+1(push(z, σ)) = z∗α!(σ).

We take ! :Z<ω //A to be
⋃ω

i=1!
n. It is easy to see that ! is a Γ-homomorphism and

that it is unique.

The principle of definition by Γ-recursion can thus be stated: For any set A,

element a ∈ A and map f :Z × A //A , there is a unique ! :Zω //A such that

!(()) = a,

!(push(z, σ)) = f(z, !(σ)).

We also have a least fixed point definition of Z<ω, arising from the discussion of

Section 1.5.1. Namely, Z<ω is the least collection such that

• () ∈ Z<ω;

• If z ∈ Z and σ ∈ Z<ω, then push(z, σ) ∈ Z<ω.

This description of Z<ω agrees with the description of an initial algebra for a polyno-

mial functor from Example 1.5.5 (allowing that the terms are interpreted as elements

of Z<ω).

This concludes our discussion of recursion. We now turn to the related property

of induction.

The principle of induction allows one to conclude that a particular property P

holds of all of the elements of an initial algebra if P is closed under the operations of

the algebra. We will show in this section how the principle of induction is a minimality

condition which follows from initiality. We will include some explicit examples of how

the minimality condition leads to a familiar induction principle.
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Lemma 1.5.7. Let 〈I, ι〉 be an initial Γ-algebra. Then any map into 〈I, ι〉 is a

regular epi.

Proof. Let f :〈A, α〉 //〈I, ι〉 be given and let ! :〈I, ι〉 //〈A, α〉 be the homomor-

phism guaranteed by initiality. Then, by the uniqueness part of initiality, f◦! is the

identity, so f is a regular epi. �

As one can see, Lemma 1.5.7 is not about initial algebras, per se, but rather is

true of any initial object in any category. The next theorem is an abstract statement

of the principle of induction. Again, it is a corollary to a general statement about

initial objects.

Theorem 1.5.8. If 〈I, ι〉 is an initial Γ-algebra, then 〈I, ι〉 is minimal, i.e.,

SubEΓ(〈I, ι〉) = {〈I, ι〉}.

So, in particular, 〈I, ι〉 has no proper subalgebras (subobjects preserved by U).

Proof. Let 〈P, ρ〉 be a subobject of 〈I, ι〉, with homomorphic inclusion

i :〈P, ρ〉 //〈I, ι〉 .

By Lemma 1.5.7, i is a regular epi and so is an isomorphism. �

Let 〈A, α〉 be an algebra. We say that a subobject P //i //A of A is closed under α

if there is a structure map

ρ :ΓP //P

such that

i :〈P, ρ〉 //〈A, α〉

is a homomorphism. In other words, P is closed under α just in case

P = Uα〈P 〉α

(that is, P is closed under the closure operator Uα〈−〉α). The property of minimality

ensures that any predicate closed under α exhausts the entire algebra. It is useful to

see a couple of explicit examples.

We also say that a subobject P closed under α is an inductive predicate.

Remark 1.5.9. The category of all subobjects of A closed under α is isomorphic

to SubAlg(〈A, α〉), so we aren’t really introducing a new concept here. Instead, we

introduce new language that allows one to see that the principle of induction for

initial algebras is the usual principle of induction for the familiar examples of initial

algebras. When discussing induction, it is conventional to speak of predicates which

are closed under certain operations, rather than to speak of subalgebras. We follow

that convention, although there is no practical difference between the two.
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Example 1.5.10. As discussed in previously, 〈N, [s, 0]〉 is an initial algebra for

the successor functor S. A subset P of N is closed under [s, 0] just in case there is a

ρ :P + 1 //P making the diagram below commute.

P + 1
i+id1 //

ρ

��

N + 1

[s,0]

��
P

i
// N

This means that

i ◦ ρ(∗) = 0,

i ◦ ρ(n) = s(n) for each n ∈ P.

In other words, P is a subalgebra of N just in case 0 ∈ P and whenever n ∈ P , also

s(n) ∈ P . From Theorem 1.5.8, we see that if P contains 0 and is closed under s,

then P = N. So, Theorem 1.5.8 yields induction on the natural numbers in the usual

sense.

Example 1.5.11. Consider again the initial algebra L(Σ) for a fixed signature Σ

(see Example 1.5.5). One can confirm that minimality on L(Σ) entails the following

proof principle: If, for each f (n) ∈ Σ

∀τ1, . . . , τn(Φ(τ1) ∧ . . . ∧ Φ(τn)) → Φ(f(τ1, . . . , τn)),

then Φ(τ) for all τ ∈ Σ. Note that, as usual, if a predicate Φ is closed under function

application, then, in particular, Φ holds for every constant.

Call a tree well-founded if the relation “is a descendant of” is well-founded in the

usual sense — that is, if there are no infinite paths in the tree. Then, one can show,

using the above principle of induction, that every element of L(Σ) (viewed as trees

— see Example 1.5.5) is well-founded. We omit this proof, since it requires a more

explicit representation of trees than we give here.

Example 1.5.12. Let P ⊆ Z<ω. Then, P is inductive just in case

() ∈ P,

push(z, σ) ∈ P if z ∈ Z and σ in P.

If P satisfies these conditions, then P = Z<ω.

Example 1.5.13. As mentioned previously, the class WF of well-founded sets

with identity is an initial algebra for the functor P :SET //SET. It is useful to

see what the principal of induction yields for this algebra. A predicate on WF is a

subclass of WF. A predicate Φ is inductive iff whenever Φ(S) for all S ∈ T , then
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Φ(T ). Thus, induction says, for each predicate Φ,

∀T (∀S ∈ T Φ(S) → Φ(T )) → ∀T Φ(T ),

where the quantifiers here range over WF. Equivalently, we have, for each Φ,

∃TΦ(T ) → ∃T (Φ(T ) ∧ ∀S ∈ T¬Φ(S)).

In other words, the principle of induction on WF as an initial algebra is the usual

foundation axiom. Put another way, the foundation axiom is equivalent to the as-

sumption that the class of all sets is an initial algebra for P (although here, we’ve

only shown one implication — see [Tur96] for the other).

It is worth mentioning that the property of minimality isn’t unique to initial

algebras. On the contrary, any algebra which is a quotient of the initial algebra is

also minimal, and so satisfies an inductive proof principle. Conceptually, if 〈A, α〉

is a quotient of the initial algebra, then each element of A can be picked out by a

term (not necessarily uniquely). So, if the atomic elements (the interpretations of

constants) satisfy a predicate and if the predicate is closed under term formation,

then all of A satisfies the predicate.

Theorem 1.5.14. Let E be almost regular and Γ preserve regular epis and sup-

pose that EΓ has an initial object 〈I, ι〉. An algebra 〈A, α〉 is minimal iff the map

! :〈I, ι〉 //〈A, α〉 is a regular epi.

Proof. Suppose 〈A, α〉 is minimal. Take the regular epi-mono factorization

! = i ◦ p. Then i is an isomorphism and so ! is a regular epi.

On the other hand, suppose that

! :〈I, ι〉 � ,2〈A, α〉

is a regular epi and

i :〈P, ρ〉 // //〈A, α〉

is a mono. Then i◦!ρ =!α, so i is a regular epi and hence an isomorphism. �

Corollary 1.5.15. Let E , Γ be as in Theorem 1.5.14. If 〈A, α〉 is minimal, then

α is a regular epi.

Proof. Since α◦Γ! =!◦ ι and the right hand side is the composite of two regular

epis (ι is an isomorphism), α is a regular epi. �

Remark 1.5.16. The converse of Corollary 1.5.15 does not generally hold. That

is, if α is a regular epi, then 〈A, α〉 need not be minimal. Let 〈F, φ〉 be the final

Γ-coalgebra. Then 〈F, φ−1〉 is a Γ-algebra in which the structure map is a regular epi.

Typically, however, 〈F, φ−1〉 is not minimal. Indeed, it is common that the initial

algebra is a proper subalgebra of 〈F, φ−1〉.
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1.5.3. Corecursion and coinduction. Dually, the unique homomorphism into

the final coalgebra is said to be defined by corecursion. Definition by corecursion

resembles a kind of “baseless recursion”. However, it is important to keep in mind

that corecursion gives a map into, not out of, the final coalgebra.

Example 1.5.17. In Example 1.5.2, we showed that N forms an initial algebra

for S. We can also describe the final coalgebra for the successor functor S. Take N

and adjoin a point ∞. Call this set N. Define a S-coalgebra structure p :N //N + 1

on N by

p(x) =





∗ if x = 0

n if x = n+ 1

∞ if x = ∞.

The intuition here is that p is the predecessor function, taking ∞ to itself, n + 1 to

n and 0 to the “error condition”, ∗.

If 〈A, α〉 is any S-coalgebra, then we define ! :A //N by

!(a) =

{
µn . αn(a) = ∗ if this is defined

∞ else

The proof that ! is a coalgebra homomorphism and that it is unique is left to the

reader. It is worth noting that N is not the greatest fixed point for S (under inclusion).

Of course, S doesn’t have a greatest fixed point, since any infinite set is a fixed point.

Example 1.5.18. Just as ω is an initial algebra for the lifting functor

−⊥ :Poset //Poset,

ω + 1 is the final coalgebra for ⊥. Similarly, the set N is the final coalgebra for S.

Example 1.5.19. In Example 1.1.7, we claimed that coalgebras for the functor

ΓA = Z×A could be regarded as collections of infinite streams over Z. Here, we will

make precise what we meant by that claim. We first take the collection of Z-streams,

Zω, and impose a coalgebraic structure on it. Specifically, we consider the coalgebra

〈Zω, 〈h, t〉〉, where

h(σ :ω //Z ) = σ(0),

t(σ :ω //Z ) = λn . σ(n+ 1).

Let 〈A, 〈hα, tα〉〉 be a Γ-coalgebra. We define a mapping,

! :A //Zω ,

as in Example 1.1.7, by

a 7→ λn . hα ◦ t
n
α(a).
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Then one can easily confirm that ! is a homomorphism. Furthermore, any map

f :A //Zω satisfying

hα(a) = h(f(a)),

f(tα(a)) = t(f(a)).

must agree with !.

The principle of definition by Γ-corecursion can be stated thus: Given any set A

and any pair of maps,

j :A //Z ,

k :A //A,

there is exactly one map ! :A //Zω such that, for all a ∈ A,

j(a) = h(!(a)),

!(k(a)) = t(!(a)).

Remark 1.5.20. We have not discussed the initial algebra for A 7→ Z×A. There

is good reason for this: it is trivial. That is, the initial algebra for this functor is just

the algebra

〈0, Z × 0 � ,2 � ,20 〉.

Example 1.5.21. In Example 1.5.19, we made precise the claim that each coalge-

bra for A 7→ Z ×A could be considered a collection of streams over Z, as mentioned

in Example 1.1.7. In this example, we will clarify the claim of Example 1.1.8, that

every coalgebra for the functor ΓA = Z × A + 1 can be regarded as a collection

of (finite and infinite) streams over Z. In particular, we will impose a coalgebraic

structure on Z≤ω and prove that the resulting coalgebra is final.

We define ζ :Z≤ω //Z × Z≤ω + 1 by

ζ(σ) =

{
∗ if σ ∈ Z0 (i.e., σ = ():∅ //Z )

〈σ(0), λn . σ(n+ 1)〉 else

Notice that, if σ ∈ Zω, then λn . σ(n+1) ∈ Zω, but if σ ∈ Zn+1, then λn . σ(n+1) ∈

Zn. In other words, if σ ∈ Zω, then the “tail” of σ is again in Zω, while if σ ∈ Zn+1,

then the tail of σ is in Zn.

Let 〈A, α〉 be any Γ-coalgebra. We define hα and tα as π1 ◦ α and π2 ◦ α, when

these are defined. We define a map ! :A //Z≤ω by

!(a) =

{
() if α(a) = ∗

λn . hα ◦ t
n
α(a) else.
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Notice that, in the second case, the resulting function may be defined only for certain

n. More precisely, !(a) may as a function whose domain is an initial segment of ω,

i.e., an element of Zn for some n.

We omit the details of confirming that ! is a homomorphism and that it is unique.

Example 1.5.22. Let P be a polynomial functor,

P(A) =
∐

i<ω

ZiA
i

on the category Set. From Example 1.5.11, we saw that the initial algebra for P

can be viewed as a collection of well-founded labeled trees. The final coalgebra can

similarly be viewed as the collection of all labeled trees (well-founded or not) with

the same branching behavior as the initial algebra. To make this description precise,

one needs a model of this collection of trees. While such a model can be described

as a collection of sets of finite sequences, representing paths through the tree, closed

under appropriate conditions, the details of such a description are more technical

than illuminating and will be skipped here.

Alternatively, one could use Aczel’s non-well-founded set theory to describe the

final coalgebra as the (necessarily unique) set T such that

T = P(T ),

and use the identity as the structure map, an approach made popular by [BM96].

The dual of the principle of induction for initial algebras is that final coalgebras

are coalgebra!simple, i.e., that they have no proper quotients. This property is best

expressed as a property about the relations on final coalgebras.

Remark 1.5.23. In fact, final coalgebras satisfy a stronger condition. If 〈A, α〉

is a final Γ homomorphism and

p :〈A, α〉 // //〈B, β〉

is any (not necessarily regular) epi, then p is an isomorphism. We find that the

condition of simplicity suffices for most of our purposes, however, and use it instead.

Just as any quotient of a minimal algebra is again minimal, any subcoalgebra

of a simple coalgebra is again simple. Furthermore, if there is a final Γ-coalgebra

〈F, φ〉, then any simple coalgebra is a (regular) subobject of 〈F, φ〉, as the following

corollary shows. Hence, a coalgebra 〈A, α〉satisfies the principle of coinduction iff

〈A, α〉is simple iff 〈A, α〉is an open object of EΓ, in the sense of [LM92, Chapter

IV.6].
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Corollary 1.5.24. Let E be almost co-regular factorizations and Γ preserve reg-

ular monos and let 〈F, φ〉 be the final Γ-coalgebra. A coalgebra 〈A, α〉 is simple iff

! :〈A, α〉 //〈F, φ〉 is a regular mono.

Proof. This is the dual of Theorem 1.5.14. �

Typically, we view coinduction as a proof principle that says, if two elements of

a simple coalgebra are related by a coalgebraic relation, then they are equal. This

next theorem is a step to that proof principle, which we return to in Section 2.6.

Theorem 1.5.25. Let E have all coequalizers. The following are equivalent:

(1) 〈A, α〉 is simple.

(2) For any coalgebra 〈B, β〉, there is at most one map

〈B, β〉 //〈A, α〉 .

(3) (If E has kernel pairs of coequalizers and Γ preserves weak pullbacks) the

equality relation ∆〈A,α〉 is the largest relation on 〈A, α〉, i.e., the maximal

element of RelEΓ
(〈A, α〉, 〈A, α〉).

Proof. We prove that (1) and (2) are equivalent and that they imply (3). Then,

we assume that Γ preserves weak pullbacks and prove that (3) implies (1).

(1) ⇒ (2): Let f, g :〈B, β〉 //〈A, α〉 be given and take the coequalizer of f

and g (since EΓ has all coequalizers). This coequalizer is again 〈A, α〉, and

so f = g.

(2) ⇒ (1): Let

〈B, β〉
b1 //
b2

//〈A, α〉
q � ,2〈Q, ν〉

be a coequalizer diagram. Then b1 = b2, so 〈Q, ν〉 ∼= 〈A, α〉.

(2) ⇒ (3): Let 〈R, ρ〉 be a relation on 〈A, α〉, with projections r1 and r2.

Then, r1 = r2, and so we have the factorization shown below.

〈R, ρ〉

r1

''r2 ''

11
r1=r2

-- ∆〈A,α〉

idww

id

ww
〈A, α〉

(3) ⇒ (1): Let q :〈A, α〉 � ,2〈Q, ν〉 be a regular epi, and take the kernel pair of

q in E ,

K
k1 //
k2

//A
q � ,2Q .

Because Γ preserves weak pullbacks, there is a structure map for K,

κ :K //ΓK,
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making k1 and k2 homomorphisms. Because U reflects jointly monic families,

〈K, κ〉 is a relation on 〈A, α〉, with projections k1 and k2. Since ∆〈A,α〉 is

the largest relation, the following diagram commutes.

〈K, κ〉
11 --

k2

((k1 ((

∆〈A,α〉

idvv

id

vv
A

Hence, k1 = k2 and so, since every coequalizer is the coequalizer of its kernel

pair, 〈Q, ν〉 ∼= 〈A, α〉.

�

Definition 1.5.26. We say that a coalgebra 〈A, α〉 satisfies the principle of coin-

duction if ∆〈A,α〉 is the largest relation on 〈A, α〉.

Corollary 1.5.27. Any simple coalgebra satisfies the principle of coinduction. If

E has kernel pairs of coequalizers and Γ preserves weak pullbacks, then any coalgebra

satisfying the principle of coinduction is simple.

We will return to the topic of coinduction in Section 2.6, where we will show how

it leads to a proof principle for simple coalgebras.

1.5.4. The comparison map. Let Γ:E //E be given and suppose that EΓ has

an initial object, 〈I, ι〉, and EΓ a final object, 〈F, φ〉. From Lambek’s lemma, we know

that the structure map ι is an isomorphism and the same holds for φ. Consequently,

we can view the initial algebra as a coalgebra, namely, the coalgebra 〈I, ι−1〉. By

finality, there is a unique map ! from 〈I, ι−1〉 to 〈F, φ〉. That is, there is a unique

map ! in E such that the diagram below commutes.

ΓI
Γ! // ΓF

I

ι−1

OO

!
// F

φ

OO(5)

On the other hand, we can view the final coalgebra as an algebra, 〈F, φ−1〉. As

such, there is a unique homomorphism from the initial algebra 〈I, ι〉 to 〈F, φ−1〉. It

is easy to see that this is simply two descriptions of the same map. The map ! in (5)

clearly makes the diagram (6), below, commute.

ΓI
Γ! //

ι

��

ΓF

φ−1

��
I

!
// F

(6)
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In fact, the map ! is just the unique map from the initial object to the final

object in the category Fix(Γ). The point is that this map is a homomorphism in both

relevant senses.

In the examples that we’ve seen thus far, this comparison map ! is precisely what

one expects: it is an inclusion of the initial algebra into the final coalgebra. For

instance, the initial algebra for the functor ΓA = Z × A + 1 for a fixed X is the

collection of finite streams over Z.

In [Bar93], Michael Barr shows that the initial algebra is often a dense subspace of

the final coalgebra (under a natural topology), with the comparison map an inclusion.

In [Adá01], Jǐŕı Adámek extends these results.



CHAPTER 2

Constructions arising from a (co)monad

In this chapter, we focus on categories of (co)algebras which come with a left

(right, resp.) adjoint to the forgetful functor. These categories are equivalent to cate-

gories of (co)algebras for a (co)monad, a stricter notion that categories of (co)algebras

for an endofunctor. We begin the chapter with a review of (co)monads and their

(co)algebras.

Following this, we introduce subcoalgebras. We view subcoalgebras as dual to

quotients of algebras, and so take a subcoalgebra to be a regular subobject of the

coalgebra. Theorems about subcoalgebras, then, are dual to theorems about quotients

of algebras, or, equivalently when E is exact, theorems about congruences.

Given a Γ-coalgebra 〈A, α〉, we introduce a modal operator � on Sub(A), taking

a subobject P ≤ A to the largest subcoalgebra 〈B, β〉 such that B ≤ P . We show

that � is an S4 modal operator. Furthermore, we discuss a left adjoint C taking P

to the least subcoalgebra containing P . This closure operator exists if Γ preserves

non-empty intersections.

We revisit the topic of limits in categories of coalgebras (and colimits in categories

of algebras) and show that we may construct all limits (colimits, resp.) if the forgetful

functor is comonadic (monadic, resp.). However, these constructed limits are not

typically preserved by U .

We close the chapter by introducing the definition of bisimulations, which we take

to be the image of a coalgebraic relation. This definition differs from the familiar

definition in many texts, but we take our definition to be a reasonable expansion of

the term for settings in which the axiom of choice is unavailable. We show, in fact,

that the definition offered here coincides with the more traditional definition, given

choice, and so feel that this generalization is suitable.

We discuss coinduction in terms of the introduced notion of bisimulation and also

briefly generalize to n-simulations, to facilitate the development of the internal logic

in Chapter 4.

2.1. (Co)monads and (co)algebras

A central notion in the study of universal algebras is the concept of a free algebra.

Such algebras can be viewed as term algebras over a set of variables. Hence, from free

47
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algebras, one comes to a notion of equation (a pair of elements of the free algebra)

and the definition of equation satisfaction. Categorically, such free algebras are easily

understood in terms of adjoint functors. In particular, as we will see in Section 2.1.2,

an algebra 〈A, α〉 is free over X if 〈A, α〉 ∼= FX, where F is the left adjoint to the

forgetful functor.

Such adjoint functors give rise to monads in a natural way, which we discuss in

the Appendix. One may ask whether every monad comes from a pair of adjoint

functors. In fact, this is the case. Moreover, starting with a monad T , one can

show that there are (at least) two methods of constructing an adjoint pair of functors

that give rise to T . One method, the Kleisli construction, will not concern us much

in what follows. Instead, we will focus on the Eilenberg-Moore construction. This

construction considers the category of algebras for a monad T and shows that this

category comes with a pair of adjoint functors F a U such that T = UF .

We begin by going into some detail on the definition of the category of algebras

for a monad and sketch the proof of the Eilenberg-Moore theorem. This naturally

leads into a discussion of (co)free (co)algebras in Section 2.1.2.

2.1.1. (Co)algebras for a (co)monad. In this section, we will define algebras

for a monad and state the Eilenberg-Moore theorem. This theorem says that every

monad arises as the monad for an adjunction. Moreover, every monad T = 〈T, η, µ〉

arises as the monad for an adjunction F a U where U is the forgetful functor for the

category of T-algebras. Here, however, we mean algebras for the monad T. This is

not the same as algebras for the endofunctor T — it is a narrower definition.

See Section A.5 for a brief review of monads.

In Section 2.1.2, we will discuss the situation in which the category of Γ algebras

for an endofunctor Γ is equivalent to a category of algebras for a monad.

Definition 2.1.1. Let T = 〈T, η, µ〉 be a monad over E . A T-algebra is an

algebra 〈A, α〉 for the endofunctor T such that the following diagrams commute.

T 2A

Tα

��

µA // TA

α

��

A
ηA //

BB
BB

BB
BB

BB
BB

BB
BB

TA

α

��
TA α

// A A

We refer to the commutativity of these diagrams as the associativity and unit con-

ditions for T-algebras. A T-homomorphism is just a T -homomorphism in the sense

of homomorphisms between algebras for an endofunctor (Definition 1.1.1). That is,

a T-homomorphism

f :〈A, α〉 //〈B, β〉
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is a map f :A //B in E such that the diagram below commutes.

TA
Tf //

α

��

TB

β

��
A

f
// B

The T-algebras and their homomorphisms form a full subcategory of the CT , the

category of algebras for the endofunctor T . We denote this category as C
�

(note the

different font for the endofunctor T and the monad T = 〈T, η, µ〉).

Theorems 1.2.4, 1.2.7 and 1.2.13 hold in categories of coalgebras for a monad

as well. That is, the forgetful functor creates limits, creates whatever colimits T

preserves and E
�

inherits the regular epi-mono factorizations from an almost regular

E if T also preserves regular epis. The first two facts can be found in [Bor94, Volume

2]. That E
�

has regular epi-mono factorizations is easily verified. In fact, E
�

is closed

under quotients and subalgebras as a subcategory of ET — indeed, it is a variety of

ET (see Section 3.2.1).

Dually, we define a G-coalgebra for a comonad G. This definition is a straight-

forward exercise in turning the arrows around in Definition 2.1.1, but we include it

for reference.

Definition 2.1.2. Let G = 〈G, ε, δ〉 be a comonad over E . A G-coalgebra is a

G-coalgebra 〈A, α〉 such that the following diagrams commute.

G2A GA
δAoo A

BB
BB

BB
BB

BB
BB

BB
BB

GA
εAoo

GA

Gα

OO

Aα
oo

α

OO

A

α

OO

A G-homomorphism is just a G-homomorphism between G-coalgebras. The category

of G-coalgebras and their homomorphisms is denoted E � . It is a full subcategory of

the category EG (indeed, a covariety).

The theorem below originally appeared in [EM65]. It can be found in any basic

category theory text, including [Bor94, Volume 2] and [BW85]. We take it from

the latter.

Theorem 2.1.3 (Eilenberg-Moore theorem). Let T = 〈T, η, µ〉 be a monad over

E and let U :E
�

//E be the evident forgetful functor. Then there is a functor F :E //E
�

such that F a U and T is the monad associated with the adjunction F a U .

Proof. We define F :E //E
�

on objects C ∈ E by

FC = 〈TC, µC :T 2C //TC 〉.
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One must check that FC is a T-algebra, i.e., that it satisfies the associativity and

unit conditions for T-algebras. This follows just from the associativity and (one of

the) unit conditions for the monad T itself.

Let C ∈ E and 〈A, α〉 ∈ E
�
. One must show

Hom(E , C)A ∼= Hom(E
�
, FC)〈A, α〉.

The isomorphism takes a map f :C //A to

α ◦ Tf :FC //〈A, α〉.

The inverse takes a homomorphism g :FC //〈A, α〉 to

g ◦ ηC :C //A.

Clearly, we have that T = UF , as desired. One must check that the unit of the

adjunction F a U is η, the unit of T, and that the multiplication µ of T, is given by

UεF , where ε is the counit of the adjunction. This is easy.

It is worth noting that the counit of the adjunction arises naturally enough: If

〈A, α〉 is a T-algebra, then ε〈A,α〉 = α. �

So, given any monad T, we can “factor” T into an adjoint pair via the Eilenberg-

Moore construction. This factorization is not unique, however. Indeed, every monad

has at least one other factorization: the factorization given by Kleisli in [Kle65].

However, the Eilenberg-Moore factorization is distinguished: It is final among all

such factorizations1. We state the theorem more precisely here, but it will not play

a significant role in this thesis.

Theorem 2.1.4. Let T = 〈T, η, µ〉 and

D
L

**⊥ E
R

jj

be given such that

• T = R ◦ L

• The unit of the adjunction L a R is η, the unit of the monad.

• The multiplication of the monad, µ, is equal to RεL, where ε is the counit of

the adjunction R ◦ L.

1The Kleisli construction is initial among all such factorizations. See [Bor94, Volume 2] or
[BW85].
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Then, there is a unique J :D //E
�

such that the following diagram commutes.

D
J

++

R ''

E
�

U

��
E

L
ff

F

FF

The Eilenberg-Moore construction dualizes in a natural way. Given a comonad

G = 〈G, ε, δ〉 over E , the forgetful functor

U :E � //E

has a right adjoint,

H :E //E � ,
such that the comonad G is induced by the adjunction U a H. The functor H takes

an object C ∈ E to the coalgebra 〈GC, δC〉.

2.1.2. Free algebras. A basic notion in the theory of universal algebras is that

of the free algebra over a set of variables. Let Σ be a signature and X a set of

variables. The free Σ-algebra over X, denoted FX, can be described informally as

the collection of all terms that can be constructed from the variables of X using the

function symbols of Σ. This informal description can be stated more precisely in

terms of least fixed points, but we do not take these descriptions to be the definition

of a free algebra over X. Instead, the property of freeness is defined in terms of

homomorphic extensions of maps.

Specifically, the property of freeness says: for every Σ-algebra 〈A, α〉 and every

assignment σ of the variables of X to the carrier A, there is a unique homomorphism

σ̃ :FX //〈A, α〉 extending the assignment σ. An assignment of the variables of X to

A is just a map σ :X //A . Thus, the defining property of FX can be stated: there

is a map

ηX :X //UFX

(called the insertion of generators) such that, for every

σ :X //A,

there is a unique

σ̃ :FX //〈A, α〉

making the following diagram commutes:

UFX
�
σ
��

X σ
//

ηX

;;xxxxxxxxx
A
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This condition should look familiar. If, for every X ∈ Set, there is a free algebra

over X, then the operator F taking each X to its free algebra extends to a functor

which is left adjoint to the forgetful functor U .

This allows us to state quite abstractly what it means for a Γ-algebra to be a free

algebra over some object X. Namely, 〈K, κ〉 is free over X just in case there is a

left adjoint F :E //EΓ to the forgetful functor U and 〈K, κ〉 ∼= FX. Notice that an

initial Γ-algebra is free over the initial object of E , if it exists.

The universal mapping property of the free algebra gives another description of

it. Let FX = 〈K, κ〉 be the free Γ-algebra over X. We have a pair of maps, then,

X
ηX //K ΓK

κoo ,

and so we can consider the X + Γ-coalgebra, 〈K, [ηX , κ]〉.

By the adjunction F a U , we have, for all Γ-algebras 〈A, α〉 and maps σ :X //A,

there is a unique Γ-homomorphism σ̃ such that σ̃◦ηX = σ. Any such Γ-algebra 〈A, α〉

and assignment σ corresponds to an X +Γ-algebra, namely 〈A, [σ, α]〉. Furthermore,

by the conditions of the adjunction, the diagram below, commutes.

K
�
σ
��

ΓK
κoo

Γ
�
σ

��
X

ηX

>>}}}}}}}}

σ
// A ΓAα

oo

But, this is exactly the condition needed to show that σ̃ is an X +Γ-homomorphism,

i.e., that the following diagram commutes.

X + ΓK

[ηX ,κ]

��

idX +Γ
�
σ// X + ΓA

[σ,α]

��
K �

σ
// A

Thus, we see that 〈K, κ〉 satisfies the following condition: For every X + Γ-algebra

〈A, [σ, α]〉, there is a unique X + Γ-homomorphism 〈K, [ηX , κ]〉 //〈A, [σ, α]〉 . In

other words, 〈K, [ηX , κ]〉 is the initial X + Γ-algebra.

This observation leads to an alternative definition of free algebra over X, one that

does not require that every object of E has a free algebra. Namely, we say that 〈K, κ〉

is a free Γ-algebra over X just in case there is a map f :X //K such that 〈K, [f, κ]〉

is an initial X + Γ algebra. We have, then, the following fact:

Theorem 2.1.5. Let E have binary coproducts, Γ:E //E be given and U :EΓ //E

be the forgetful functor. Then U has a left adjoint F iff, for each X ∈ E , the initial

X + Γ-algebra exists.

As an immediate corollary, we have
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Corollary 2.1.6. Let Γ:E //E be given and let F :E //EΓ be the left adjoint to

the forgetful functor U :EΓ //E , with η the unit of the adjunction. Then, for every

X ∈ E ,

[ηX , κ] :X + ΓUFX //UFX

is an isomorphism, where κ :ΓUFX //UFX is the structure map of the algebra FX

(so FX = 〈UFX, κ〉).

Proof. Lambek’s lemma (Lemma 1.5.1). �

Thus, the existence of a free functor F depends on whether an initialX+Γ-algebra

exists for every X ∈ E . So, one can use existence theorems for initial algebras to

prove that U has a left adjoint. For instance, if Γ is co-continuous, then, for every

X, the functor X +Γ is also co-continuous and so has an initial algebra (from a well-

known fixed point theorem, generalized in [Bar92]). For the most part, we will not

be concerned here with the question of the existence of a functor F , any more than

we are concerned with the existence theorems for initial algebras and final coalgebras.

We can apply the results of Section 1.5.2 to free algebras. Since a free Γ-algebra

over X is an initial X + Γ-algebra, it comes with the proof principles common to all

initial algebras: induction and recursion. We have seen the principle of recursion. It

is the principle that, for every Γ-algebra 〈A, α〉 and every map σ :X //A , there is

a unique homomorphism σ̃ :FX //〈A, α〉 extending σ. This gives a nice description

of ε, the counit of the adjunction F a U , namely, ε〈X, ξ〉 is the extension of the

assignment idX :X //X .

The principle of induction for free algebras should be familiar as well. This prin-

ciple commonly occurs in proof theory, for instance — it is the principle of structural

induction for terms. After all, the term algebras for a language are just P-algebras

for some polynomial functor P. If P is a polynomial, then X+P is also a polynomial.

Thus, structural induction for terms over a set of variables is just a special case of

Example 1.5.11.

Induction for free algebras for other functors is similar. It states that, for each

property P , if P holds of the elements of X, and if P is preserved under “term

formation” (whatever that means for the functor at hand), then P holds for all of

FX.

Example 2.1.7. Consider the Set-functor ΓA = Z ×A+ 1, from Example 1.1.6.

The forgetful functor U :SetΓ //Set has a left adjoint, F :Set //SetΓ . The functor F

takes a set X to the initial X +Z×−+1 algebra. We can understand this object as

the initial algebra for a polynomial functor. Hence, we can think of it as a collection

of terms for a signature (Example 1.1.5). The signature includes a constant for each



54 2. CONSTRUCTIONS ARISING FROM A (CO)MONAD

x ∈ X and also a constant ∗ for the unique element of 1. Also, for each z ∈ Z, we

have a unary function symbol z(1). Thus, the free Γ-algebras are easily understood.

But, this characterization isn’t very useful for the interpretation of SetΓ we’ve

chosen. We’ve said that the initial algebra for SetΓ is the collection of finite streams

over Z, denoted Z<ω. So, we would like to describe the free algebras in these terms

as well. Of course, the initial algebra itself is a free algebra — it is the free algebra

over the empty set, F0. So, we also want our description of free algebras to coincide

with our description of the initial algebra.

Let X ∈ Set. We consider the elements of UFX as finite streams over Z again,

with one important difference. In the initial Γ-algebra, there is a single object that

represents an empty stream, which we denote (). In the Γ-algebra FX, there are

many “empty streams”. In addition to (), we have an empty stream for each x ∈ X.

Let

[pushX , ()X ] :Z × UFX + 1 //UFX

be the structure map for FX and η the unit of the adjunction F a U . The map

[ηX , ()] :X + 1 //UFX

picks out these empty streams, while the map pushX constructs a new stream from

an element of Z together with an element of UFX.

More concretely, the free Γ-algebra over X is given by

UFX = (X + 1) × Z<ω.

The X + 1 component denotes the “type” of the end of the stream. The structure

map

[pushX , ()X ] :Z × UFX + 1 //UFX

is defined by

()X = 〈∗, ()〉,

pushX(z, 〈a, σ〉) = 〈a, push(z, σ)〉,

where z ∈ Z, a ∈ X + 1 and σ ∈ Z<ω. The functions () and push here were defined

for the initial algebra

〈Z<ω, [push, ()]〉

in Example 1.5.6.

2.1.3. Monadicity. We now return to the topic of algebras for a monad and

show how it relates to free algebras for an endofunctor: Specifically, if the forgetful

functor U :EΓ //E has a left adjoint F , then EΓ is isomorphic to E
�
, where T is the

triple induced by the adjunction F a U . Moreover, the isomorphism commutes with

the respective forgetful functors. Thus, U is monadic in the sense below.
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Definition 2.1.8. Let G :C //D be given. We say that G is monadic if there is

a monad T on D and an equivalence of categories J :C //D
�

such that the following

diagram commutes.

C
J

,,

G &&

D
�

Uww
D

The functor U , above, is the forgetful functor for the category of algebras for the

monad T.

One can learn about monadic functors in the standard category theory texts. This

definition and Theorem 2.1.10, below, come from [Bor94, Volume 2]. They can also

be found in [BW85]. Before stating Beck’s theorem, we must have a definition, also

from [Bor94, Volume 2].

Definition 2.1.9. A diagram of the form

A a1 44

a2

44B

f
tt

q

44Q

g
tt

is a split coequalizer if the following hold:

q ◦ a1 = q ◦ a2

q ◦ g = idQ

a1 ◦ f = idB

a2 ◦ f = g ◦ q

It is easy to check that split coequalizers are indeed coequalizers and moreover

are absolute (preserved by every functor). Split coequalizers naturally arise in the

context of algebras for an monad T = 〈T, η, µ〉 since, for any T-coalgebra 〈A, α〉, the

diagram below is a split coequalizer.

T 2A µA 22

Tα

22 TA

ηTA
rr

α

33 Q

ηA
rr

It is this fact which is crucial in the characterization of monadic functors, first due

to J. M. Beck [Bec67].

Theorem 2.1.10 (Beck’s theorem). Let G :D //C be given. The following are

equivalent.

(1) G is monadic.

(2) (a) G has a left adjoint.

(b) G reflects isomorphisms.



56 2. CONSTRUCTIONS ARISING FROM A (CO)MONAD

(c) For any pair

A
f //
g

//B

such that Gf and Gg have a split coequalizer in C, f and g have a

coequalizer in D which is preserved by G.

Corollary 2.1.11. Let Γ:E //E be given. The forgetful functor U :EΓ //E has

a left adjoint iff U is monadic.

Proof. Let Γ be given. Because U is faithful, it reflects isomorphisms. If homo-

morphisms f, g :〈A, α〉 //〈B, β〉 have a split coequalizer in E , then Γ preserves the

split coequalizer (since it is an absolute coequalizer). Hence, U reflects and preserves

the split coequalizer. Thus, applying Theorem 2.1.10 completes the proof. �

In [AP01], a functor Γ is called a varietor if the forgetful functor U :EΓ //E is

monadic.

We can strengthen the results of this corollary. First, we put the corollary in

the context of results from Section 2.1.2. Let Γ:E //E be given and suppose that

U :EΓ //E has a left adjoint F :E //EΓ . Let T = 〈T = UF, η, UεF 〉 be the monad

induced by the adjunction F a U , and let

E
F �

++
⊥ E

�
U �

jj

be the adjoint functors given in the Eilenberg-Moore theorem (Theorem 2.1.3). One

can show that there is an isomorphism (rather than a mere equivalence) EΓ ∼= E
�

that commutes with the forgetful functors.

A nice presentation of this fact is given in Daniele Turi’s dissertation [Tur96].

The reader should look there for the details, but it is worth describing the action of

J and its inverse. We map a Γ-algebra,

〈A, α :ΓA //A〉,

to the T-algebra

〈A, Uεα :TA //A〉.

On the other hand, suppose we start with a T-algebra,

〈C, γ :TC //C 〉.

Recall that we have an isomorphism C + ΓTC � ,2 � ,2TC (Corollary 2.1.6). The left

component C //TC is the unit of the monad (and of the adjunction F a U). Call

the right component θC . Then, we map 〈C, γ〉 to the Γ-algebra with structure map

ΓC
ΓηC //ΓTC

θC //TC
γ //C
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We omit the proof that these operators extend to functors that are inverses of each

other.

This concludes our discussion of free algebras and the associated category of

algebras for a monad. We have covered this well-traveled ground in order to consider

the dual case. In Section 2.1.4, we will put the algebraic theorems to work in order

to learn about cofree coalgebras.

2.1.4. Cofree coalgebras. An early discussion of cofree coalgebras occurs in

[Rut96]. There, Rutten gives the now familiar discussion of cofreeness in terms of

colorings. This interpretation of cofreeness arises naturally from dualizing the work

in Section 2.1.2. We follow this approach.

Previously, we saw that a Γ-algebra 〈A, α〉 is free over X just in case there is a

map ηX :X //A such that 〈A, [ηX , α]〉 is the initial X + Γ-algebra. We dualize this

observation to define cofreeness.

Definition 2.1.12. Let Γ:E //E be given and let C be an object of E . A Γ-

coalgebra 〈A, α〉 is cofree over C just in case there is a map εC :A //C such that the

C × Γ-coalgebra 〈A, 〈εC, α〉〉 is final (in the category EC×Γ).

Let 〈A, α〉 be cofree over C and let 〈B, β〉 be a Γ-coalgebra. Then, for any

p :B //C , we have a C × Γ-coalgebra, namely, 〈B, 〈p, β〉〉. Thus, there is a unique

map f :B //A such that the diagram below commutes.

A
εC

��~~
~~

~~
~

α // ΓA

C B p
//

f

OO

β
oo ΓB.

Γf

OO

We understood free algebras over X by considering X to be a set of variables.

The free algebra over X, then, was the collection of Γ-terms over a set of variables.

When considering cofree coalgebras over C, we imagine C to be a set of colors. We

interpret maps p :B //C as colorings of the elements of B by the colors C (i.e., as

a C-coloring of B). To each element of B, the coloring p assigns a color from C.

The map εC is also a coloring: It colors the elements of the cofree coalgebra 〈A, α〉.

Thus, we can state the principal of cofreeness as follows: 〈A, α〉 is cofree over C iff

there is a C-coloring εC of A such that, for every Γ-coalgebra 〈B, β〉 and C-coloring

p of B, there is a unique homomorphism f :〈A, α〉 //〈B, β〉 “consistent” with the

coloring p. By consistent, we simply mean that the following diagram commutes, so

that elements of B are mapped to elements of A of the same color (under p and εC,
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respectively).

A

εC

��
B

f
??~~~~~~~

p
// C

Example 2.1.13. Consider the Set-functor ΓA = Z×A from Example 1.1.7 and

let C be a set. Then, 〈A, α〉 is cofree over C just in case there is a coloring εC :A //C

such that 〈A, 〈εC , α〉〉 is the final C × Γ-coalgebra.

A C × Γ-coalgebra is just a coalgebra for the functor

A 7→ C × Z × A.

Thus, the final C×Γ-coalgebra is the collection of all streams over C×Z. Therefore,

the cofree coalgebra over C exists and is given by (C×Z)ω, with the evident structure

map and coloring (counit).

Let E and Γ be given and suppose that, for every C ∈ E , there is a cofree coalgebra

over C. Then, there is a

H :E //EΓ

such that H is right adjoint to the forgetful functor U :EΓ
//E . Namely, we take HC

to be the cofree Γ-coalgebra over C. Indeed, the principal of cofreeness leads directly

to the adjunction conditions: For every

p :U〈B, β〉 //C ,

there exists a unique

p̃ :〈B, β〉 //HC

such that the following diagram commutes.

UHC

εC

��
B

U
�
p

;;xxxxxxxxx
p

// C

Notice that the C-coloring εC of the cofree coalgebra HC is the component at C of

the counit of the adjunction U a H. This is analogous to the result in Section 2.1.2

that the insertion of variables arose from the unit of the adjunction F a U .

We can also dualize the monadicity results from Section 2.1.3. Accordingly, we

define comonadic functor below and show that, if U :EΓ
//E has a right adjoint, then

U is comonadic. We do this directly, without discussing the dual of Beck’s theorem,

since split equalizers do not play a significant role either in the literature or in the

remainder of this thesis.
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Definition 2.1.14. Let K :C //D be given. We say that K is comonadic if there

is a comonad G on D and an equivalence of categories J :C //D � such that the

following diagram commutes.

C
J

,,

K &&

D �

U �ww
D

The functor U � , above, is the forgetful functor for the category of coalgebras for the

comonad G.

Theorem 2.1.15. Let E and Γ be given such that the forgetful functor U :EΓ
//E

has a right adjoint H :E //EΓ . Then U is comonadic.

Proof. We simply sketch the proof here, since the dual construction was dis-

cussed in Section 2.1.3. The category EΓ is isomorphic to the category E � of coalgebras

for the comonad

G = 〈G = UH, ε, UηH〉

where ε and η are the counit and unit, respectively, of the adjoint U a H. The

isomorphism takes a Γ-coalgebra 〈A, α〉 to the G-coalgebra

〈A, Uηα :A //GA〉.

The inverse takes a G-coalgebra 〈C, γ〉 to the Γ-coalgebra

〈C, γ ◦ ξC ◦ ΓεC〉,

where ξC :GC //ΓGC arises from the isomorphism

GC � ,2
〈εC , ξC〉 � ,2C ×GC.

�

In [AP01], a functor Γ is called a covarietor just in case the coalgebraic forgetful

functor U :EΓ
//E is comonadic (equivalently, has a right adjoint).

This next theorem is dual to the well-known fact that, if Γ :Set //Set is a varietor,

then an algebra 〈A, α〉is the quotient of FA.

Theorem 2.1.16. Let E be almost co-regular and let Γ preserve regular monos.

Suppose further that U :EΓ
//E has a right adjoint H. Then, each Γ-coalgebra 〈A, α〉

is a regular subcoalgebra of HA.

Proof. Let η and ε be the unit and counit, resp., of the adjunction U a H.

Then, it is a basic fact of adjunctions that εU ◦ Uη = idE (see, for instance, [Bor94,

Chapter 4, Volume 2] or any other introduction of monads). Thus,

εA ◦ Uη〈A, α〉 = idA
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and so Uη〈A, α〉 is a regular mono. Since U reflects regular monos (by the dual of

Corollary 1.2.15), we have

η〈A,α〉 :〈A, α〉
� ,2 //HA.

�

Remark 2.1.17. The dual of this is worth mentioning: If E satisfies the conditions

of Corollary 1.2.15, and the algebraic forgetful functor U :EΓ //E is monadic, then

each algebra 〈A, α〉 is a quotient of the free algebra FA.

2.1.5. Covarietors and inheritance. In the remainder of this section, we

sketch an application of covarietors which has not, apparently, been explored in the

literature. As is well-known, categories of coalgebras over Set can be used to model

objects in an object oriented programming language (at least certain objects — we

ignore here constructors and other complications found in [PZ01]). Typically, the

functors one uses for the categories of coalgebras are polynomial functors and hence

are covarietors.

For our purposes at present, a class specification consists of a list of methods

(together with their signatures). For example, consider the specification below:

begin Counter

operations
inc :X //X
val :X //N

end Counter

This specification describes a class Counter with two methods, inc and val. It should

be clear that any (−× N)-coalgebra provides a set of such Counters, and so we call

such coalgebras interpretations of the specification Counter. (We do not intend here

to give a rigorous presentation of coalgebraic semantics for class specification, but

rather a reasonable sketch of this topic. See [RTJ01] for a development of this topic.)

Of course, most (−×N)-coalgebras do not behave like a proper counter — certainly,

we have not required that val(inc(x)) = val(x) + 1 here. The name Counter is meant

to be suggestive, but for the purposes of this example, a specification merely gives

the signatures of the methods, without any assertions about the behavior of these

methods. See, however, Example 3.6.16 for a discussion of such assertions and their

relation to coequations.

Often, given such a class specification, one extends the specification to a new class,

which is augmented with additional methods. For instance, given the specification

of Counter above, we may wish to specify a counter which comes with a decrement

method (in addition to the increment and value methods of Counter). Thus, we may

wish to give a specification as shown below:
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begin DecCounter extends Counter

operations
dec :X //X + 1

end DecCounter

We could model DecCounter by (− × N × (− + 1))-coalgebras, and this is what

is typically done. However, there is a sense in which this interpretation neglects

the relation between DecCounter and Counter. Since DecCounter arises by adding

methods to Counter, it seems natural to consider interpretations of DecCounter to

be coalgebras over Set(−× � ) , the category of interpretations of Counter. Thus, we

would like to find a functor

∆:Set(−× � ) //Set(−× � )
such that (Set(−× � ))∆ ≡ Set(−× � ×(−+1)) .

One would be tempted to take ∆ to be the obvious functor, ∆X = X + 1, since

we are adding a method of type X //X + 1. However, this will not work, since we do

not expect the structure map dec to be a (−×N)-homomorphism. Instead, it suffices

to take ∆ to be the composite H ◦ (− + 1) ◦ U , as the following theorem shows.

Theorem 2.1.18. Let E be a category with binary products, Γ:E //E be a covari-

etor and ∆:E //E any endofunctor. Then

EΓ×∆
∼= (EΓ)H∆U .

Proof. Let 〈A, α :A //(Γ × ∆)A〉 be a Γ × ∆-coalgebra. Then 〈A, π1α〉 is a

Γ-algebra. Let

α′ :〈A, π1α〉 //H∆U〈A, π1α〉

be the adjoint transpose of π2α :A //∆A . Then 〈〈A, π1α〉, α
′〉 is an H∆U -coalgebra

(over EΓ). It is easy to check that this construction is functorial and yields the

isomorphism desired. �

2.2. Subcoalgebras

In Sections 1.3 and 1.4, we introduces subalgebras and congruences. A subalgebra

of 〈A, α〉 is a subobject of A which is closed under the structure map α. A pre-

congruence on 〈A, α〉 and 〈B, β〉 is a relation on A and B which is similarly closed

under the operations of α and β. The attractiveness of these definitions come from the

view that subobjects and relations on E are familiar concepts, so we focus attention

on subobjects and relations in EΓ which are also subobjects and relations in E (that

is, are mapped to subobjects and relations by the forgetful functors Uα and Uα,β,

respectively).

Our definition of the corresponding notions, subcoalgebra and bisimulation, will

be similarly motivated. A subcoalgebra of 〈A, α〉 is a subobject of 〈A, α〉 which
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is preserved by the forgetful functor. A bisimulation R on 〈A, α〉 and 〈B, β〉 is a

relation on A and B — so, it is a relation in a familiar sense. However, the definition

is a bit more complicated than the definition of a pre-congruence. We will not require

that

R = Uα×β(〈S, σ〉)

for some relation 〈S, σ〉 on 〈A, α〉 and 〈B, β〉. Instead, we require that R is the

image of some Uα×β(〈S, σ〉). We discuss bisimulations in detail in Section 2.5.

For subcoalgebras, we have a separate motivation which determines our definition.

In categories of algebras, regular epis play a central role in the development of the

theory. Indeed, the correspondence between regular epis and congruences can be

viewed as a key reason that congruences are an important concept for categories of

algebras. As we will see in Chapter 3, when reasoning about congruences (in this

case, deductively closed sets of equations), it is convenient to reason about their

quotients and translate the results into theorems about congruences. If congruences

play a more central role in the theorems than quotients, it is because relations seem

a more familiar concept than their coequalizers.

If we take the straightforward approach and define a subcoalgebra as a subobject

in Sub(〈A, α〉) which is preserved by Uα, then we lose the structural advantage that

regular epis have in categories of algebras over epis in general. Just as regular epis2

are central in EΓ, one expects that their dual, regular monos, will play a central role

in the dual category, EΓ. Thus, we offer the following definition.

Definition 2.2.1. Let 〈A, α〉 be a Γ-coalgebra. A subcoalgebra of 〈A, α〉 is a

Γ-coalgebra 〈B, β〉 together with a regular mono homomorphism

i :〈B, β〉 � ,2 //〈A, α〉.

The category of (equivalence classes of) subcoalgebras of 〈A, α〉 is denoted

SubCoalg(〈A, α〉).

Example 2.2.2. Let 〈A, OA〉 be a topological space and 〈A, α〉 the associated

F -coalgebra (see Example 1.1.12). Then 〈B, β〉 is a subcoalgebra of 〈A, α〉 iff B

is (isomorphic to) an open subset of 〈A, α〉 and β is the neighborhood filter on the

subspace 〈B, OB〉.

Throughout this section, we assume that Γ preserves regular monos. Thus, if

〈B, β〉 is a subcoalgebra of 〈A, α〉, then B is a regular subobject of A, so subcoal-

gebras are regular subobjects in E . In a more general setting, we would make a

2In fact, it would be just as well to work with strong epis and monos, and alter the theorems
accordingly, but we would lose the connection between quotients and congruences in the algebraic
setting.
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distinction between the category of regular subobjects of 〈A, α〉 and their images

under Uα, corresponding to the definition of bisimulation in Section 2.5.

We also will assume that E is regularly well-powered throughout.

Remark 2.2.3. If E is a topos, then every mono is regular. So our definition of

subcoalgebra coincides with the usual definition of subcoalgebra: Namely, 〈B, β〉 is

a subcoalgebra of 〈A, α〉 just in case there is a monic homomorphism

i :〈B, β〉 // //〈A, α〉.

In other words, if E is a topos, then

SubCoalg(〈A, α〉) = Sub(〈A, α〉).

Let RegSub(A) be the poset of regular subobjects of A. We define a functor

Uα :SubCoalg(〈A, α〉) // RegSub(A),

taking a regular subcoalgebra

〈B, β〉 � ,2 i //〈A, α〉

to the regular subobject

B � ,2 i //A

(again, using the assumption that Γ preserves regular monos).

Theorem 2.2.4. The subcoalgebra forgetful functor Uα is full and injective on

objects. In other words, SubCoalg(〈A, α〉) is a full subcategory of RegSub(A).

Proof. Uα is full by Corollary 1.2.10 (a map into a mono is a homomorphism

when the composite is).

Let Uα(〈B, β〉) = Uα(〈B, β
′〉) = B and let

i :B � ,2 //A

be the regular mono homomorphic inclusion for B. Then, Γi is a regular mono (and

hence a mono). Since

Γi ◦ β = α ◦ i = Γi ◦ β ′,

β = β ′. �

Theorem 2.2.5. Let E be cocomplete and almost co-regular and Γ preserve regular

monos. The functor Uα creates joins and commutes with ∃f .

Proof. The join of regular subcoalgebras 〈Pi, ρi〉 of 〈A, α〉 is given as the epi-

regular mono factorization of the map
∐

i〈Pi, ρi〉
//〈A, α〉.
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Because coproducts are created by U and U preserves regular epi-mono factorizations,

Uα preserves the join
∨
i Pi.

Let f :〈A, α〉 //〈B, β〉 and i :〈P, ρ〉 � ,2 //〈A, α〉 be given. Then

Uβ∃f 〈P, ρ〉 = Uβ Im(f ◦ i) = ImU(f ◦ i) = ∃UfUα〈P, ρ〉.

�

Theorem 2.2.6. If, in addition to the assumptions of Theorem 2.2.5, Γ preserves

pullbacks of regular monos, then Uα also creates finite meets. Furthermore, Uα com-

mutes with pullback of subobjects, i.e., for every f :〈A, α〉 //〈B, β〉,

Uα ◦ f
∗ = (Uf)∗ ◦ Uβ.

Proof. By Corollary 1.2.8, U creates pullbacks along regular monos. �

2.2.1. About the functor [−]α. In universal algebras, one can construct a least

subcoalgebra containing a subset of the carrier of an algebra. This construction was

discussed in Theorem 1.3.6, where we showed that the functor

〈−〉α :Sub(A) // SubAlg(〈A, α〉)

was left adjoint to the forgetful functor

Uα :SubAlg(〈A, α〉) // Sub(A)

.

The functor 〈−〉 was constructed under the assumption that Sub(A) had all meets.

Using the fact that the meet of subalgebras again yields a subalgebra, 〈P 〉 is defined

as the meet of all subalgebras containing P .

In this section, we will carry out the analogous construction for regular subcoal-

gebras. Here, we use the fact that the join of regular subcoalgebras is again a regular

subcoalgebra.

Theorem 2.2.7. Let E be cocomplete, regularly well-powered and have epi-regular

mono factorizations and let Γ preserve regular monos. Then the forgetful functor

Uα :SubCoalg(〈A, α〉) // RegSub(A)

has a right adjoint,

[−]α :RegSub(A) // SubCoalg(〈A, α〉).

Proof. The proof is a straightforward construction following the proof of Theo-

rem 1.3.6, but we include it nonetheless.

Let P � ,2i // RegSub(A) be given. Define [P ]α to be the join of the collection

P = {〈B, β〉 � ,2 //〈A, α〉 | B ≤ P}.
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Proof.

SubCoalg(〈A, α〉)

Uα a

��

∃f //
SubCoalg(〈B, β〉)

f∗

⊥oo

Uβ a

��
RegSub(A)

[−]α

RR

∃Uf
..
RegSub(B)

[−]β

RR

Uf∗

⊥nn

Figure 1. [−] commutes with pullback

Then, if 〈Q, ν〉 is any regular subcoalgebra of 〈A, α〉 such that Q ≤ P , then 〈Q, ν〉 ∈

P and so 〈Q, ν〉 ≤ [P ]α. On the other hand, if 〈Q, ν〉 ≤ [P ]α, then

Q ≤ Uα[P ]α ≤ P.

�

For each of the three corollaries which follow, we work under the assumptions of

Theorem 2.2.7.

Corollary 2.2.8. For any homomorphism f :〈A, α〉 //〈B, β〉,

[−]β ◦ Uf
∗ = f ∗ ◦ [−]α.

In Figure 1, the left adjoints commute by Theorem 2.2.5, and so the right adjoints

commute as well. �

In Theorem 1.4.6, we showed that a homomorphism equalizes a relation R just

in case it equalizes the least pre-congruence [R] containing R. Our definition of

subcoalgebra is dual to quotient of an algebra (which is, under certain assumptions,

equivalent to congruences). Thus, it is theorems about congruences which yield

theorems about subcoalgebras, rather than theorems about subalgebras3.

Corollary 2.2.9. Let 〈A, α〉 be a Γ-coalgebra, with P a regular subobject of A.

Let 〈B, β〉 be a Γ-coalgebra and f :〈B, β〉 //〈A, α〉 a Γ-homomorphism. Then Uf

factors through P iff f factors through [P ]α.

3Theorem 2.2.7 can be viewed as the dual of the theorem that we can construct least congruences
containing a relation. In this sense, it is the dual of a theorem about congruences, rather than a
theorem about subalgebras. One simply looks at the corresponding theorem regarding quotients of
a congruence to see this.
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Proof.

Im(Uf) = Uα Im(f) ≤ P iff Im f ≤ [P ]α.

�

Corollary 2.2.10. Let 〈A, α〉 and 〈B, β〉 be given, with f : 〈A, α〉 //〈B, β〉 a

homomorphism. Let 〈D, δ〉 ≤ 〈A, α〉 and P ≤ B. Then

∃UfD ≤ P iff ∃f〈D, δ〉 ≤ [P ]β.

Proof. Follows immediately from Corollary 2.2.9. �

The next theorem gives some equivalent constructions of [P ]α. The requirement

that U be comonadic is only necessary for those constructions which explicitly use

the right adjoint H — namely, for (3) and (4).

Theorem 2.2.11. Let E be regularly well-powered, cocomplete and have pullbacks

and epi-regular mono factorizations. Let Γ be a covarietor that preserves regular

monos with U a H. Let

〈B, β〉 � ,2 b //〈A, α〉

and

P � ,2 i //A

be given. The following are equivalent.

(1) 〈B, β〉 ∼= [P ]α.

(2) Let P � ,2i //A be the equalizer of A
c1 //
c2

//C and let 〈A, α〉

�
c1 //�
c2

//HC be the

adjoint transposes of c1 and c2, respectively. Then

〈B, β〉 � ,2 b //〈A, α〉

�
c1 //�
c2

//HC

is an equalizer.

(3) There is a (necessarily regular mono) map k : 〈B, β〉 � ,2 //HP such that the

following diagram is a pullback, where η :1 +3HU is the unit of the adjunction

U a H.

〈B, β〉
_�

� ,2 k //
_��
b
��

HP_��
Hi

��
〈A, α〉 � ,2

ηα

// HA
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〈D, δ〉 f

))

g

""

%%
〈B, β〉 � ,2

ηβ //
_��
b ��

HB
� ,2 //

� �'
Hb ""FF

HP_��
��

〈A, α〉 � ,2
ηα

//
�
c1��

�
c2 ��

HA
Hc1��Hc2 ��

HC HC

Figure 2. The construction of [P ] as a pullback along the unit.

(4) (If E has a regular subobject classifier Ω) Let ı be the classifying map for i,

so the diagram below is a pullback.

P
! //

_��
i

��

_� 1_��
true

��
A

i

// Ω

Then, the diagram below is also a pullback,

〈B, β〉
! //

_��
b
��

_� H1

Htrue

��
〈A, α〉 �

ı
// HΩ

where ı̃ is the adjoint transpose of ı.

Proof. (1)⇒(2): Let g : 〈D, δ〉 //〈A, α〉 be given, and suppose that g

equalizes

〈A, α〉

�
c1 //�
c2

//HC .

Then,

c1 ◦ g = εC ◦ c̃1 ◦ g = εC ◦ c̃2 ◦ g = c2 ◦ g

and so g factors through P . Hence, g factors uniquely through [P ] (Corol-

lary 2.2.9).

(2)⇒(3): Let 〈B, β〉 be the equalizer of c̃1 and c̃2, as in (2). We claim that

the top rectangle in the Figure 2 forms a pullback. Let 〈D, δ〉, f and g be

given so that Figure 2 commutes. Then, g equalizes c̃1 and c̃2 and so factors

uniquely through b, as shown. It is easy to show that the upper triangle also

commutes.
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[P ]

##

m��

��

� ,2
η[P ] // HU [P ]

m��

��

� �(

##H
HHHHHHH

〈B, β〉 � ,2 //
_��

��

_� HP_��
Hi

��
〈A, α〉 � ,2

ηα

// HA

Figure 3. The construction of [P ] as a pullback along Hi.

(3)⇒(1): In Figure 3, the right hand triangle commutes because U [P ] ≤ P .

The diagonal square commutes by naturality of the unit η. Hence, we have

a unique map [P ] � ,2 //〈B, β〉, as shown, making the diagram commute. Thus,

[P ] ≤ 〈B, β〉.

On the other hand, let k̃ :B //P be the adjoint transpose of

k :〈B, β〉 //HP .

Because

Hi ◦Hk̃ ◦ ηβ = Hi ◦ k

= ηα ◦ b

= Hb ◦ ηβ,

we see that k̃ ◦ i = b. In other words, B ≤ P . Hence, 〈B, β〉 ≤ [P ] and so

〈B, β〉 ∼= [P ].

(3)⇔(4): The right adjointH preserves pullbacks. Consequently, the left hand

square in Figure 4 is a pullback iff the whole rectangle is a pullback [Bor94,

Proposition 2.5.9, Volume 1].

〈B, β〉 � ,2 //
_��
b
��

!

))
HP

_�
H!

//
_��

Hi

��

H1_��
Htrue

��
〈A, α〉 � ,2 ηα //

�
ı

44HA
Hı // HΩ

Figure 4. [P ] as a pullback along Htrue.

�
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Remark 2.2.12. In the proof of (3)⇒(1), above, we assumed the existence of

[P ]. This is not necessary. With a bit more work, one can loosen the assumptions of

Theorem 2.2.11 (removing the assumption of coproducts) and replace (1) in with

(1)′ [P ] exists and [P ] ∼= 〈B, β〉.

Remark 2.2.13. In Theorem 2.2.11, the construction of [P ] found in (3) is es-

sentially the same construction one finds on [BW85, p. 216].

2.2.2. The associated modal operator. Let E be regularly well-powered, co-

complete and almost co-regular and let Γ preserve regular monos and pullbacks along

regular monos. Let 〈A, α〉 be a Γ-coalgebra. The adjunction Uα a [−]α yields a

comonad in the usual way. We will denote the functor part of this comonad,

Uα[−]α :RegSub(A) // RegSub(A) ,

by �α (sometimes dropping the subscript).

Remark 2.2.14. The associated monad

[−]αUα :SubCoalg(〈A, α〉) // SubCoalg(〈A, α〉)

yields the trivial closure operator

1 :SubCoalg(〈A, α〉) // SubCoalg(〈A, α〉)

on subcoalgebras.

Because �α is a functor on a poset, it is monotone. The counit and comultiplica-

tion transformations yield, for every P ,

�αP ≤ P

�αP ≤ �α�αP

Furthermore, because Uα preserves finite meets, so does �α = Uα[−]α. Hence, we

have shown that � is an S4 modal necessity operator.

Definition 2.2.15. An operator � :P //P on a Heyting algebra P is an S4

operator if it satisfies the following:

(1) � is monotone (i.e., is an endofunctor);

(2) � is deflationary (i.e., � ≤ 1);

(3) � is idempotent (i.e., �� = �);

(4) �(A→ B) ≤ �A→ �B;

(5) > ≤ �>.

In other words, an S4 operator is just a left exact comonad on a Heyting algebra.

Theorem 2.2.16. �α :RegSub(A) // RegSub(A) is an S4 operator.
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Proof. (4) follows from the fact that � preserves meets. The argument for (4)

from this is standard, but we include it here.

By (1), we have

�((ϕ→ ψ) ∧ ϕ) ` �ψ,

and, hence,

�(ϕ→ ψ) ∧ �ϕ ` �ψ.

Therefore, �(ϕ → ψ) ` �ϕ→ �ψ.

The top element > of RegSub(A) is just A itself. Clearly, �αA = A, and so (5)

holds. �

Theorem 2.2.17. Let f :〈A, α〉 //〈B, β〉 be given. Then

�α ◦ (Uf)∗ = (Uf)∗ ◦ �β.

In other words, � is a natural transformation

� :RegSub(−) ◦ U +3 RegSub(−) ◦ U.

Proof. Both Uα and [−]α preserve pullbacks along regular monos. See Figure 5.

The front, right and rear faces are pullbacks and the bottom face commutes, so the

left face is also a pullback. �

�βP
_��

��

� ,2 // UHP_��

��

�αf
∗P

_��

��

� ,2 //

ddIIIIIIIII

UHf ∗P

eeKKKKKKKKKK

_��

��

B
� ,2 // UHB

A
Uf

eeKKKKKKKKKKK
� ,2 // UHA

ffLLLLLLLLLL

Figure 5. � commutes with pullback.

Example 2.2.18. In Example 1.1.10 we discussed coalgebras for the set functor

Γ = P(AtProp) × P − .

Such coalgebras are Kripke models for the modal language L(AtProp). Given a

Γ-coalgebra 〈A, 〈α1, α2〉〉, we consider the elements of A to be worlds. The first

component,

α1 :A //P(AtProp) ,
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of the structure map picks out those atomic formulas which are true in a world, while

the second component,

α2 :A //P(A),

gives the accessibility relation. A world b is accessible to a (written a → b) just in

case b ∈ α2(a).

Let φ ∈ L(AtProp) and A = 〈A, 〈α1, α2〉〉 a Γ-coalgebra. Let Mod � (φ) be the

collection

{a ∈ A | a |= � φ}.
We can characterize Mod � (φ) by induction on the structure of φ as follows.

• Mod � (>) = A.

• Mod � (φ) = α−1
1 (φ) if φ ∈ AtProp.

• Mod � (¬φ) = A \ Mod � (φ).

• Mod � (♦φ) = {a ∈ A | α2(a) ∩ Mod � (φ) 6= ∅}.

• Mod � (∧S) =
⋂
φ∈S Mod � (φ).

Thus, for each φ ∈ L(AtProp), we have Mod � (φ) ⊆ A. We calculate � � Mod � (φ),

the (carrier of the) largest subcoalgebra of Mod � (φ). Note: this predicate over A

should not be confused with the proposition �φ, where � is defined as ¬♦¬φ in

L(AtProp). As we will show, despite the syntactic similarity,

� � Mod � (φ) 6= Mod � (�φ),

although the two are related.

Let →∗ be the reflexive and transitive closure of →. We extend the language

L(AtProp) by adding a new modal operator � . We extend the semantics to include

this operator by adding the rule:

• a |= �	� φ iff, for all b such that a →∗ b, b |= φ. In particular, a |= �
� φ
implies a |= � φ.

The proposition � φ represents the condition that, not only is φ necessary, but φ is

necessarily necessary and so on. Indeed, one can easily show

a |= ��� φ iff a |= �
∧

i<ω

�iφ.

If the accessibility relation for A is reflexive and transitive, then � φ is equivalent to

�φ.

We claim that

� � Mod � (φ) = Mod � ( � φ).

First, suppose a ∈ Mod � ( � φ) and a→ b. Then, clearly, b |= ��� φ as well, so

α2(a) ⊆ Mod � ( � φ).
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In other words, Mod � ( � φ) is (the carrier of) a subcoalgebra of 〈A, 〈α1, α2〉〉. So,

since

Mod � ( � φ) ⊆ Mod � (φ),

we have

Mod � ( � φ) ⊆ � � Mod � (φ).

To prove equality, one must show that Modφ( � φ) is the greatest subcoalgebra of

〈A, 〈α1, α2〉〉 contained in Mod � (φ).

Let 〈B, 〈β1, β2〉〉 be a subcoalgebra of 〈A, 〈α1, α2〉〉 such that B ⊆ Mod � (φ).

To complete the proof, it suffices to show that B ⊆ Mod � ( � φ). Let b ∈ B and

suppose that b →∗ c. Then c ∈ B ⊆ Mod � (φ), so c |= � φ. Hence, b |= �� φ and so

b ∈ Mod � ( � φ), as desired.

Example 2.2.19. Let 〈A, OA〉 be a topological space and 〈A, α〉 the associated

F -coalgebra (see Examples 1.1.12 and 2.2.2). Then Uα[−]α is the interior operator.

That is, if S ⊆ A, then Uα[S]α is the largest open subset of S.

2.2.3. The structure of SubCoalg(〈A, α〉). In this section, we will show that,

if RegSub(A) is a complete Heyting algebra, then so is SubCoalg(〈A, α〉). This is an

indication that subcoalgebras are the “right” objects to consider as unary predicates

in the category EΓ. We extend this result to bisimulations in Section 2.5.

Throughout this section, we assume that E is regularly well-powered, almost co-

regular and cocomplete and that Γ:E //E preserves regular monos. Thus, by Theo-

rem 2.2.7, the subcoalgebra forgetful functor

Uα :SubCoalg(〈A, α〉) // RegSub(A)

has a right adjoint, [−]α. We further assume that Γ preserves pullbacks of regular

monos.

Definition 2.2.20. A complete Heyting algebra is a complete lattice 〈S, ∧,
∨
〉

which satisfies the infinitary distributive law

s ∧
∨

i∈I

ti =
∨

i∈I

(s ∧ ti).

Theorem 2.2.21. If RegSub(A) is a complete Heyting algebra, then so is the

category SubCoalg(〈A, α〉).

Proof. The subcoalgebra forgetful functor Uα creates joins and finite meets, so

SubCoalg(〈A, α〉) inherits the infinitary distributive law from RegSub(A). �

Definition 2.2.22. A Heyting algebra is a lattice with > and ⊥ such that ∧ has

a right adjoint →.
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Remark 2.2.23. Definition 2.2.20 is equivalent to the statement that S is a com-

plete lattice which is a Heyting algebra.

Theorem 2.2.24. If RegSub(A) is a Heyting algebra, then so is SubCoalg(〈A, α〉).

Proof. We need to show that ∧ in SubCoalg(〈A, α〉) has a right adjoint. Let

〈B, β〉 and 〈C, γ〉 be subcoalgebras of 〈A, α〉. We calculate

〈B, β〉 ∧ 〈C, γ〉 ≤ 〈D, δ〉 iff B ∧ C ≤ D since Uα creates meets,

iff B ≤ C → D since − ∧ C a C → −,

iff 〈B, β〉 ≤ [C → D]α since Uα a [−]α.

�

Remark 2.2.25. Theorem 2.2.24 implies that the negation for SubCoalg(〈A, α〉)

is given as

¬〈B, β〉 = [¬B]α.

Example 2.2.26. The category SubCoalg(〈A, α〉) is not usually boolean, even if

RegSub(A) is boolean. Consider the functor ΓA = N × A and the coalgebra 〈A, α〉

where A = {a, b} and

α(a) = 〈17, b〉,

α(b) = 〈17, b〉.

Let 〈B, β〉 be the subcoalgebra B = {b} and β(b) = α(b). Then

¬〈B, β〉 = [{a}]α = 〈0, !〉,

so 〈B, β〉 ∨ ¬〈B, β〉 6= 〈A, α〉.

2.3. Subcoalgebras generated by a subobject

Let 〈A, α〉 be a Γ-algebra and P ⊆ A. If RegSub(A) is a complete lattice, then one

can construct 〈P 〉, the least subalgebra of 〈A, α〉 containing P (see Theorem 1.3.6).

This construction yields a left adjoint to the forgetful functor for subalgebras:

Sub(A)

〈−〉
..

⊥ SubAlg(〈A, α〉)
U

mm .

As we’ve shown, the coalgebraic analogue for 〈−〉 is [−], a right adjoint to the sub-

coalgebra forgetful functor. Whereas, in categories of algebras, a closure operation

naturally arises (by closing a subobject under the algebraic operations), in categories

of coalgebras, an interior operation is the “natural” operation.

Nonetheless, for certain functors Γ:E //E , there is a left adjoint

〈−〉α :Sub(A) // SubCoalg(〈A, α〉)
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to the forgetful functor, taking a subobject to the least subcoalgebra containing it.

We describe the operation here.

The following theorem is almost an immediate corollary of Theorem 1.2.7 (U cre-

ates whatever limits Γ preserves). The weakening of the assumption that Γ preserves

intersections to just Γ preserves non-empty intersections requires a bit of work to

ensure that it goes through, but as one can see, the work is really just the proof of

Theorem 1.2.7 again.

The use of non-empty intersections for categories of coalgebras first appears in

the work of Gumm and Schröder, as seen in [Gum01b].

Theorem 2.3.1. If Γ preserves regular monos non-empty κ-intersections, then

U :EΓ
//E

creates κ-intersections of regular subcoalgebras.

Proof. Let {〈Ci, γi〉}i<κ be a family of regular subcoalgebras of 〈B, β〉. If⋂
Ci = 0, then clearly ⋂

〈Ci, γi〉 = 〈0, !〉.

Otherwise, let C be the intersection of the Ci’s, with inclusions

ci :C // //Ci .

Then, ΓC is the limit of the ΓCi’s, with the Γci’s forming a limiting cone. Since the

maps

γi ◦ ci :C //ΓCi

form a cone for C over the ΓCi’s, there is a unique structure map γ
C //ΓC such that

each ci is a homomorphism.

It is routine to check that, for any regular subcoalgebra 〈A, α〉 of 〈B, β〉 contained

in each of the 〈Ci, γi〉’s, the inclusion

A ≤
⋂

Ci

is a homomorphism. For this, we use the fact that Γ preserves regular monos. �

Example 2.3.2. The filter functor F doesn’t preserve non-empty intersections.

Indeed, from Example 1.1.12, we learn that the category of topological spaces and

open, continuous maps is a subcategory of SetF . The open subsets of a space form

the subcoalgebras when we view the space as a filter coalgebra, but open sets are

typically not closed under intersection.

Theorem 2.3.3. Let E be almost co-regular, regularly well-powered and have co-

products and let Γ preserve regular monos. Let 〈A, α〉 ∈ EΓ. The following are

equivalent.
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(1) Uα :SubCoalg(〈A, α〉) // RegSub(A) creates intersections.

(2) Uα has a left adjoint, 〈−〉α.

(3) (Assuming E is well-pointed) For each global element a ∈ A, there is a least

subcoalgebra containing a (denoted 〈a〉α).

Proof. We prove that (1) and (2) are equivalent. Clearly, ( 2) implies ( 3). We

complete the proof by assuming that E is well-pointed and show that ( 3) implies (

2).

(1) ⇒( 2): Let P ≤ A and define 〈P 〉α to be the meet
∧

P≤B

〈B, β〉

in SubCoalg(〈A, α〉). The proof that 〈−〉α a Uα is essentially the same as

that in Theorem 1.3.6.

( 2)⇒(1): Let {〈Bi, βi〉}i∈I ⊆ SubCoalg(〈A, α〉). We will show that
∧

i∈I

〈Bi, βi〉 = 〈
∧

i∈I

Bi〉α,(7)

Uα〈
∧

i∈I

Bi〉α =
∧

i∈I

Bi.(8)

Since
∧
i∈I Bi ≤ Bi, we have

〈
∧

i∈I

Bi〉α ≤ 〈Bi〉α = 〈Bi, βi〉.

Now, let 〈C, γ〉 ≤ 〈Bi, βi〉 for all i ∈ I. Then C ≤
∧
i∈I Bi. Hence,

〈C, γ〉 = 〈C〉α ≤ 〈
∧

i∈I

Bi〉α,

and so (7) holds.

For (8), we use the unit of the adjunction 〈−〉α a Uα to conclude
∧

i∈I

Bi ≤ Uα〈
∧

i∈I

Bi〉α.

Since 〈
∧
i∈I Bi〉α ≤ 〈Bi, βi〉 for all i, we have Uα〈

∧
i∈I Bi〉α ≤ Bi for all i.

Hence, Uα〈
∧
i∈I Bi〉α ≤

∧
i∈I Bi.

(3)⇒( 2): Let P ≤ A. We define 〈P 〉α =
∨
a∈P 〈a〉α (where each a is a global

element of P ). Because E is well-pointed,

P =
∨

a∈P

a ≤
∨

a∈P

Uα〈a〉α = Uα
∨

a∈P

〈a〉α.

Hence, if 〈P 〉α ≤ 〈C, γ〉, then P ≤ Uα〈P 〉α ≤ C.
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Let 〈C, γ〉 ≤ 〈A, α〉 and P ≤ C. We must show that 〈P 〉α ≤ 〈C, γ〉. For

each global element a ∈ P , also a ∈ C. Thus, for each a, 〈a〉α ≤ 〈C, γ〉 and

so
∨
a∈P 〈a〉α ≤ 〈C, γ〉.

�

Theorem 2.3.4. Let 〈−〉α a Uα. The composite

〈−〉α ◦ Uα

is the identity SubCoalg(〈A, α〉) // SubCoalg(〈A, α〉).

Proof. By the adjunction 〈−〉α a Uα, we have 〈−〉α ◦ Uα ≤ 1. Also by the

adjunction, we have

Uα ≤ Uα ◦ 〈−〉α ◦ Uα

and Uα is full (Theorem 2.2.4). �

On the other hand, U〈〉 is a non-trivial closure operator, which we denote C,

taking a subobject A ≤ U〈B, β〉 to its closure under the structure map β. We see

that we have another adjunction, Ca �. This closure operator is also discussed in

[Gum01b, Jac99].

Example 2.3.5. Let Γ:Set //Set be the functor A 7→ Z×A (see Example 1.1.7).

Let 〈A, α〉 be a Γ-coalgebra and a ∈ A. Then it is easy to see that

Uα〈a〉α = {tiα | i < ω}.

In other words, we close {a} under the tail operation, t.

More generally, if P is any polynomial functor,

P(A) =
∐

i<ω

Zi × Ai,

we can define 〈a〉α to be the collection of all b ∈ A such that there is a path from a

to b via the structure map α. To make this precise, define a relation → on A by

b→c iff α(b) ∈ Zi × Ai and ∃j < i(πj ◦ α(b) = c).

Let →∗ be the reflexive and transitive closure of →. We claim that

Uα〈a〉α = {b | a→∗ b}.

We show that 〈a〉α (by this definition) is a subcoalgebra of 〈A, α〉. Let a →∗ b

and

α(b) = 〈z, 〈b1, . . . , bi−1〉〉.

Then a →∗ b for each bj (j < i), so 〈z, 〈b1, . . . , bi−1〉〉 ∈ Γ〈a〉α. In other words, 〈a〉α
is closed under the structure map α.

It is easy to check that 〈a〉α ≤ 〈C, γ〉 iff a ∈ C for all 〈C, γ〉 ≤ 〈A, α〉.
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Example 2.3.6. Let Γ = P(AtProp)×P− from Examples 1.1.10 and 2.2.18. In

Example 2.2.18, we defined →∗ as the transitive and reflexive closure of the accessi-

bility relation, →. It is easy to see that, for any Γ-coalgebra A = 〈A, 〈〉, α1〉α2,

U � 〈a〉 � = {b | a→∗ b}.

This operation doesn’t yield a “natural” operation on Mod � (φ) like � � did. One

calculates

U � 〈Mod � (φ)〉 � = {b | ∃a . a |= φ and a→∗ b},

which seems a less interesting collection — one which is not expressible in terms of

the modal operations of the language L(AtProp).

One has the impression that 〈−〉α is often definable as a closure of a relation →

like those found in Examples 2.3.5 and 2.3.6. It is difficult to make this intuition

precise, since it involves defining an accessibility relation for a class of functors. In

Example 2.3.5, we use the inductive definition of polynomial functors for the definition

of →. We can extend this class to include functors which are built from P in addition

to constant and identity functors by + and ×, as in Example 2.3.6. It is unclear how

to do this for a class of functors generally4 — the inductive construction of the functor

seems to play a key role in the definition of →.

2.4. Limits in categories of coalgebras revisited

The presence of a right adjoint to the coalgebraic forgetful functor allows one to

construct limits in the category of coalgebras, EΓ, given that the corresponding limits

exist in E . We present here essentially a generalization of the proof that SetΓ is

complete if Γ is a covarietor, as found in [GS01].

While developing limits in categories of coalgebras, we also sketch the correspond-

ing proofs that categories of algebras have colimits. However, we sometimes prefer

to strengthen the assumptions on the algebraic theorems, so that we may reason

about congruences (rather than a closure operator on quotients). This preference

comes from a desire to explicitly see how reasoning about EΓ comes directly from

proofs about universal algebras, and categories of universal algebras do satisfy these

stronger assumptions. In any case, we make clear that the theorem holds under the

weaker assumptions as well, and also present the basic concepts necessary to prove

it there.

4For similar reasons, Bart Jacobs focuses on inductively specified classes of functors in [Jac99]
and elsewhere.
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2.4.1. Equalizers in EΓ, coequalizers in EΓ. Equalizers of coalgebras was first

discussed in [Wor98], where Worrell proves that equalizers exist when one-generated

subcoalgebras exist and Γ is bounded (see Definition 3.7.20). The theorem below is

a generalization of [GS01, Theorem 5.1], where it is proved for coalgebras over Set.

A general proof of the completeness of EΓ, given that E is complete and certain other

assumptions, can be found in [JPT+98] as well as [GS01].

Theorem 2.4.1. Let E be regularly well-powered, cocomplete, have equalizers and

epi-regular mono factorizations and let Γ preserve regular monos. Then EΓ has all

equalizers.

Proof. Let

〈A, α〉
f //
g

//〈B, β〉

be given and take the equalizer P � ,2 //A of Uf and Ug in E . Then, [P ]α is the equalizer

of f and g in EΓ. Indeed, if h is a homomorphism that equalizes f and g, then Uh

factors through P . From Corollary 2.2.9, we conclude that h factors through [P ]α.

Uniqueness easily follows. �

Theorem 2.4.2. Let E be regularly co-well-powered, complete and have all co-

equalizers and regular epi-mono factorizations and let Γ preserve regular epis. Then,

EΓ has all coequalizers.

Proof. We sketch the proof. Let Quot(B) denote the category of quotients of

B, i.e., Quot(B) consists of equivalence classes of regular epis. Let Quot(〈B, β〉) be

the corresponding category of quotients in EΓ. Show that there is a functor

Θ:Quot(B) //Quot(〈B, β〉)

left adjoint to the evident inclusion Quot(〈B, β〉) � ,2 //Quot(B). Specifically, given

B � ,2Q be given. Define ΘQ to be the regular epi-mono factorization of the evident

map 〈B, β〉 //〈Q′, ν〉 , where 〈Q′, ν〉 is the limit of

{〈B, β〉 � ,2〈P, ρ〉 | P ∈ Quot(Q)}.

This is the formal dual of the construction of [−], of course.

Show that, if Q is the coequalizer of U
(
〈A, α〉 ////〈B, β〉

)
, then ΘQ is the

coequalizer of 〈A, α〉 // //〈B, β〉 .

An equivalent proof in a more restrictive setting may seem more familiar. Sup-

pose, in addition to our other assumptions, that E is exact and that Γ preserves exact

sequences. Given

〈A, α〉
f //
g

// 〈B, β〉 ,
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take the kernel pair K of the coequalizer of f and g in E , and then take the least

congruence K containing K, according to Theorem 1.4.13. Since EΓ is also exact (by

Theorem 1.4.11), we can take the coequalizer 〈Q, ν〉 of K. It is little work to show

that 〈Q, ν〉is also the coequalizer of f and g. �

2.4.2. Products in EΓ, coproducts in EΓ. We find Theorems 2.4.3 and 2.4.6

in [GS01], where they are proved for coalgebras over Set. We extend the theorems to

categories E which have a suitable structure inherited by EΓ, for appropriate functors

Γ.

Theorem 2.4.3. Let E be cocomplete, κ-complete, regularly well-powered and have

epi-regular mono factorizations and let Γ preserve regular monos. Let {〈Ai, αi〉}i<κ
be Γ-coalgebras and assume that

∏
〈Ai, αi〉 exists. We’ll denote this product 〈D, δ〉

with projections

di :〈D, δ〉 //〈Ai, αi〉.

Let

{ci :〈Ci, γi〉
� ,2 //〈Ai, αi〉}i<κ

be a family of regular subcoalgebras of the 〈Ai, αi〉’s. Then the product
∏

〈Ci, γi〉

exists in EΓ.

Proof. Let P be the pullback (in E) shown below.

P
_�

p1

��

� ,2 p2 //D

〈di〉
��∏

Ci
� ,2�
ci

//
∏
Ai

We will show that [P ]δ, the largest regular subcoalgebra of 〈D, δ〉 contained in P , is

the product of the 〈Ci, γi〉’s. We claim that the projections

ri : [P ] //〈Ci, γi〉

are given by the composite

[P ] � ,2 j //P
p1 //

∏
Ci

πi //Ci,

but we must first establish that this composite is a coalgebra homomorphism. For

this, we refer to Figure 6. We want to show that the front face of this diagram

commutes. We use the fact that Γci :ΓCi //ΓAi is a (regular) mono and show that

Γci ◦ Γ(πi ◦ p1 ◦ j ◦ ρ) = Γc1 ◦ γi ◦ πi ◦ p1 ◦ j,

where ρ is the structure map for the coalgebra [P ]. The squares on each end and

the rectangle in back commute because the maps along the bottom (ci, p2 ◦ j and
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ΓD // Γ
∏
Ai // ΓAi

ΓU [P ]
, 2:

66lllllllllllllll
� ,2 // ΓP //

< 9C

==||||||||

Γ
∏
Ci

4 5?

99tttttttt
// ΓCi

: 8B

==zzzzzzz

D

OO

//
∏
Ai // Ai

OO

U [P ]
, 2:

66lllllllllllllllll
� ,2 //

OO

P
< 9C

==||||||||
//
∏
Ci

4 5?

99tttttttt
// Ci

: 8B

==zzzzzzzz

OO

Figure 6. The projection ri :U [P ] //Ci is a Γ-homomorphism.

πi ◦ 〈di〉 = di, respectively) are coalgebra homomorphisms. The right hand square on

the bottom face commutes by naturality, while the left hand square is a pullback.

To show that [P ] is a product, let 〈B, β〉 be a Γ-coalgebra and let a family of

homomorphisms {fi : 〈B, β〉 //〈Ci, γi〉}i<κ be given. Then, by the definition of P ,

there is a unique map B //P so that the diagram below commutes.

B

!!

〈fi〉

��

U〈ci◦fi〉

%%
P

_�

p1

��

� ,2 p2 //D

〈di〉
��∏

Ci
� ,2�
ci

//
∏
Ai

By Corollary 2.2.9, we get a factorization of B //P through [P ]. Uniqueness easily

follows. �

For many functors of interest, the step of applying [−] to P is unnecessary. The

following theorem shows that, if Γ preserves non-empty intersections, then [P ] = P .

In particular, for finite products, if Γ preserves weak pullbacks, then the carrier for

the product
∏
〈Ci, γi〉 is just P .

Corollary 2.4.4. Let E , Γ, {〈Ai, αi〉}, etc., be given as in the statement of

Theorem 2.4.3 and suppose, further, that Γ preserves pullbacks along regular monos
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P
� ,2 //

_��

��

_� P2_��

��

//
_� C2_��

��
P1

� ,2 //

��

_� D //

��

A2

C1
� ,2 // A1

Figure 7. P is an intersection of the Pi’s.

and non-empty κ-intersections. Then, the pullback

P
_�

p1

��

� ,2 p2 //D

〈di〉
��∏

Ci
� ,2�
ci

//
∏
Ai

is invariant under [−] ([P ] = P ). In fact, there is a (necessarily unique) structure

map

ρ :P //ΓP

such that

〈P, ρ〉 =
∏

〈Ci, γi〉.

Proof. For each i, let Pi be the pullback shown below.

Pi
_�

��

� ,2 //D

di

��
Ci

� ,2
ci

//Ai

Because Γ preserves pullbacks along regular monos, U creates such pullbacks. Hence,

each Pi is invariant. One can show that P is the intersection of the Pi’s (see Figure 7

for an illustration of the case κ = 2). Theorem 2.3.1 completes the proof. �

The following theorem dualizes the result of Theorem 2.4.3.

Theorem 2.4.5. Let E be complete, κ-cocomplete, regularly co-well-powered and

have regular epi-mono factorizations and let Γ preserve regular epis. Let {〈Ai, αi〉}i<κ
be Γ-algebras and assume that

∐
〈Ai, αi〉 exists. Let

{ 〈Ai, αi〉
� ,2〈Ci, γi〉 }i<κ

be a family of quotients of the 〈Ai, αi〉’s. Then the coproduct
∐

〈Ci, γi〉 exists in EΓ.
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Proof. The proof of the theorem as stated is just the dualization of Theo-

rem 2.4.3, using the functor Θ defined in the proof that EΓ has coequalizers (Theo-

rem 2.4.2). Instead of explicitly dualizing the theorem, we prefer to sketch the proof

using congruences in the case that E is exact and Γ preserves exact sequences, so that

EΓ is also exact (Theorem 1.4.11). We also restrict our interest to the case κ = 2,

just to simplify notation.

By assumption, we have a pair of regular epis

p :〈A, α〉 � ,2〈C, γ〉,

q :〈B, β〉 � ,2〈D, δ〉

and the coproduct 〈A, α〉 + 〈B, β〉 exists in EΓ. Let K be the kernel pair of p + q,

shown below.

K ////A +B
p+q� ,2C +D

We would like to take the smallest congruence containing K, but K is not necessarily

a relation on U(〈A, α〉 + 〈B, β〉). So, we first take the coequalizer

U(〈A, α〉 + 〈B, β〉)
r � ,2R

of the diagram below.

K ////A+B //U(〈A, α〉 + 〈B, β〉)

Then, we take the kernel pair of r,

L // //U(〈A, α〉 + 〈B, β〉).

We claim that 〈C, γ〉 + 〈D, δ〉 is the coequalizer of the least congruence containing

L, but we omit the proof. �

Theorem 2.4.6. Let E be cocomplete, κ-complete, regularly well-powered and have

epi-regular mono factorizations. Let Γ preserve regular monos. Suppose further that

U :EΓ
//E has a right adjoint H (i.e., Γ is a covarietor). Then EΓ has κ-products.

Proof. Let H be the right adjoint to U and let {〈Ai, αi〉}i<κ be a κ-family of

coalgebras. Then, from Corollary 2.1.16, each 〈Ai, αi〉 is a regular subalgebra of the

HAi. Because H is a right adjoint, it preserves limits and so

H(
∏

Ai) ∼=
∏

HAi.

Hence,
∏
HAi exists in EΓ and we can apply Theorem 2.4.3. �

Corollary 2.4.7. If E is cocomplete, κ-complete, regularly well-powered and has

epi-regular mono factorizations, Γ a covarietor that preserves regular monos, then EΓ

is κ-complete.
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Theorem 2.4.6 shows that, given a right adjoint to the coalgebraic forgetful functor

(and the conditions of Theorem 2.4.3), the category EΓ has products. The algebraic

analogue to Theorem 2.4.6 states that, if free algebras are available, then EΓ has

coproducts. This fact is well-known in the study of universal algebras. We state the

theorem in the same generality as Theorem 2.4.6.

Theorem 2.4.8. Let E be complete, κ-cocomplete, regularly co-well-powered and

have regular epi-mono factorizations and let Γ a varietor that preserves regular epis.

Then EΓ is κ-cocomplete.

Proof. Essentially the same as Theorem 2.4.6. We have coproducts of free

algebras, and each algebra is the quotient of a free algebra. �

The next theorem shows some equivalent constructions of the product of coalge-

bras.

Theorem 2.4.9. Let E , Γ and H be given as in Theorem 2.4.6 and let

{〈Ai, αi〉}i<κ

be a κ-family of coalgebras. Then the following are equivalent.

(1) 〈B, β〉 ∼=
∏
〈Ai, αi〉

(2) 〈B, β〉 = [P ] � HAi
, where P is the pullback shown below.

P
_�
� ,2 p2 //

p1

��

UH(
∏
Ai)

〈UHπi〉
��∏

Ai
� ,2 �

Uηαi

//
∏
UHAi

(9)

(3) 〈B, β〉 is the largest regular subcoalgebra of H
∏
Ai such that, for every i ∈ I,

B � ,2 //UH
∏
Ai

ε � Ai //
∏
Ai

πi //Ai

is a Γ-homomorphism.

(4) 〈B, β〉 fits into a pullback as shown below.

〈B, β〉
_�

� ,2 //

��

∏
HAi
_�� �

HUηαi

��∏
HAi �

ηHAi

//
∏
HUHAi

(5) 〈B, β〉 = [E] � HAi
, where E is the equalizer of the diagram below.

U(
∏
HAi)

�
Uηαi

◦ε � Ai//
〈UHπi〉

//
∏
UHAi

Proof. We prove (1)⇔(2), (1)⇔(3), (2)⇔(4) and (2)⇔(5).
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(1)⇔(2): This was proven in Theorem 2.4.6, as a corollary to Theorem 2.4.3.

(1)⇔(3): Let 〈B, β〉 be the product
∏
〈Ai, αi〉, with projections bi. Then

Ubi = εAi
◦ Uηαi

◦ Ubi

= εAi
◦ UHπi ◦ U

∏
ηαi

= πi ◦ ε � Ai
◦ U

∏
ηαi
,

so, since each ηαi
is a regular mono, 〈B, β〉 is a regular subcoalgebra of

H
∏
Ai, with the composite

B
� ,2 // UH

∏
Ai //

∏
Ai // Ai

a homomorphism.

Let j : 〈D, δ〉 � ,2 //H
∏
Ai be given and assume that, for each i ∈ I, the

composite πi ◦ ε � Ai
◦ Uj is a homomorphism. Then, because 〈B, β〉 is the

product of the 〈Ai, αi〉’s, there is a unique homomorphism

k :〈D, δ〉 //〈B, β〉

such that, for each i,

Ubi ◦ Uk = πi ◦ ε � Ai
◦ Uj.

Using the previous calculation, we see

πi ◦ ε � Ai
◦ U

∏
ηαi

◦ Uk = πi ◦ ε � Ai
◦ Uj.

Hence,
∏
ηαi

◦ k = j, and 〈D, δ〉 ≤ 〈B, β〉, as desired.

(2)⇔(4): Suppose that 〈B, β〉 =
∏
〈Ai, αi〉. By the proof of Theorem 2.4.6,

we see that 〈B, β〉 = [P ] � HAi
, where P is the pullback shown in (9).

In Theorem 2.2.11, we showed that the left hand square in Figure 8 is a

pullback. Because the right hand square is just H applied to (9), it is also a

pullback and so the rectangle is a pullback.

〈B, β〉
_�

� ,2 b1 //
_��

b2
��

HP
_�_��

Hp2
��

Hp1 // H
∏
Ai

_��
H
�
Uηαi

��
H

∏
Ai

� ,2
ηH � Ai

// HUH
∏
Ai
H〈UHπi〉

// H
∏
UHAi

Figure 8.
∏
〈Ai, αi〉 as a composite of two pullbacks in EΓ.
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A simple calculation confirms that the composite along the bottom is∏
ηHAi

.

H〈UHπi〉 ◦ ηH � Ai
= 〈HUHπi ◦ ηH � Ai

〉

= 〈ηHAi
◦Hπi〉

=
∏

ηHAi
◦H〈πi〉 =

∏
ηHAi

.

Conversely, if 〈B, β〉 is the pullback of
∏
ηHAi

along
∏
HUηαi

, then there

is a unique b1 making the diagram in Figure 8 commute. Since the rectangle

and the right hand square are pullbacks, so is the left hand square. Hence,

〈B, β〉 = [P ] and thus 〈B, β〉 ∼=
∏
〈Ai, αi〉.

(2)⇔(5): Let P be the pullback of 〈UHπi〉 along
∏
Uηαi

, and let E be the

equalizer of 〈UHπi〉 and
∏
Uηαi

◦ ε � Ai
. To show that P ∼= E, it suffices to

show that p1 equalizes 〈UHπi〉 and
∏
Uηαi

◦ ε � Ai
(see Figure 9).

P
� ,2 p1 //

p2

��

UH
∏
Ai

〈UHπi〉

��

ε � Ai

ooooooooooooo

wwooooooooooooo

∏
Ai

# .4

�
Uηαi

-- ∏
UHAi�

εAi

�jp

Figure 9.
∏
〈Ai, αi〉 as an equalizer.

For this, we use the fact that, for every i ∈ I,

πi ◦ ε � Ai
= εAi

◦ UHπi = πi ◦
∏

εAi
◦ 〈UHπi〉,

and, hence, ε � Ai
=

∏
εAi

◦ 〈UHπi〉. Thus, we have
∏

Uηαi
◦ ε � Ai

◦ p1 =
∏

Uηαi
◦

∏
εAi

◦ 〈UHπi〉 ◦ p1

=
∏

Uηαi
◦

∏
εAi

◦
∏

Uηαi
◦ p2

=
∏

Uηαi
◦ p2 = 〈UHπi〉 ◦ p1.

�

Example 2.4.10. We consider the functor

Pfin :Set //Set

which takes a set A to the set of finite subsets of A. This functor preserves weak

pullbacks and hence it preserves regular monos. We will calculate the product of two
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a b
��

w x
��

c YY

OO

z

OO

YY y
XX

OO

Figure 10. A graph representation of 〈A, α〉 and 〈X, χ〉.

simple Pfin-coalgebras. Although we do this in considerable detail here, in practice it

is often quite simple. In particular, if a functor preserves pullbacks, then the product

is easily calculated. This extended example will show how one actually uses many of

the tools we’ve developed (embeddings into cofree coalgebras, the [−] operator, etc.)

to reason about coalgebras.

Recall that the product of coalgebras is constructed as a regular subcoalgebra

of the product of the corresponding cofree coalgebras. Accordingly, in order to cal-

culate this product, we first discuss the cofree Pfin-coalgebras. In order to ease the

presentation, we use non-well-founded set theory. In the terms of NWF, it is easy

to describe the cofree Pfin-coalgebra over A: It is the set UHA such that

UHA = A× Pfin(UHA).

The structure map for this coalgebra, as usual, is the identity function. In particular,

the final Pfin-coalgebra is the set of hereditarily finite (non-well-founded) sets.

We consider two uncomplicated coalgebras. Let A be the set {a, b, c and X the set

{w, x, y, z}. We define the structure maps α :A //PfinA and χ :X //PfinX as follows:

α(a) = ∅, χ(w) = ∅,

α(b) = {b}, χ(x) = {x},

α(c) = {b, c}, χ(y) = {x, y},

χ(z) = {w, z}.

One calculates the units ηα :〈A, α〉 //HA and ηχ :〈X, χ〉 //HX thus:

ηα(a) = 〈a, ∅〉, ηχ(w) = 〈w, ∅〉,

ηα(b) = 〈b, Sb〉, ηχ(x) = 〈x, Sx〉,

ηα(c) = 〈c, Sc〉, ηχ(y) = 〈y, Sy〉,

ηχ(z) = 〈z, Sz〉,
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where

Sb = {〈b, Sb〉},

Sc = {〈c, Sc〉, 〈b, Sb〉},

Sx = {〈x, Sx〉},

Sy = {〈x, Sx〉〈y, Sy〉},

Sz = {〈w, ∅〉, 〈z, Sz〉}.

The evident map

〈eA, eX〉 :U(HA×HX) ∼= UH(A×X) //UHA× UHX

is also easily described. The set UH(A×X) satisfies the equation

UH(A×X) = A×X × Pfin(UH(A×X)).

Let 〈s, t, S〉 ∈ A×X × Pfin(UH(A×X)). Then,

〈eA, eX〉(〈s, t, S〉) = 〈〈s, SA〉, 〈t, SX〉〉,

where SA is the image of S under eA and SX the image of S under eX . In other

words,

SA = PfineA(S),

SX = PfineX(S).

Recall the definition of the set P from the proof of Theorem 2.4.3. From the

definition of P as a pullback, we see that

P = {〈s, t, S〉 ∈ UH(A×X) | 〈eA, eX〉(〈s, t, S〉) ∈ Im(ηA × ηX)}.

Because A and X are such small sets, it is not difficult to calculate P directly.

Suppose, for some t ∈ X, S ⊆ UH(A×X), the triple 〈a, t, S〉 is in P . Then,

eA(〈a, t, S〉) = 〈a, PfineA(S)〉 = ηα(a) = 〈a, ∅〉,

and so, S is empty. Since this entails that χ(t) = ∅, we conclude that t = w. Similarly,

the only triple of the form 〈s, w, S〉 is the triple 〈a, w, ∅〉.

Suppose that 〈s, z, S〉 is in P for some s ∈ A and S ⊆ UH(A×X). Then, with

a little work, one can show that 〈a, w, ∅〉 is in S. This entails that a ∈ α(s), yielding

a contradiction. Thus, there is no triple of the form 〈s, z, S〉 in P .

Let S ⊆ UH(A×X) be given. Then, 〈b, x, S〉 is in P iff

PfineA(S) = Sb = {〈b, Sb〉},

PfineX(S) = Sx = {〈x, Sx〉}.
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These equations hold just in case S 6= ∅ and, for all 〈u, v, T 〉 in S,

eA(〈u, v, T 〉) = 〈b, Sb〉,

eX(〈u, v, T 〉) = 〈x, Sx〉.

Thus, 〈b, x, S〉 ∈ P iff S 6= ∅ and, for all 〈u, v, T 〉 ∈ S, u = b, t = x and 〈u, v, T 〉 ∈

P . We will use this fact to show that there is only one set S such that 〈b, x, S〉 ∈ P .

We do this by using the principle of coinduction for the cofree coalgebra5 H(A×

X). We will show that, if 〈b, x, S〉 and 〈b, x, S ′〉 are in P , then there is a coalgebraic

relation

〈R, ρ〉 ∈ RelEA×X×Pfin
(H(A×X))

relating 〈b, x, S〉 and 〈b, x, S ′〉. Since H(A×X) is the final A×X ×Pfin-coalgebra,

we may conclude 〈b, x, S〉 = 〈b, x, S ′〉 (since equality is the largest relation on H(A×

X)).

We discuss relations on coalgebras and the related notion of bisimulation in more

detail in Section 2.5. For now, it suffices to note that a relation R on UH(A×X) is the

carrier for a relation on H(A×X) (in EA×X×Pfin
) if, whenever 〈s, t, T 〉R 〈s′, t′, T ′〉,

then

• s = s′,

• t = t′,

• for each u ∈ T , there is a u′ ∈ T ′ such that uRu′ and

• for each u′ ∈ T ′, there is a u ∈ T such that uRu′.

Let R be the relation such that 〈s, t, T 〉R 〈s′, t′, T ′〉 holds iff

• s = s′ = b,

• t = t′ = x and

• 〈b, x, T 〉 and 〈b, x, T ′〉 are in P .

Then, one may show that R is (the carrier of) a coalgebraic relation. Thus, there is

at most one set S such that 〈b, x, S〉 ∈ P .

Let Sb,x satisfy the equation

Sb,x = {〈b, x, Sb,x〉}.

A simple calculation verifies that 〈b, x, Sb,x〉 is in P .

A similar argument shows that 〈b, y, S〉 ∈ P iff S = Sb,y, where

Sb,y = {〈b, x, Sb,x〉, 〈b, y, Sb,y〉}.

Also, 〈c, x, S〉 ∈ P iff S = Sc,x, where

Sc,x = {〈b, x, Sb,x〉, 〈c, x, Sc,x〉}.

5One could also use the principle of coinduction for NWF to show that, if 〈b, x, S〉 and 〈b, x, S ′〉
are in P , then S and S′ are P-bisimilar. The relation one defines to show S ∼ S ′ is more complicated,
however.
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Finally, we consider triples of the form 〈c, y, S〉. Such triples are in P just in case

S satisfies the equations

PfineA(S) = {〈b, Sb〉, 〈c, Sc〉},(10)

PfineX(S) = {〈x, Sx〉, 〈y, Sy〉}.(11)

Consider the set

Sc,y = {〈b, x, Sb,x〉, 〈c, y, Sc,y〉}.

Then one can show that Sc,y satisfies (10) and (11), so 〈c, y, Sc,y〉 is in P . However,

the set

V = {〈c, x, Sc,x〉, 〈b, y, Sb,y〉}

also satisfies (10) and (11). Indeed, there are many sets which satisfy these two

equations: Any set S such that

V ⊆ S ⊆ V ∪ Sc,y or Sc,y ⊆ S ⊆ V ∪ Sc,y.

satisfies (10) and (11), and one can show that these are the only sets which satisfy

these equations.

Thus, we have characterized the set

P = {〈s, t, S〉 ∈ UH(A×B) | 〈eA, eX〉(〈s, t, S〉) ∈ Im(ηA × ηX)}.

Namely, P is the set

{〈a, w, ∅〉, 〈b, x, Sb,x〉, 〈b, y, Sb,y〉, 〈c, x, Sc,x〉}

joined with the set

{〈c, y, S〉 | V ⊆ S ⊆ V ∪ Sc,y or Sc,y ⊆ S ⊆ V ∪ Sc,y}.

By Corollary 2.4.4, the set P (with the projection π3 as a structure map) is the

product 〈A, α〉 × 〈X, χ〉. The projections are just the obvious projections:

πα(〈s, t, S〉) = s,

πχ(〈s, t, S〉) = t.

2.5. Bisimulations

We now turn our attention to bisimulations — relations on coalgebras which in

some sense respect the coalgebraic structure. We had postponed our discussion of

bisimulations until we had shown how one defines products of coalgebras. This al-

lows a simple definition of regular relations in the category EΓ. We focus on regular

relations for the same reasons that we restricted our attention to regular subobjects

when defining subcoalgebras. Namely, since EΓ inherits epi-regular mono factoriza-

tions, under our usual assumptions on E and Γ, the regular relations come with a

richer set of construction principles. These are the relations that are well-behaved,
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both in E and in EΓ. A bisimulation will be a regular relation in E that is the image

of a regular relation in E � .
Compared to the definition of bisimulation we find in other works on coalgebras,

the definition we adopt may seem a bit complicated. There are two reasons for the

apparent complexity of our development. The first reason is that we stress the impor-

tance of regular relations and in the usual setting (coalgebras over Set), every relation

is regular, thus removing the distinction. Secondly, in Set, one has the advantage of

the axiom of choice. This simplifies the definition of bisimulation considerably (The-

orem 2.5.8). So, one finds that, in the category Set, our definition coincides with the

definition of bisimulation found in [JR97], [BM96], etc. The additional complexity

of the definition of bisimulation found here seems a necessary effect of generalizing

the setting in which we are interested.

Because the theory of bisimulations has not been well developed outside of SetΓ,

we feel justified in offering an alternative definition for categories EΓ which reduces

to the familiar definition when E = Set. What one wants, however, is a compelling

example of a category of coalgebras for which the two definitions differ, and for

which the definition offered here is demonstrably preferable. Unfortunately, because

of the results in Section 2.5.2 (which show that, if G preserves regular relations, then

again Definition 2.5.4 reduces to the definition of bisimulation found elsewhere), such

examples are difficult to come by. One would like to look at power object coalgebras

over a topos which does not satisfy choice and see how the class of bisimulations

discussed here differ from the class of coalgebraic relations preserved by U . This is

an obvious area for future research.

Definition 2.5.1. Let C be a category with finite products. A relation R on A

and B is a regular relation if the inclusion

R // //A×B

is a regular mono.

Remark 2.5.2. The notion of a regular relation doesn’t really require that C has

finite products. One could say that R is a regular relation on A and B just in case,

for every C ∈ C, the map

Hom(A,C) × Hom(B,C) // Hom(R,C)

is a regular epi. See the definition of regular epimorphic family in [BW85] for details.

We won’t require that kind of generality here.

Remark 2.5.3. In a category in which every mono is regular (say, a category

with a subobject classifier), every relation is regular.
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Let E be almost co-regular and let Γ be a covarietor that preserves regular monos,

with H the right adjoint to U . Let 〈A, α〉 and 〈B, β〉 be Γ-coalgebras. Then there

are two evident categories of regular relations to consider. On the one hand, there

are the regular relations on A and B in E , that is,

RegSubE(A×B).

On the other, there are the regular relations on 〈A, α〉 and 〈B, β〉 in EΓ,

SubCoalg(〈A, α〉 × 〈B, β〉),

which we abbreviate as SubCoalg(α× β). We define a functor

Uα,β :SubCoalg(α× β) // RegSub(A× B)

as follows: Given a regular relation 〈R, ρ〉 over 〈A, α〉 and 〈B, β〉, with projections

r1, r2, we factor

〈Uπα, Uπβ〉 ◦ U〈r1, r2〉

(i.e., we factor 〈Ur1, Ur2〉), as shown in Figure 11. In other words, Uα,β = ∃〈Uπα, Uπβ〉◦

Uα×β.

R_��

��

// // Uα,β〈R, ρ〉
_��

��
U(α × β)

〈Uπα, Uπβ〉
// A× B

Figure 11. The definition of Uα,β.

We define the category Bisim(α, β) of bisimulations over 〈A, α〉 and 〈B, β〉 to

be the image of Uα,β in the category of regular relations over A and B (that is,

RegSub(A × B)). Explicitly, Bisim(α, β) is the full subcategory of RegSub(A × B)

consisting of Uα,β〈R, ρ〉 for 〈R, ρ〉 ∈ SubCoalg(α× β).

SubCoalg(α× β)

Uα,β
..

** **

RegSub(A× B)

Bisim(α, β)
44

99

Figure 12. The definition of Bisim(α, β).
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Definition 2.5.4. Let 〈A, α〉 and 〈B, β〉 be Γ-coalgebras. A regular relation R

on A and B is a bisimulation on 〈A, α〉 and 〈B, β〉 just in case there is a regular

relation 〈S, σ〉 on 〈A, α〉 and 〈B, β〉 such that R is the image of

S � ,2 //U(α× β) //A× B .

In other words, R is a bisimulation just in case R = ∃〈Uπα, Uπβ〉S for some relation

〈S, σ〉 on 〈A, α〉 and 〈B, β〉.

This definition of bisimulation differs from the definition one finds in [JR97], etc.

Typically, one defines a bisimulation over 〈A, α〉 and 〈B, β〉 as a relation R on A

and B such that R can be augmented with a structure map making it a relation in

EΓ. This simpler definition is well-suited for coalgebras over Set, but is not well-

behaved when the base category does not satisfy the axiom of choice. For instance,

the simpler definition does not, in general, define a class of relations closed under

joins. Definition 2.5.4 is a proper generalization of the definition of bisimulation in

ibid, since it reduces to the more familiar definition of bisimulation in the presence

of choice, as the following theorem shows (it also reduces to the simpler definition if

Γ preserves regular relations — see Corollary 2.5.27).

The next few theorems give standard examples of bisimulations, which can be

found in most introductions to coalgebras. One important construction of bisimula-

tions does not seem to hold in this setting generally, however. It is apparently not

the case that if R and S are composable bisimulations, then R ◦ S is a bisimulation.

From [JR97], we have a proof that R ◦ S is a bisimulation, given that E satisfies

the axiom of choice. In Section 4.2.6, we prove (using the internal logic of EΓ and

E developed in Chapter 4) that R ◦ S is a bisimulation if Γ preserves regular rela-

tions. In both of the cases in which we have proofs that bisimulations compose, the

bisimulations consist of those relations in E which can be augmented with structure

maps, making the projections homomorphisms. More general results would be nice,

but the situation is unclear.

Theorem 2.5.5. For any coalgebra 〈A, α〉, ∆A is a bisimulation.

Proof. Uα,α∆α is the image of

〈Uπ1, Uπ2〉 ◦ U〈idα, idα〉 = 〈U idα, U idα〉 = 〈idA, idA〉,

and so Uα,α∆α = ∆A. �

Theorem 2.5.6. Let f :〈A, α〉 //〈B, β〉 be a Γ-homomorphism. Then the graph

of Uf is a bisimulation.

Proof. The graph of f in EΓ is the relation 〈〈A, α〉, idα, f〉. Hence, Uα,β graph(f)

is the image of

〈Uπα, Uπβ〉 ◦ U〈idα, f〉 = 〈idA, Uf〉.
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Therefore, Uα,β graph(f) = graph(Uf). �

The next theorem is well-known, first appearing in [Rut96]. Since our definition

of bisimulations include all those relations which are the carrier for some subcoalgebra

of α× β, the result also holds in our setting. We include the proof nonetheless.

Theorem 2.5.7. If Γ preserves weak pullbacks, then for any pair of homomor-

phisms

f :〈A, α〉 //〈B, β〉,

g :〈C, γ〉 //〈B, β〉,

the pullback of f along g (properly, Uf along Ug) is a bisimulation.

Proof. Let E be the pullback of f along g, as shown in Figure 13. Since, by

assumption, Γ preserves weak pullbacks, the top face is a weak pullback. Hence, there

is a structure map ε :E //ΓE making the two projections homomorphisms. Therefore,

the inclusion E � ,2 //A× C factors through U(α × β) //A× B and thus 〈E, ε〉 is a

regular relation in EΓ. It is easy to verify that Uα,β〈E, ε〉 = E.

ΓE //

""E
EE

EE
EE

E ΓC

""E
EE

EE
EE

E

ΓA // ΓB

E

OO

//

""E
EE

EE
EE

EE
C

OO

""E
EE

EE
EE

EE

A //

OO

B

OO

Figure 13. Pullbacks of homomorphisms are bisimulations.

�

Theorem 2.5.8. Let 〈A, α〉 and 〈B, β〉 be Γ-coalgebras and suppose that E sat-

isfies the axiom of choice. Then a relation R on A and B is a bisimulation iff there

is a structure map

ρ :R //ΓR

such that the projections r1 and r2 are Γ-homomorphisms.

Proof. Clearly, if R has a structure map making r1 and r2 homomorphisms,

then R is a bisimulation.
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Suppose that R is a bisimulation. Let 〈S, σ〉 ∈ SubCoalg(α × β) such that R =

Uα,β〈S, σ〉, with p :S � ,2R the (necessarily regular) epi part of the factorization, as

shown in Figure 14, and i the right inverse of p. Then it is easy to see that Γp ◦ σ ◦ i

suffices as the desired structure map. �

ΓS
Γp // ΓR

� ,2 // ΓA× ΓB

S

σ

OO

p
� &-
R

� ,2 //*qx
i

ii

OO

A× B

α×β

OO

Figure 14. Definition of a structure map for a bisimulation, given choice.

2.5.1. The right adjoint to Uα,β. In Section 2.2.1, we saw that the subcoalge-

bra forgetful functor Uα has a right adjoint. We generalize that result to the functor

Uα,β here.

Remark 2.5.9. In what follows, we write α× β as an abbreviation for 〈A, α〉 ×

〈B, β〉. This is not to be confused with the morphism

α× β :A× B //ΓA× ΓB

in E .

Theorem 2.5.10. Uα,β has a right adjoint.

Proof. By definition,

Uα,β = ∃〈Uπα, Uπβ〉 ◦ Uα×β.

Since Uα×β a [−]α×β and ∃〈Uπα, Uπβ〉 a 〈Uπα, Uπβ〉
∗ (pullback along 〈Uπα, Uπβ〉), the

composite

[−]α,β = [−]α×β ◦ 〈Uπα, Uπβ〉
∗

is a right adjoint to Uα,β. �

Corollary 2.5.11. Uα,β preserves colimits.

Theorem 2.5.12. Given R ≤ A×B, A = U〈A, α〉, B = U〈B, β〉, the coalgebraic

relation [R]α,β is the pullback shown below, where the arrow on the bottom is the

adjoint transpose of 〈Uπα, Uπβ〉.

[R]α,β
� ,2 f //

_��
g

��

_� HR_��
H〈r1, r2〉

��
α× β � ,2 // H(A×B)
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[p∗R] //
_�_��

��

Hp∗R //
_��

��

HR_��

��
α× β

ηα×β

// HU(α× β)
Hp

// H(A× B)

Figure 15. Alternate definition of [−]α,β

Proof. Let p = 〈Uπ1, Uπ2〉 :U(α× β) //A×B . By Theorem 2.2.11 ( 3), [p∗R]

is the pullback on the left hand square of Figure 15. The right hand square is also a

pullback, since H preserves pullbacks. Hence, the composite is a pullback. �

The adjoint functors Uα,β and [−]α,β give rise to a monad on RegSub(A×B) and

a comonad on SubCoalg(α× β), that is, an interior operator �α,β = Uα,β[−]α,β and a

closure operator � α,β = [−]α,βUα,β. In the case of subcoalgebras, the comonad [−]αUα
is just the identity on SubCoalg(〈A, α〉), but for relations, this is not generally the

case, as the following example shows. Instead, the closure of a coalgebraic relation

〈R, ρ〉 on 〈A, α〉 and 〈B, β〉 is the largest relation 〈S, σ〉 such that

Uα,β〈R, ρ〉 = Uα,β〈S, σ〉.

We return to a discussion of �α,β in Section 2.5.2.

Example 2.5.13. Consider again the Pfin-coalgebras 〈A, α〉 and 〈X, χ〉 from Ex-

ample 2.4.10. Recall that A is the set {a, b, c} and X the set {w, x, y, z}. The

structure maps α :A //PfinA and χ :X //PfinX are given by:

α(a) = ∅, χ(w) = ∅,

α(b) = {b}, χ(x) = {x},

α(c) = {b, c}, χ(y) = {x, y},

χ(z) = {w, z}.

We calculated their product as the set

{〈a, w, ∅〉, 〈b, x, Sb,x〉, 〈b, y, Sb,y〉, 〈c, x, Sc,x〉}

joined with the set

{〈c, y, S〉 | V ⊆ S ⊆ V ∪ Sc,y or Sc,y ⊆ S ⊆ V ∪ Sc,y},
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where

Sb,x = {〈b, x, Sb,x〉},

Sb,y = {〈b, x, Sb,x〉, 〈b, y, Sb,y〉},

Sc,x = {〈b, x, Sb,x〉, 〈c, x, Sc,x〉},

Sc,y = {〈b, x, Sb,x〉, 〈c, y, Sc,y〉},

V = {〈c, x, Sc,x〉, 〈b, y, Sb,y〉}.

We consider a relation 〈R, ρ〉 on 〈A, α〉 and 〈X, χ〉 where

R = {〈a, w, ∅〉, 〈b, x, Sb,x〉, 〈b, y, Sb,y〉, 〈c, x, Sc,x〉, 〈c, y, Sc,y〉}.

The structure map ρ on R is the projection π3.

One sees that Uα,χR is the relation {〈a, w〉, 〈b, x〉, 〈b, y〉, 〈c, x〉, 〈c, y〉}. In other

words, Uα,χR is the largest bisimulation on 〈A, α〉 and 〈X, χ〉. Consequently,

� α,χ〈R, ρ〉 = α× χ 	 〈R, ρ〉.

The following observation is a standard fact about Galois correspondences.

Theorem 2.5.14. The following posets are isomorphic:

Fix(�α,β) ∼= Fix( � α,β)
∼= Bisim(α, β),

(where Fix is the poset of fixed points of the operator).

Let f : 〈A, α〉 //〈B, β〉 be given. We saw, in Corollary 2.2.9 that Uf factors

through a subobject P of B just in case f factors through [P ]. We prove an analogous

result here for pairs of homomorphisms into α× β. First, we prove a lemma.

Lemma 2.5.15. Let

f :〈C, γ〉 //〈A, α〉,

g :〈C, γ〉 //〈B, β〉

be Γ-homomorphisms. Then

Uα,β Im〈f, g〉 = Im〈Uf, Ug〉.

Proof. We use the facts that

〈Uf, Ug〉 = 〈Uπα, Uπβ〉 ◦ U〈f, g〉,

U Im〈f, g〉 = ImU〈f, g〉.

The commutative diagram in Figure 16 completes the proof. �
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•

U〈f, g〉 $$H
HH

HH
HH

HH
HH

// // U Im〈f, g〉
_��

��

// // Uα,β Im〈f, g〉
_��

��
U(α × β)

〈Uπα, Uπβ〉
// A×B

Figure 16. Uα,β commutes with Im.

Theorem 2.5.16. Let

f :〈C, γ〉 //〈A, α〉,

g :〈C, γ〉 //〈B, β〉

be Γ-homomorphisms and R a relation on A and B. Then 〈f, g〉 factors through

[R]α,β just in case 〈Uf, Ug〉 factors through R.

Proof.

Im〈f, g〉 ≤ [R]α,β iff Uα,β Im〈f, g〉 ≤ R iff Im〈Uf, Ug〉 ≤ R.

�

Corollary 2.5.17. Let the left hand square of Figure 17 be a pullback. Then the

right hand square is also a pullback.

•
h

""��

k

��

•
h

''""

k

��

P //

��

_� B

g

��

[P ]α,β //

��

〈B, β〉

g

��
A

f
// C 〈A, α〉

f
// 〈C, γ〉

Figure 17. [P ] is a pullback.

Proof. Let h and k be homomorphisms making the right hand square commute.

Then the left hand square, which is just the image of the right hand square under

U , also commutes, and so there is a unique factorization of 〈h, k〉 through P . Apply

Theorem 2.5.16 to conclude that 〈h, k〉 factors through [P ]. �

Remark 2.5.18. Example 2.5.13 also shows that the functor Uα,β is not generally

full. In this example, Uα,β(α × β) ≤ Uα,β〈R, ρ〉, but α × β 6≤ 〈R, ρ〉. This is a

difference between the subcoalgebra functor Uα and the bisimulation functor Uα,β.
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The functor [−]α,β is a natural transformation between contravariant bifunctors.

In order to make that precise, we define the functors RegRel(〈A, α〉, 〈B, β〉) (abbre-

viated RegRel(α, β)) and RegRel(A,B) as bifunctors. Their definition is clear from

the preceding discussion. Namely,

RegRel(α, β) = SubCoalg(α× β) and

RegRel(A,B) = RegSub(A×B).

Thus, the effect of RegRelEΓ
, say, on a pair of maps

f :〈A, α〉 //〈C, γ〉

g :〈B, β〉 //〈D, δ〉

is a functor

RegRel(f, g) :RegRel(γ, δ) // RegRel(α, β).

Namely, it takes a relation 〈R, ρ〉 on 〈C, γ〉 and 〈D, δ〉 to the pullback shown below.

(f × g)∗〈R, ρ〉
_�

//
_��

��

〈R, ρ〉
_��

��
α× β

f×g
// γ × δ

Theorem 2.5.19. [−] :RegRelE ◦U × U +3 RegRelEΓ
is natural. I.e., for every pair

of maps, f and g, as above,

[−] ◦ (Uf × Ug)∗ = (f × g)∗ ◦ [−].

Proof. Let f :〈A, α〉 //〈C, γ〉 and g :〈B, β〉 //〈D, δ〉 be given. Let R be a reg-

ular relation over C and D and S = (Uf × Ug)∗R. We will show that [S]α,β =

(f, g)∗[R]γ,δ.

[S]α,β

##H
HH

HH
HH

HH
//

_��

��

HS

''OOOOOOOOOOOOOO_��

��

[R]γ,δ //
_��

��

HR_��

��

α× β

f×g
III

$$I
II

// HA×HB

HUf×HUg
OOO

OO

''OOO
OO

γ × δ
ηγ×ηδ

// HC ×HD

Figure 18. [−] is natural.
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In Figure 18, the front and rear faces are pullbacks by Theorem 2.5.12. The right

hand face is also a pullback, since H preserves pullbacks. The bottom commutes by

naturality. The arrow

[S]α,β //[R]γ,δ

is the unique map making the top and left hand squares commute (due to the pullback

in front).

Because the composite of the left and front faces is a pullback, and so is the front

face itself, we see that the left face is a pullback. �

For each pair of maps,

f :〈A, α〉 //〈C, γ〉

g :〈B, β〉 //〈D, δ〉

the functor (f × g)∗ (i.e., RegRel(f, g)) has a left adjoint

∃f,g :RegRel(α, β) // RegRel(γ, δ).

Namely, given a regular relation 〈R, ρ〉 on 〈A, α〉 and 〈B, β〉, we take the epi-regular

mono factorization shown below.

〈R, ρ〉 // //
_��

��

∃f,g〈R, ρ〉
_��

��
α× β

f×g
// γ × δ

The same fact holds in E as well. That is, for any pair of maps h and k, the pullback

functor (h× k)∗ has a left adjoint, ∃h,k.

RegRel(α, β)

Uα,β a

��

∃f,g ..
RegRel(γ, δ)

(f×g)∗
⊥nn

Uγ,δ a

��
RegRel(A,B)

[−]α,β

RR

∃Uf,Ug..
RegRel(C,D)

[−]γ,δ

RR

(Uf×Ug)∗
⊥nn

Figure 19. Uα,β commutes with ∃

The following corollary is found in [JR97, Lemma 5.3], where it is proved for

coalgebras over Set. Of course, the proof offered here differs inasmuch as it uses our

definition of bisimulation, but the basic approach is the same.
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Name Category Description

Subalgebra SubAlg A subobject of 〈A, α〉 preserved by U .
Pre-congruence PreCong A relation on 〈A, α〉 and 〈B, β〉 preserved

by U
Congruence Cong A pre-congruence equivalence relation

Subcoalgebra SubCoalg A regular subobject of 〈A, α〉 (necessarily
preserved by U).

Bisimulation Bisim The image of a regular relation over
〈A, α〉 and 〈B, β〉

Bisimulation equivalence BisimEq A bisimulation which is an equivalence
relation

Table 1. A summary of predicates and relations.

Corollary 2.5.20. Uα,β commutes with ∃. In other words, for any pair of ho-

momorphisms f :〈C, γ〉 //〈A, α〉, g :〈C, γ〉 //〈B, β〉, the image of 〈f, g〉 is a bisim-

ulation over 〈A, α〉 and 〈B, β〉.

Proof. The right adjoints in Figure 19 commute by Theorem 2.5.19, and so the

left adjoints also commute. Thus,

∃Uf,Ug ◦ Uα,β = Uγ,δ ◦ ∃f,g.

�

2.5.2. �α,β and relation-preserving functors. In Section 2.2.2, we saw that

the operator �α = Uα◦[−]α is an S4 modal operator. The situation for the analogous

bisimulation operator is more difficult. The operator

�α,β :RegRel(A,B) // RegRel(A,B)

defined by �α,β = Uα,β[−]α,β easily satisfies certain of the properties of S4 operators,

namely

• � is monotone;

• � is deflationary;

• � is idempotent.

These properties are satisfied by any comonad on a poset. Nonetheless, it is not clear

that � is a normal modal operator, that is, that

�α,βR ∧ �α,βS ≤ �α,β(R ∧ S).(12)

Indeed, even over Set, bisimulations need not be closed under finite meets, and so

� need not be normal. Worse, even if � does preserve binary meets, it does not

generally preserve >, so � simply won’t be S4 typically.
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In this section, we give sufficient conditions that � preserves binary meets, namely

that the endofunctor Γ preserve regular relations. This is a fairly strong condition

and is not met by some functors of interest. In the following example, we will show

that the � operator for Pfin-coalgebras is not normal.

Example 2.5.21. Consider the finite powerset functor and the coalgebra 〈A, α〉

represented by the graph in Figure 20. Let

R = {〈a, a〉, 〈b, b〉, 〈c, c〉},

S = {〈a, a〉, 〈b, c〉, 〈c, b〉}.

Then �R = R, �S = S and �(R∧S) = �{〈a, a〉} = ∅. (Thanks to Tobias Schröder

for this example.)

a

����
��

��
��

��>
>>

>>
>>

>

b c

Figure 20. Pfin-bisimulations are not closed under ∧.

As we will see, if Γ preserves regular relations, then the category of bisimula-

tions Bisim(α, β) inherits much of its structure from the category RegSub(A × B)

of relations in E . In fact, in this case, the category Bisim(α, β) is isomorphic to

SubCoalg(α × β) and is a full subcategory of RegSub(A × B), with the inclusion a

complete Heyting algebra homomorphism. Such a close connection between these

three categories requires a correspondingly strong assumption on Γ.

From [GS01], we learn that a functor Γ preserves pullbacks iff Γ preserves weak

pullbacks and mono 2-sources (i.e., binary relations). Indeed, the same claim holds

if we replace mono 2-sources with regular mono 2-sources (regular relations). We

include this and other proofs from ibid here, replacing mono 2-sources with regular

relations.

Definition 2.5.22. A functor Γ preserves regular relations if, for every regular

relation 〈R, r1, r2〉 on X and Y , the triple 〈ΓR, Γr1, Γr2〉 is a regular relation on

ΓX, ΓY , i.e., 〈Γr1, Γr2〉 is a regular mono.

As Gumm and Schröder showed, it is sufficient that Γ take binary products to (in

our setting, regular) relations.

Lemma 2.5.23. Γ preserves regular relations iff, for every X, Y ,

〈Γ(X × Y ), ΓπX , ΓπY 〉

is a regular relation.
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Proof. Clearly if Γ preserves regular relations, then it preserves the regular rela-

tion X×Y . Suppose, conversely, that for every X, Y , Γ(X×Y ) is a regular relation,

i.e., 〈ΓπX , ΓπY 〉 is a regular mono. Then, for any regular relation R � ,2 //X × Y , the

composite

ΓR � ,2 //Γ(X × Y ) � ,2 //ΓX × ΓY

is a regular relation. �

Theorem 2.5.24. Γ preserves pullbacks iff Γ preserves weak pullbacks and regular

relations.

Proof. If Γ preserves pullbacks, then Γ takes the pullback square

X × Y //

��

_� Y

��
X // 1

to a pullback, so 〈Γπ1, Γπ2〉 is a regular mono. Apply Theorem 2.5.23 to conclude

that Γ preserves regular relations.

For the converse, notice that pullbacks are both regular relations and weak pull-

backs, and that a weak pullback which is a regular relation is also a pullback. �

On the one hand, as the following theorems show, preservation of regular relations

is the “right” condition to ensure well-behaved bisimulations. On the other hand,

preservation of regular relations is an unfortunately strong condition, not satisfied by

many functors of interest (such as Pfin). Nonetheless, there seems to be no reasonable

middle ground. If one wants � to be well-behaved as a modal operator (although,

even here, we will typically not preserve the final subobject), then one must restrict

interest to pullback-preserving functors (or some similarly suitable domain).

Theorem 2.5.25. If Γ preserves regular relations, then U preserves regular rela-

tions. In other words, for any relation 〈〈R, ρ〉, r1, r2〉 on 〈A, α〉, 〈B, β〉,

Uα,β〈〈R, ρ〉, r1, r2〉 = 〈R, r1, r2〉.

Proof. It suffices to show that, for every pair of coalgebras 〈A, α〉 and 〈B, β〉,

U(α× β) //A× B is a regular mono. We sketch how to do that here, leaving details

to the reader.

First, one shows that U creates epi-regular mono 2-source factorizations. That is,

for each pair of homomorphisms,

f :〈C, γ〉 //〈A, α〉,

g :〈C, γ〉 //〈B, β〉,
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there is a unique epi p :〈C, γ〉 // //〈D, δ〉 and pair

h :〈D, δ〉 //〈A, α〉,

k :〈D, δ〉 //〈B, β〉,

such that h ◦ p = f and k ◦ p = g and 〈Uh, Uk〉 is regular mono in E .

Say that a regular relation 〈S, s1, s2〉 on A and B is α, β-invariant if there is a

structure map σ :S //ΓS such that s1 and s2 are homomorphisms. Let R be the

join of all α, β-invariant relations S. Using the fact about epi-regular mono 2-source

factorizations above, one can show that R is itself α, β-invariant, with unique struc-

ture map ρ :R //ΓR . Moreover, one can show that the coalgebra 〈R, ρ〉 is, in fact,

the product of 〈A, α〉 and 〈B, β〉. Hence, U(α × β) is a regular relation over A and

B. �

The categories RegRel(α, β) and RegRel(A,B) are both complete Heyting algebras,

since they are simply categories of subobjects of α× β and A×B, respectively. The

forgetful functor Uα,β is not, however, a Heyting algebra homomorphism in general,

since it does not preserves meets (Example 2.5.21). By Theorem 2.2.6, we know that

Uα×β preserves meets, but the functor

∃〈Uπ1, Uπ2〉 :RegSub(U(α× β)) // RegSub(A× B)

generally does not preserve meets. Assuming that Γ preserves regular relations,

however, ∃〈Uπ1, Uπ2〉 does preserve meets, and hence we have the following corollary.

Corollary 2.5.26. If Γ preserves regular relations, then � distributes over ∧.

In other words, if Γ preserves regular relations, the meet (in E) of two bisimulations

is again a bisimulation.

Proof. Let 〈A, α〉 and 〈B, β〉 be given, R and S be relations over A and B, and

suppose Γ preserves regular relations. Then, by Theorem 2.5.25, U also preserves

regular relations and, hence,

p = 〈Uπ1, Uπ2〉 :U(α× β) � ,2 //A× B

is a regular mono. Thus, ∃p distributes over ∧ and so

�α,β(R ∧ S) = ∃p�α×βp
∗

= ∃p�α×β(p
∗R ∧ p∗S)

= ∃p(�α×βp
∗R ∧ �α×βp

∗S) (by Theorem 2.2.16)

= ∃p�α×βp
∗R ∧ ∃p�α×βp

∗S = �α,βR ∧ �α,βS.

�
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As we saw in Theorem 2.5.8, assuming the axiom of choice, bisimulations are

relations which can be augmented with structure maps, making them relations in EΓ.

The following corollary shows that, assuming Γ preserves pullbacks, the same result

holds. Thus, under this (reasonably strong) assumption, the definition of bisimulation

found in [JR97], etc., again coincides with our definition of bisimulation.

Corollary 2.5.27. If U preserves regular relations, a relation R on A and B

is a bisimulation iff there is a (necessarily unique) structure map ρ :R //ΓR making

〈R, ρ〉 a relation on 〈A, α〉 and 〈B, β〉.

Proof. Let p = 〈Uπ1, Uπ2〉 and let R be a bisimulation, R = ∃p ◦ Uα×β〈T, τ〉

for some 〈T, τ〉 ∈ RegRel(α, β). Since p is a regular mono, ∃pT = T and so the result

follows. �

2.5.3. The algebraic dual of bisimulations. A bisimulation is a relation be-

tween the carriers of two coalgebras which, loosely speaking, respects the structure

maps of the coalgebras. In this way, a bisimulation is analogous to a pre-congruence.

There is another structure on algebras which is related to the notion of a bisimulation

— namely, the dual structure. For this, we explicitly dualize Definition 2.5.1 (regular

relation).

Definition 2.5.28. Let A, B be objects in a category C with finite coproducts.

A regular epi

p :A+B � ,2C

is called a regular co-relation on A and B.

Remark 2.5.29. A more general definition of regular co-relation can be found in

[BW85], where one does not assume the category C has finite coproducts. See also

Remark 2.5.2. We will not use this approach, but instead assume conditions sufficient

to ensure that our category of algebras has coproducts.

Throughout the remainder, we assume that E is complete, exact, regularly co-

well-powered and finitely cocomplete, that Γ preserves exact sequences and that the

algebraic forgetful functor U is monadic. By Theorem 2.4.8, then, EΓ has coproducts

and by Theorem 1.4.11, EΓ is exact. While we do not require exactness to dualize

the preceding development of bisimulations, it does allow the dual theorems to be

stated in familiar terms (i.e., in terms of equivalence relations instead of regular

co-relations).

Let 〈A, α〉 and 〈B, β〉 be Γ-coalgebras. Let RegCoRel(A,B) be the category of

regular corelations over A and B (in E), and RegCoRel(α, β) the category of regular

corelations over 〈A, α〉 and 〈B, β〉. Then, there is a forgetful functor

Uα,β :RegCoRel(α, β) // RegCoRel(A,B)
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which takes a regular co-relation

p :α + β � ,2〈C, γ〉

to the regular epi-mono factorization of Up ◦ [Uκα, Uκβ] (where κα and κβ are the

co-projections of the coproduct). See Figure 21.

A+B
[Uκα,Uκβ]

//

_��

U(α + β)

Up
_��

Uα,β〈C, γ〉 // // C

Figure 21. The definition of Uα,β :RegCoRel(α, β) // RegCoRel(A,B).

Because both E and EΓ are exact, we have isomorphisms

RegCoRel(A,B) ∼= EqRel(A+B),

RegCoRel(α, β) ∼= Cong(α+ β).

We state the effect of Uα,β in terms of congruences on α+β and equivalence relations

on A + B. Let 〈R, ρ〉 be a congruence on α + β. Then Uα,β〈R, ρ〉 is given by the

pullback of R along [Uκα, Uκβ]. In other words, elements x and y of A+B are related

by Uα,β〈R, ρ〉 if and only iff x and y are related by R as elements of α+ β.

2.6. Coinduction and bisimulations

The principle of coinduction from Section 1.5.3 is often expressed in terms of

bisimulations. We follow that tradition in this section by restating the results of

Theorem 1.5.25 in terms of bisimulations. To begin, we define what it means for

elements of two coalgebras to be bisimilar. Then, we prove the usual statement of

coinduction, namely, any two bisimilar elements of the final coalgebra are equal. The

material found here differs from the standard presentation (say, in [JR97]) inasmuch

as the definition of bisimulation (and, hence, bisimilar) differ from the standard

definitions. As before, if E satisfies the axiom of choice, the definitions agree.

Definition 2.6.1. Let 〈A, α〉 and 〈B, β〉 be Γ-coalgebras and let 〈a, b〉 ∈ A×B.

We say that a and b are bisimilar, denoted a ∼α,β b or just a ∼ b, if

〈a, b〉 ∈ �α,β(A×B).

(Note that �α,β(A× B) is just Uα,β(α× β).)

Two elements are bisimilar just in case there is a bisimulation relating them, as

the following theorem shows.
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Theorem 2.6.2. a ∼ b iff there is a bisimulation R such that 〈a, b〉 ∈ R. I.e.,

a ∼ b iff there is a coalgebraic relation 〈R, ρ〉 on 〈A, α〉 and 〈B, β〉 such that 〈a, b〉 ∈

Uα,β〈R, ρ〉.

Proof. If a ∼ b then 〈a, b〉 is an element of the bisimulation �α,β(A × B). On

the other hand, if 〈a, b〉 ∈ R, where R is a bisimulation, then

〈a, b〉 ∈ R = �α,βR ≤ �α,βA× B.

�

Recall from Section 1.5.3 that a coalgebra is simple if it has no proper quotients.

Theorem 2.6.3. If 〈A, α〉 is simple, then �α,α(A× A) = ∆A.

Proof. By Theorem 1.5.25, if 〈A, α〉 is simple, then ∆α is the largest relation

on 〈A, α〉. Hence, [(]α,αA× A) = ∆α and so (by Theorem 2.5.5)

�α,α(A× A) = Uα,α∆α = ∆A

�

Corollary 2.6.4. If 〈A, α〉 is simple then, for every element 〈a, a′〉 of A × A,

a ∼ a′ iff a = a′.

Theorem 2.6.2 and Corollary 2.6.4 provide the proof principle of coinduction: To

prove two elements of a simple coalgebra are equal, it suffices to show that there is a

bisimulation relating them.

The notion of bisimilarity is intended to capture the informal notion of obser-

vational indistinguishability (see [JR97] for another presentation of this viewpoint).

A bisimulation is a relation that is preserved by applications of the structure maps.

Think of the structure map for a coalgebra as a number of destructor operations that

allow one to take a data structure apart and look at the substructures. For instance,

the structure map for an A 7→ Z × A coalgebra consists of two destructor functions:

a head function, hα, that gives the head of a stream, and a tail function, tα, which

returns the rest of the stream. We treat the elements of A as the internal state of the

coalgebra, and so view them as unobservable, while the elements of Z are viewed as

observable output. Hence, these destructors give a means of observing the behavior

of the coalgebra A, by applying tα some number of times, followed by hα. This intu-

ition regarding observable behavior can be made explicit for polynomial functors and

similar inductively given classes of functors, but we do not do so here. See [Jac99]

for an idea of how this is done, and see [Cı̂r00] for a more formal (and sophisticated)

notion of a coalgebra observer.

With this informal notion of observations of a coalgebra, two elements of a coal-

gebra are bisimilar just in case they “look the same.” The principle of coinduction,



2.6. COINDUCTION AND BISIMULATIONS 107

in this perspective, says that two elements of a simple coalgebra that look the same

are the same. In order to justify this informal interpretation of coinduction, we will

look at a few examples.

Remark 2.6.5. The examples below involve coalgebras over Set. Consequently,

we make use of the fact that, thanks to the axiom of choice, a relation R on A and B

is a bisimulation iff there is a structure map ρ :R //ΓR such that 〈R, ρ〉 is a relation

on 〈A, α〉 and 〈B, β〉. See Theorem 2.5.8.

Example 2.6.6. Consider the functor ΓA = Z×A above (see also Example 1.1.7).

Let 〈A, α〉 and 〈B, β〉 be Γ-coalgebras, and a ∈ A and b ∈ B. Then a is bisimilar to

b just in case

hα(a) = hβ(b),(13)

tα(a) ∼ tβ(b).(14)

Indeed, to prove that a and b satisfying (13) and (14) are bisimilar, we define a

relation R on A and B by

cRd↔ ∃n . tnα(a) = c ∧ tnβ(b) = d.

Then, it is easy to confirm that R is a bisimulation.

Bisimilarity for the functor ΓA = Z × A + 1 is very similar. Let 〈A, α〉 and

〈B, β〉 be Γ-coalgebras (see Example 1.1.8). We can show that a ∼ b iff α(a) = ∗

and β(b) = ∗ or if α(a) 6= ∗, β(b) 6= ∗ and a, b satisfy (13) and (14).

Example 2.6.7. Let P be a polynomial functor, and 〈A, α〉 and 〈B, β〉 be two

P-coalgebras (see Example 1.1.9). Then an element a ∈ A is bisimilar to an element

b ∈ B just in case

label(a) = label(b),(15)

br(a) = br(b),(16)

childj(a) ∼ childj(b) for all j < br(a).(17)

Example 2.6.8. Let AtProp be a collection of atomic propositions and consider

the functor

ΓA = P(AtProp) × P(A).

A Γ-coalgebra is a Kripke model for the language L(AtProp) (see Example 1.1.10).

Let A = 〈A, α〉 and B = 〈B, β〉 be two such coalgebras, and a ∈ A, b ∈ B. We have
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a ∼ b iff

∀a′ ∈ π2 ◦ α(a) ∃b′ ∈ π2 ◦ β(b) . a′ ∼ b′,

∀b′ ∈ π2 ◦ β(b) ∃a′ ∈ π2 ◦ α(a) . a′ ∼ b′,

π2 ◦ α(a) = π2 ◦ β(b).

One can confirm, using these conditions, a ∼ b iff, for all φ ∈ L(AtProp),

a |= � φ iff b |= � φ.
See [BM96, Theorem 11.7] for the proof of this.

Example 2.6.9. Recall from Example 1.1.11 that coalgebras for the functor

ΓS = (PfinS)I

can be viewed as automata taking input from I. These are rather basic automata

here, simply moving from one state to another, without giving any “output”, and

so the notion of bisimilarity is trivial. Namely, given any two coalgebras 〈A, α〉and

〈B, β〉and any a ∈ A, b ∈ B, we have a ∼ b.

To dress these automata up a bit, we will add a set of outputs, O, and add a map

taking each state to its output. In other words, we wish to consider coalgebras for

the functor

∆S = O × (PfinS)I.

One can show that, given a ∈ U〈A, 〈αo, αs〉〉 and b ∈ U〈B, 〈βo, βs〉〉 that a ∼ b just

in case

• αo(a) = βo(b);

• for all i in I and all a′ such that a
i //a′ , there is a b′ such that b

i //b′ ;

• for all i in I and all b′ such that b
i //b′ , there is an a′ such that a

i //a ′.

We will discuss the relationship between bisimulations and maps into the final

coalgebra in more detail in Section 3.9. For now, we state a simple fact: bisimilar

elements are mapped to the same element of the final coalgebra.

Theorem 2.6.10. Let 〈A, α〉 and 〈B, β〉 be Γ coalgebras, and a ∈ A, b ∈ B be

global points. Let

!α :〈A, α〉 //H1,

!β :〈B, β〉 //H1

be the coalgebra homomorphisms into the final coalgebra. If the terminal object 1 in

E is projective with respect to epis, then

a ∼ b implies !α(a) =!β(b).

If Γ preserves weak pullbacks, then the converse also holds.
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Proof. Let a ∼ b. Then 〈a, b〉 ∈ Uα,β(α× β), shown below.

1
〈a, b〉

//

c

��

Uα,β(α× β)
_��

��
U(α× β) //

p
77 77nnnnnnnnnn
A× B

Because 1 is projective with respect to epis, there is an element c ∈ U(α × β) such

that p(c) = 〈a, b〉. Now,

!α(a) =!α ◦ πA(〈a, b〉)

=!α ◦ πα(c)

=!β ◦ πβ(c) =!β(b).

Under the assumption that Γ preserves weak pullbacks, then so does U [JPT+98,

Lemma 2.8]. Thus, the diagram below is a weak pullback.

U(α× β) //

��

A

!α
��

B
!β

// UH1

Hence, if !α ◦ πA(〈a, b〉) =!β ◦ πB(〈a, b〉), then 〈a, b〉 factors through U(α× β) and so

a ∼ b. �

2.7. n-simulations

One can generalize bisimulations to include n-simulations. This allows a more

uniform treatment of these distinguished relations in an internal logic in Section 4.1.2.

We briefly present the definitions and main theorems here.

A regular nary relation@regular n-ary relation over A1, . . . , An is a regular sub-

object of
∏
Ai.

For each finite family 〈A1, α1〉, . . . , 〈An, αn〉 of coalgebras, we define a map

Uα1 ,... ,αn :SubCoalg(
∏
αi) // RegSub(

∏
Ai) ,

by Uα1,... ,αn = ∃〈Uπ1,... ,Uπn〉 ◦ U
�
αi

. We define the category n-sim(α1, . . . , αn) to be

the image of this functor.

The functor Uα1,... ,αn has a right adjoint, [−]α1,... ,αn , defined by

[−]α1,... ,αn = [−] � αi
◦ 〈Uπ1, . . . , Uπn〉

∗.

This gives rise to a comonad �α1,... ,αn on RegSub(
∏
Ai), and a monad � α1,... ,αn

on

SubCoalg(
∏
αi), that is, an interior operator and a closure operator, respectively.

The � operator takes a relation to the largest n-simulation contained in it, while the
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� operator takes a coalgebraic relation to the largest relation with the same image

(under Uα1,... ,αn).

In Section 2.5.2, we showed that the bisimulation modal operator is normal if

the endofunctor Γ preserves regular relations. The following theorems shows that

the same assumption suffices to conclude that the n-simulation modal operate is also

normal (for any n).

Theorem 2.7.1. If Γ preserves regular binary relations and regular monos, then

Γ preserves regular n-ary relations.

Proof. By induction on n. The case for n = 1, 2 is by assumption. Suppose that

Γ preserves regular n-ary relations. It suffices to show that, given a family {Ai}i<n+1,

Γ
∏
Ai is a regular subobject of

∏
ΓAi. By inductive hypothesis, Γ

∏
i<nAi is a

regular subobject of
∏

i<n ΓAi. Hence, we have

Γ(
∏

i<nAi × An)
� ,2 //Γ

∏
i<nAi × ΓAn

� ,2 //
∏

i<n ΓAi × ΓAn ,

completing the proof. �

Theorem 2.7.2. If Γ:E //E preserves regular relations and pullbacks along regu-

lar monos, then, for any finite family

〈A1, α1〉, . . . , 〈An, αn〉,

�α1,... ,αn is a normal necessity operator (although it need not preserve > and so is

typically not S4).

Proof. As before, it suffices to show that � distributes over ∧. One uses the

fact that U preserves regular n-ary relations and thus 〈Uπ1, . . . , Uπn〉 is a regular

mono. Hence, ∃〈Uπ1,... ,Uπn〉 distributes over ∧. By assumption, U preserves pullbacks

along regular monos, and hence, intersections, and so, since

�α1,... ,αn = ∃〈Uπ1,... ,Uπn〉U
�
αi

[−] � αi
〈Uπ1, . . . , Uπn〉

∗,

the result follows. �

The following theorem and corollary are obvious generalizations of Theorem 2.5.19

and Corollary 2.5.20. We omit the proof of these theorems, and prove a related

theorem and corollary hereafter (Theorem 2.7.5 and its corollary).

Theorem 2.7.3. Let {fi :〈Ai, αi〉 //〈Bi, βi〉}1≤i≤n be homomorphisms. Then

[−]α1,... ,αn ◦ (
∏

Ufi)
∗

= (
∏

fi)
∗
[−]β1,... ,βn.

Corollary 2.7.4. Under the same conditions as Theorem 2.7.3,

Uβ1,... ,βn ◦ ∃ � fi
= ∃ � Ufi

◦ Uα1,... ,αn .
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The same facts hold when we replace the products of maps in Theorem 2.7.3 and

Corollary 2.7.4 with projections.

Theorem 2.7.5. Let 〈A1, α1〉, . . . , 〈An, αn〉 be given. Then

[−]α1,... ,αn ◦ πi
∗ = πi

∗ ◦ [−]αi

(where πi on the left hand side is the projection in E , while on the right hand side, it

is the projection in EΓ.

Proof. In Figure 22, the left hand face is a pullback by (the generalization of)

Theorem 2.5.12, and the rear face is a pullback because H preserves pullbacks. The

right hand face is a pullback by Theorem 2.2.11. To confirm that the front face

is a pullback, and hence [π∗
iR] = π∗

i [R], it suffices to show that the bottom face

commutes.

Hπ∗
iR

��

// HR_��

��

[π∗
iR] //
_��

��

ddJJJJJJJJJ

[R]

ddIIIIIIIIII

_��

��

H
∏
Ai // HA

∏
αi //

ddJJJJJJJJJ

〈Ai, αi〉

ddHHHHHHHHHH

Figure 22. [−] commutes with pullback along a projection.

The map 〈A, α〉 //HA is the adjoint transpose of the identity, i.e., ηα, and the

map
∏
αi //H

∏
Ai is (up to the isomorphism H

∏
Ai ∼=

∏
HAi) the unit

∏
ηαi

.

Thus, we see that the bottom face commutes by naturality. �

Corollary 2.7.6. Uα1,... ,αn commutes with ∃πi
.

Remark 2.7.7. Theorem 2.7.5 and its corollary also apply when we replace πi
with a tuple of projections

〈πi1 , . . . , πin〉 :
∏
αi //

∏
αij .

Since, in this case, the [−] operator for the image is the n-simulation operator (and

not merely the subcoalgebra operator), this is a non-trivial observation.
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This last theorem will be useful in Chapter 4, where we introduce an internal ver-

sion of the � operators from this chapter. The theorem will be used in Theorem 4.2.3

to yield an axiom for � in the internal logic.

Theorem 2.7.8. Let 〈Ai, αi〉, 〈B, β〉 be given, and πB :B ×
∏
Ai //

∏
Ai be the

evident projection (here, we’ve subscripted the projection with the object that we’re

projecting out). Then �πB
∗ ≤ πB

∗�.

Proof. Let πβ :β ×
∏
αi //

∏
αi be the corresponding projection in EΓ, and let

p :U(β ×
∏
αi) //B ×

∏
Ai ,

q :U
∏
αi //

∏
Ai

be the evident maps, so that πB ◦ p = q ◦Uπβ. We omit the subscripts for �, U and

[−] in the following calculation, but these should be clear from context.

∃πB
◦ � ◦ πB

∗ = ∃πB
◦ ∃p ◦ � ◦ p∗ ◦ πB

∗

= ∃q ◦ ∃Uπβ
◦ � ◦ (Uπβ)

∗ ◦ q∗

= ∃q ◦ ∃Uπβ
◦ U ◦ πβ

∗ ◦ [−] ◦ q∗ (by Corollary 2.2.8)

= ∃q ◦ U ◦ ∃πβ
◦ πβ

∗ ◦ [−] ◦ q∗ (by Theorem 2.2.5)

≤ ∃q ◦ U ◦ [−] ◦ q∗ = �.

Hence, by the adjunction ∃πB
a πB

∗, the result follows. �



CHAPTER 3

Birkhoff’s variety theorem

In this chapter, we give an extended example of the categorical approach to clas-

sical theorems in universal algebra. The Birkhoff variety theorem [Bir35] relates

closure conditions on classes of universal algebras (for a fixed signature) to defining

equations for the class. We begin by stating the classical theorem. Following this,

we translate the relevant ideas to the categorical setting that has been developed in

the preceding chapters.

We give two versions of the variety theorem: In the first, we ignore the features of

categories of algebras and prove an abstract theorem that applies to many categories.

This abstract theorem doesn’t discuss equational definability explicitly, since a cat-

egory requires a certain amount of structure before the notion of equations makes

sense. Instead, we state the abstract version of the variety theorem strictly in terms

of orthogonality conditions.

We can then apply the abstract theorem to categories of algebras, where we do

have a suitable notion of equation (assuming that the algebraic forgetful functor is

monadic). This allows us to recover the classical theorem, assuming the traditional

setting. We conclude our discussion of equations in categories of algebras with a pre-

sentation of Birkhoff’s deductive completeness theorem in terms of closure operators

on equations over X.

Following this, we dualize the previous work to prove, first, an abstract covariety

theorem, and then a covariety theorem for categories of coalgebras. Because the

variety theorem was proved for categories of algebras over an abstract category, the

real work for the covariety theorem has already been done — although one must still

confirm that the dual setting (a co-Birkhoff category) is a reasonable setting. One

still must interpret the terms of the dualized theorem, which yields definitions of

coequations and covariety. The strengthening of the variety theorem to the classical

result (where each variety is equationally definable over a single set of variables — see

Section 3.4 on “uniformly Birkhoff categories”) does not directly dualize, however.

Some work is required to capture the similar result for categories of coalgebras.

Following our presentation of the covariety theorems, we present the dual of the

deductive completeness theorem, which states that a coequation ϕ is the minimal

113
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coequation satisfied by some class of coalgebras just in case ϕ is an endomorphism-

invariant subcoalgebra. We conclude the chapter with a discussion of a distinguished

class of covarieties, the behavioral covarieties. These covarieties were first studied in

[GS98], where they were called “complete covarieties”. We present a similar account,

while relating Gumm and Schröder’s work to Grigore Roşu in [Roş01], where the

same class of covarieties are called “sinks”.

3.1. The classical theorem

We fix a signature Σ and consider classes of Σ-algebras. Birkhoff’s variety the-

orem says that a class V of Σ-algebras is closed under products, subalgebras and

homomorphic quotients just in case it is equationally definable. In this section, we

define these terms and state the theorem.

In order to present the theorem in its historical form, we will use the language of

universal algebras (algebras for a signature of function symbols). In Section 3.2, we

will restate the definitions in the terms of Γ-algebras and explore the role of equations

in greater detail. Accordingly, in this section, we state the definitions and theorems

in the notation of Example 1.1.5 (Σ-algebras). Thus, recall that a Σ-algebra is a pair,

S = 〈S, {f
(n)
S :Sn //S |f (n) ∈ Σ}〉,

consisting of a set S together with interpretations for the function symbols of Σ. A

subalgebra of S is a Σ-algebra,

T = 〈T, {f
(n)
T :T n //T |f (n) ∈ Σ}〉,

such that T ⊆ S and each f
(n)
T is the restriction of f

(n)
S to T . If

Si = 〈Si, {f
(n)
Si

:Sni //Si |f
(n) ∈ Σ}〉

is a family of Σ-algebras, then the product
∏

Si exists and has as carrier
∏
Si. The

interpretation of fn on
∏
Si is given by

∏
f

(n)
Si

:(
∏
Si)

n //
∏
Si

(via the isomorphism (
∏
Si)

n ∼=
∏

(Si)
n). In other words, the interpretation is given

component-wise.

Definition 3.1.1. Let V be a class of Σ-algebras. We say that V is closed under

subalgebras if, whenever S is in V and T is a subalgebra of S, then T is in V. If,

whenever each Si is in V, then
∏

Si is in V, we say that V is closed under products.

We say that V is closed under quotients if, whenever a homomorphism

p :S � ,2T

is a regular epi and S ∈ V, then T ∈ V.
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Definition 3.1.2. Let V be a class of Σ-algebras. If V is closed under subalge-

bras, products and homomorphic quotients, then V is called a Birkhoff variety .

We now turn to equational definability. We use the fact that Σ-algebras have

free algebras in order to define an equation. Given a set (of variables) X, the free

algebra over X (denoted FX with carrier UFX) is the collection of Σ-terms over the

variables in X (Section 2.1.2). Thus, we can view an equation τ1 = τ2 over X as a

pair of elements of UFX.

Let

S = 〈S, {f
(n)
Si

:Sni //Si |f
(n) ∈ Σ}〉

be a Σ-algebra. The property of freeness states that, for every assignment σ of the

variables of X to S (i.e., for every Set map σ :X //S ), there is a unique homomorphic

extension

σ̃ :FX //S .

An algebra S satisfies the equation τ1 = τ2 (denoted S |= τ1 = τ2) just in case, under

every such assignment σ, we have

σ̃ ◦ τ1 = σ̃ ◦ τ2.

Given a set E of equations over X, we write

S |= E

just in case S |= τ1 = τ2 for every equation τ1 = τ2 in E. We define

Mod(E) = {S | S |= E}.

The set notation in this definition should not be taken literally. In general, Mod(E)

is a proper class.

Definition 3.1.3. Let V be a class of Σ-algebras. We say that V is an equational

variety just in case there is a set of variables X and a set E of equations over X such

that

V = Mod(E).

Theorem (Birkhoff’s variety theorem). Let V be a class of Σ-algebras. Then V

is a Birkhoff variety iff V is an equational variety.

3.2. A categorical approach

We now translate Birkhoff’s variety theorem to categorical terms. As we’ve seen,

the category of algebras for a signature, Alg(Σ) is isomorphic to the category Set
�

for

a related polynomial functor P (see Example 1.1.5). In this section, we translate the

remaining terms of Section 3.1 into categorical terms and prove an abstract version
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of the variety theorem, which holds in a wide variety of categories (and not just

categories of algebras).

3.2.1. Birkhoff categories. We begin by describing some of the properties of

Alg(Σ) that are relevant to Birkhoff’s theorem. In particular, we want to pay close

attention to those properties that lead to natural definitions of Birkhoff variety and

equational variety in abstract categories. We will call any category which has the

requisite structure a Birkhoff category. We can then prove an abstract version of

the variety theorem. It is just a little work to show that, for a wide variety of base

categories and a wide variety of functors, the category EΓ is a Birkhoff category. In

particular, we will show that, for polynomials P, the category Set
�

(and hence Alg(Σ))

is a Birkhoff category, and so the abstract Birkhoff theorem applies. This does not

immediately lead to the classical theorem, however. Rather, the direct consequence

of the abstract variety for categories of algebras is that every variety is defined by a

class (not a set) of equations. In order to show that a set of equations suffices, we

need to show that Set
�

is uniformly Birkhoff (see Section 3.4).

Recall that a category is regularly co-well-powered just in case each object has only

set-many quotients (Definition A.3.1). We say that an object A is regular projective

if it is projective with respect to regular epis, so that, for every regular epi B � ,2C

and map A //C , there is a (not necessarily unique) map A //B making the diagram

below commute.

A //

��@
@@

@@
@@

B

_��
C

A category has enough regular projectives just in case every object is a quotient of

some regular projective.

Definition 3.2.1. A quasi-Birkhoff category is a category that is regularly co-

well-powered, complete and has regular epi-mono factorizations. A Birkhoff category

is a quasi-Birkhoff category with enough regular projectives.

The Birkhoff categories have the structure necessary for a notion of Birkhoff vari-

ety. We postpone the generalization of equational variety until we examine equational

definability in EΓ in more detail.

Definition 3.2.2. Let C be a quasi-Birkhoff category and V a full subcategory

of C. Then V is a quasi-Birkhoff variety (or just quasi-variety)iff V is closed under

products and subobjects. V is a Birkhoff variety if C is a Birkhoff category and V is

a quasi-Birkhoff variety closed under quotients (codomains of regular epis).
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Remark 3.2.3. Any quasi-variety is closed under isomorphisms, since it is closed

under subobjects.

One may define these closure conditions in terms of fixed points for operators on

subcategories of C. One defines the operator H :Sub(C) // Sub(C) to take a class V

to

HV = V ∪ {C ∈ C | ∃K ∈ V∃q :K � ,2C }

(abusing set notation here). Similarly, one defines operators S and P taking V to

the classes

SV = V ∪ {C ∈ C | ∃K ∈ V∃q :K // //C },

PV = {
∏

i∈I

Ci | Ci ∈ C, I ∈ Set}.

Then V is a quasi-Birkhoff variety iff V = SPV and a variety just in case V =

HSPV. We don’t make use of these operators hereafter, but see [GS98] for a

presentation along these lines.

3.2.2. Equations in EΓ. In Section 3.1, we discussed equations for universal

algebras. We now use that work to give an account of equations for Γ-algebras

generally. Our goal is to find a categorical property that generalizes the notion of

equational definability to a wider class of categories — including categories which

are not monadic over some base category. As we will see in Section 3.2.5, equational

definability is generalized by orthogonality to a regular epi with regular projective

domain.

In order to interpret equations over X in EΓ, we require that Γ is a varietor (i.e.,

the algebraic forgetful functor

U :EΓ //E

is monadic). Also, for this section, we assume that E is a Birkhoff category that

has all coequalizers. Thus, by Theorem 2.4.2, EΓ has all coequalizers. This assump-

tion isn’t necessary for the final proof of Birkhoff’s variety theorem, but is useful in

understanding the role of equations in EΓ.

Let X be a set of variables. Then an equation over X is a pair of elements of

UFX, written τ1 = τ2. Equivalently, an equation is a pair of maps

1
τ1 //
τ2

//UFX .

Similarly, a set of equations E is given by a pair of jointly monic maps

E
e1 //
e2

//UFX .
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Recall the definition of satisfaction from Section 3.1. A P-algebra 〈A, α〉 satis-

fies the equations in E just in case, for all σ :X //A, the extension σ̃ :FX //〈A, α〉

equalizes e1 and e2. That is,

〈A, α〉 |= E iff for all σ :X //A, Uσ̃ ◦ e1 = Uσ̃ ◦ e2.

Let ẽ1 and ẽ2 be the adjoint transposes of e1 and e2, respectively. Let

qE :FX � ,2〈QE, νE〉

be the coequalizer of ẽ1 and ẽ2, shown below1.

FE

�
e1 //�
e2

//FX
qE � ,2〈QE, νE〉

We note that σ̃ equalizes ẽ1 and ẽ2 just in case Uσ̃ equalizes e1 and e2. Thus,

〈A, α〉 |= E just in case, for every homomorphism

σ̃ :FX //〈A, α〉,

there is a unique homomorphism

σ :〈QE, νE〉 //〈A, α〉

such that the diagram below commutes.

FX
U
�
σ //

qE
_��

〈A, α〉

〈QE, νE〉

σ

99ssssssssss

We take this property as central to a generalization of equation satisfaction. We recall

the definition of orthogonality, which can be found in [Bor94] and other introductory

texts.

Definition 3.2.4. A map f :A //B is called orthogonal to an object X (written

f ⊥ X) if, for every map a :A //X , there is a unique map b :B //X such that a = b◦f .

Thus, 〈A, α〉 |= E iff qE ⊥ 〈A, α〉.

This leads to the following definition of equational variety:

Definition 3.2.5. Let EΓ be a quasi-Birkhoff category and let V be a full sub-

category of EΓ. We say that V is an equational variety if

V = {〈A, α〉 | q ⊥ 〈A, α〉}

for some regular epi q with domain FX (for some X ∈ E).

1We could instead consider the coequalizer of 〈E〉, the pre-congruence containing E (see Sec-
tion 1.4.2) The coequalizer of 〈E〉 is isomorphic to the coequalizer of ẽ1 and ẽ2, though we omit the
proof.
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Equivalently, following the presentations of [AN81a, BH76, AR94], etc., one

could say that an equational variety is just the injectivity class of some quotient

FX � ,2Q. The author discovered these alternative approaches after developing the

theory in terms of orthogonality, and we present that development here.

3.2.3. Orthogonality. Definition 3.2.5 indicates the basic approach that we

take: orthogonality is a generalization of satisfaction of a set of equations. In this

section, we introduce some notation for discussing orthogonality and state some basic

results.

If S is a collection of arrows of C, we write S ⊥ C if f ⊥ C for all f ∈ S. Similarly,

if V is a collection of objects (equivalently, a full subcategory) of C, we write f ⊥ V

if f ⊥ C for each C ∈ V. We define the notation S ⊥ V in the obvious way.

Given a category C and a collection of maps S in C, S⊥ is the collection of all

objects C of C such that S ⊥ C. Similarly, given a collection of objects V of C, V⊥

is the collection of all arrows f in C such that f ⊥ V.

In these terms, V is an equational variety just in case V = {q :FX � ,2•}⊥ for

some regular epi q.

The class of all collections of maps of C forms a poset, Sub(C1), taking inclusion as

the ordering. Similarly, the class of all full subcategories of C forms a poset, Sub(C0).

Thus, the ⊥ operators are maps between posets. Since S ⊆ T implies S⊥ ⊇ T⊥,

and likewise for the ⊥ operator with domain Sub(C0), we can view these operators as

functors

Sub(C1)
//(Sub(C0))

opoo

It is easy to see that, given a collection of maps S and a full subcategory V, S⊥ ⊆ V

iff S ⊇ V⊥. Thus, the two ⊥ functors form a Galois correspondence (see [Bor94,

Volume 1, Example 3.1.6.m]) and so ⊥⊥ is a closure operation.

Given a collection of arrows, S, we say that S spans the collection of arrows S⊥⊥.

In particular, if S⊥ = V, then S spans V⊥. Because the ⊥ functors form a Galois

correspondence, S⊥ = S⊥⊥⊥. Thus, if S⊥ = V, we have V = V⊥⊥. In this case, we

say that V is closed.

Remark 3.2.6. The subcategory S⊥ is denoted Inj(S) by some authors, to denote

the collection of objects which are injective with respect to S.

3.2.4. An abstract version of Birkhoff’s theorem. In this section, we prove

a quasi-variety theorem for abstract categories. This theorem is essentially found in

[BH76] and is generalized in various articles by Andreéka and Németi, but was

independently proven by the author before being referred to these articles2.

2Thanks to Jǐŕı Adámek and an anonymous reviewer for [Hug01] for these references.
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Theorem 3.2.7. Let C be a quasi-Birkhoff category and V a full subcategory of

C. The following are equivalent.

(1) V is closed under products and subobjects (i.e., V is a quasi-variety).

(2) V is a regular epi-reflective subcategory of C. That is, a subcategory whose

inclusion UV :V //C has a left adjoint FV such that each component of the

unit ηV :UVFV //1C is a regular epi.

(3) V is closed. I.e., V = S⊥ for some collection S of regular epis.

Proof. We prove each implication in turn.

(1)⇒(2): We first show that the inclusion UV has a left adjoint. Since V

is closed under limits, it suffices, by the adjoint functor theorem ([Bor94,

Volume 1,Theorem 3.3.3]), to show that for each C ∈ C, there is a set of

objects ΘC ⊆ V such that for each K ∈ V and each f :C //K in C, f

factors through some K ′ ∈ ΘC .

Take ΘC to be the collection of quotients of C in V. This is a set, since

C is regularly co-well-powered. Given any f :C //K with K ∈ V, we take

the regular epi factorization of f , shown below.

C

_��

f // K

K ′

>>

>>|||||||

Then K ′ is in V, since V is closed under subobjects. Thus, we may take K ′

to be an object of ΘC .

Because V is closed under subobjects, the reflection is a regular epire-

flection ([Bor94, Volume 1, Proposition 3.6.4]).

(2)⇒(3): We will show that (ηV)⊥ = V. That V ⊆ (ηV)⊥ is obvious from the

characteristic property of ηV :1 +3UVFV . We will show the other inclusion.

Accordingly, suppose that ηV ⊥ C. Then ηV

C ⊥ C in particular and thus,

there is a map id :UVF CC //C such that the diagram below commutes:

C

ηVC _��

C

UVFVC
id

::uuuuuuuuuu

Since ηV

C is thus both regular epi and mono, it is an isomorphism. Since V

is closed under isomorphisms (Remark 3.2.3), C ∈ V.

(3)⇒(1): Let S be a collection of regular epis and V = S⊥. It is easy to see

that V is closed under products. Suppose that K ′ ∈ V and i :K // //K ′ . Let

f :A � ,2B ∈ S⊥ and g :A //K be given, as in Figure 1. Then, since f ⊥ K ′,

there is a unique map ı ◦ g :B //K ′ such that ı ◦ g ◦ f = i ◦ g. Since f is
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regular and hence strong, there is a unique map g, as shown, making the

diagram commute.

A
g //

f
_��

K
��
i
��

B

g

>>

i◦g

// K ′

Figure 1. S⊥ is closed under subobjects.

�

Corollary 3.2.8. Let C be a quasi-Birkhoff category and V a quasi-variety of

C. Then

(1) V = (ηV)⊥.

(2) For each C ∈ C, C ∈ V iff ηV

C ⊥ C, where ηV is the unit of the adjunction

FV a UV.

(3) The counit εV :FVUV //1V is an isomorphism.

(4) The corresponding monad, TV = UVFV, is idempotent.

(5) The monad TV preserves regular epis.

Proof. We sketch each item in turn.

(1) See the proof of (2)⇒(3) in Theorem 3.2.7.

(2) If C ∈ V, then C ⊥ ηV

C by (1). On the other hand, if C ⊥ ηV

C , then

C ∼= TVC by the proof of (2)⇒(3) in Theorem 3.2.7.

(3) The functor UV is full and faithful, so [Bor94, Proposition 3.4.1, Volume 1]

applies.

(4) This follows from [Bor94, Volume 2, Theorem 4.2.4], and can also be seen

directly in the proof of (2)⇒(3).

(5) Let q :A //Q be a regular epi. Since TVq ◦ ηV

A = ηV

Q ◦ q and the right hand

side is a regular epi, so is TVq (see Figure 2).

TVA // TVQ

A

ηVA

_LR

q

� ,2 Q

ηVQ

_LR

Figure 2. TV preserves regular epis.
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�

Example 3.2.9. Set is quasi-Birkhoff. However, the only quasi-varieties of Set

are trivial. Let V be a quasi-variety. If 2 ∈ V, then 2α is in Set for every ordinal α.

Since V is closed under subobjects, we have that V = Set. If 2 6∈ V, then V must

consist of just 0 and 1.

Example 3.2.10. The category of monoids, Mon, is complete, regular and well-

powered. Hence, Mon is a quasi-Birkhoff category. Let V be the subcategory of

Mon consisting of all those monoids satisfying

∀x ∈M(x2 = e→ x = e).

Then V is clearly closed under subalgebras and limits. Thus, by Theorem 3.2.7, V

is a regular epi-reflective subcategory of Mon.

3.2.5. The generalized Birkhoff variety theorem. The following may be

seen as a generalization of Birkhoff’s variety theorem. Recall from Section 3.2.2 that

a class V of Γ-algebras satisfies a set E of equations over a set X of variables just

in case V is orthogonal to a certain regular epi with domain FX. In the following

theorem, we show that V is a Birkhoff variety iff V is orthogonal to a collection of

regular epis with regular projective domains. The regular projective objects play the

role of FX (which is regular projective if X is regular projective) in this theorem.

Once we have proven this theorem and shown that it applies to categories of

algebras EΓ (for appropriate base E and functor Γ), we have still not quite recovered

the classical theorem. In particular, we will have shown, essentially, that any variety

of algebras V is definable by a class of equations (i.e., V = S⊥ for a class of arrows S),

rather than by a set of equations. This property is the distinction between Birkhoff

categories and uniformly Birkhoff categories, which we discuss in Section 3.4.

Theorem 3.2.11. If C is a Birkhoff category, then a full subcategory V is a variety

iff V⊥ is spanned by a collection of regular epis with regular projective domains.

Proof. Suppose that V is a variety. Then V is a regular epi-reflective subcate-

gory of C. Let FV a UV with unit ηV, as in Theorem 3.2.7. For each C ∈ C, pick a

regular epi pC :AC //C , with AC regular projective, and let S be the collection of all

ηV

AC
:AC

� ,2UVFVAC .

Then S ⊆ (ηV) and so S⊥ ⊇ (ηV)⊥ = V. To see that V = S⊥, suppose that

S ⊥ C and we will show that C ∈ V. Since S ⊥ C, there is a map pC such that
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pC ◦ ηV

AC
= pC .

AC

ηVAC _��

pC � ,2 C

UVFVAC

pC

5 6?uuuuuuuuu

Since pC is a regular epi, so is pC . Thus, C is a quotient of UVFVAC and hence is in

V.

Suppose conversely that V⊥ is spanned by a collection S of regular epis with

regular projective domains. Then V is closed under subobjects and limits (Theo-

rem 3.2.7), so it suffices to show that V is closed under quotients. Let K ∈ V and

p :K � ,2K ′ be given. We wish to show that S ⊥ K ′. Let f :A � ,2B ∈ S and g :A //K ′

be given.

A
g′ //

f
_�� g   A

AA
AA

AA
A K

p
_��

B
p◦g

// K ′

Since A is regular projective, there is a g′ :A //K such that p ◦ g′ = g. Since f ⊥ K,

there is a unique g :B //K such that g ◦ f = g′. Thus,

p ◦ g ◦ f = p ◦ g′ = g.

Because f is epi, p ◦ g is the unique map with this property. �

Example 3.2.12. Consider the full subcategory Ab of Mon consisting of abelian

monoids. That is, a monoid M is in Ab just in case for every m, n in M ,

m · n = n ·m.

This subcategory is a variety of Mon. It is easy to see that, if M is abelian and N

is the homomorphic quotient of M , then N is abelian.

Ab⊥ is spanned by a single regular epimorphism with regular projective domain.

Let F2 be the free monoid generated by two elements, a and b. Let ab, ba :1 //UF2

be the obvious constant maps. These correspond under adjoint transposition to maps

F1
ab //

ba

//F2.

Take the coequalizer q :F2 � ,2Q of these homomorphisms. Then a monoid M is

evidently in Ab iff q ⊥M .

Example 3.2.13. Consider again the full subcategory V of Mon consisting of

monoids where no non-unit element is its own inverse (from Example 3.2.10). This
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TV/f

TVK
TVk1 //

TVk2

// TVA

p
& /6

TVq

� ,2 TVQ

g

7 7A

K

ηVK

_LR

k1 //
k2

// A

ηVA

_LR

q

� ,2 Q

ηVQ

_LR
g

QDL

Figure 3. TV preserves coequalizers.

subcategory is not closed under quotients. For instance, the map

p :N � ,22

taking even numbers to 0 and odd numbers to 1 is a regular epi in Mon, but 2 6∈ V.

In Corollary 3.2.8, we saw that, if V is a quasi-variety, then TV preserves regular

epis. We can strengthen that result if V is a variety.

Corollary 3.2.14. If V is a variety, then the monad TV :C //C preserves co-

equalizers.

Proof. Let

K
k1 //
k2

//A
q � ,2Q

be a coequalizer. Suppose that f :TVA //B coequalizes TVk1 and TVk2. Take the

regular epi-mono factorization of f , f = i ◦ p (see Figure 3). Then

p ◦ ηV

A ◦ k1 = p ◦ TVk1 ◦ η
V

K

= p ◦ TVk2 ◦ η
V

K

= p ◦ ηV

A ◦ k2,

so there is a unique map g :Q //B such that p ◦ ηV

A = g ◦ q. Since TVA/f ∈ V, the

map g factors uniquely through TVQ, say g ◦ ηV

Q = g. This factorization gives the

desired map

TVQ
g � ,2TV/f //i //B.

Since g◦TVq = p and p is a regular epi, so is g. By the uniqueness of regular epi-mono

factorizations, i ◦ g is the unique map such that i ◦ g ◦ TVq = f . �
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3.3. Categories of algebras

In this section, we will show that Theorem 3.2.11 (the abstract variety theorem)

is a generalization of the classical variety theorem. To this end, we must first show

that categories of algebras EΓ are Birkhoff categories, for suitable base categories E

and endofunctors Γ. It will follow, then, that any Birkhoff variety V of EΓ satisfies

V = S⊥ for some collection S of regular epis with regular projective domains.

The classical theorem says that any variety is an equational variety for some set

E of equations. If we apply Theorem 3.2.11 to categories EΓ, we learn only that each

variety is definable by some class of equations. To recover the classical theorem, some

more work is needed. In Section 3.4.1, we will discuss further conditions on E and Γ

that allow one to conclude that any Birkhoff variety is an equational variety.

The work in this section is similar to work found in [BH76] and extended by

Andréyka and Németi. A similar approach is also found in [AR94].

3.3.1. Categories of algebras are Birkhoff categories. We will first look

at some conditions that are sufficient to ensure that a category of algebras is a

Birkhoff category, in the sense of Definition 3.2.1. Throughout this section, let E

be an arbitrary category and let Γ be an endofunctor on E . As we will see, it is

sufficient that E is quasi-Birkhoff and Γ preserves regular epis to conclude that EΓ is

quasi-Birkhoff.

Theorem 3.3.1. If E is quasi-Birkhoff and Γ preserves regular epis, then EΓ is

quasi-Birkhoff. The same claim holds for categories E
�

of algebras over a monad T

that preserves regular epis.

Proof. We need to show that EΓ is regularly co-well-powered, complete and has

regular epi-mono factorizations.

• EΓ is complete by Theorem 1.2.4 (U creates limits).

• EΓ has regular epi-mono factorizations by Theorem 1.2.13.

• EΓ is regularly co-well-powered since E is regularly co-well-powered and U

preserves regular epis (Corollary 1.2.15).

Since each of the above facts also holds for categories of algebras over a monad, so

does this theorem. �

The additional requirement that ensures that EΓ has enough regular projectives

(so that EΓ is a Birkhoff category) is natural enough. Given that EΓ is quasi-Birkhoff,

we need only the additional assumption that Γ is a varietor (that is, that U is

monadic). This assumption is useful for our interpretation of equations and so is

reasonable in this setting. However, recent work in [AP01] shows how to define

equational varieties for categories of algebras without free algebras.
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Corollary 3.3.2. If E is Birkhoff, Γ preserves regular epis and U has a left

adjoint, F , then EΓ is Birkhoff. The same claim holds for categories E
�

of algebras

for a regular-epi-preserving monad T .

Proof. Given 〈C, γ〉 in EΓ, let p :A � ,2C be a regular projective covering of

C. We will first show that FA is regular projective. Let f :FA //〈D, δ〉 and

q :〈B, β〉 � ,2〈D, δ〉 be given (see Figure 4). Because A is regular projective, there

UFA
Uf //

Uf#

""

D

A
f

//

ηA

OO

B

Uq

_LR

Figure 4. The free algebra over a regular projective object is regular projective.

is a map f making the square commute. This ensures the existence of f# making

both triangles commute. Hence, FA is regular projective.

All that remains is to show that FA covers 〈C, γ〉. By the adjunction F a U ,

there is a unique map p# :FA //〈C, γ〉 such that the diagram below commutes.

UFA
Up#

� �'
FF

FF
FF

FF

A

ηA

OO

p

� ,2 C

Because U reflects regular epis, p# is a regular epi.

Since only the characteristic property of freeness was used in the above reasoning,

and categories of algebras over a monad always have free algebras, the claim holds

for E
�

as well. (Alternatively, prove the claim for categories E
�

and use the fact

that, given the hypotheses, U is monadic, i.e., EΓ ≡ E
�

for the monad T induced by

F a U .) �

Thus, if E is Birkhoff, Γ preserves regular epis and is a varietor, then Theo-

rem 3.2.11 applies. Hence, a full subcategory V of EΓ is a Birkhoff variety iff V

is closed, and V⊥ is spanned by a collection of regular epis with regular projective

domains. This is not quite sufficient to imply the classical variety theorem, however.

For that, we need to show that there is a projective X such that

V is a Birkhoff variety iff V = {q :FX � ,2〈Q, ν〉}⊥ for some regular epi q.

In other words, we need to show that V is “definable” by a single regular epi q with

regular projective domain, not a collection of such arrows. For this, we introduce the

notion of “uniformly Birkhoff categories” in the next section.
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We close this section with a proof that, if V is a variety over E
�
, then V is also

monadic over E . Together with Corollary 3.2.14 (TV preserves coequalizers), we see

that V ≡ E
�
′

for a regular-epi-preserving monad T′ and so is again a Birkhoff cate-

gory. Hence, the variety theorem again applies, and subvarieties of V are equationally

definable (by, perhaps, a proper class of equations).

Theorem 3.3.3. Let V be a variety of E
�
. Then V is monadic over E , via the

evident forgetful functor.

Proof. We apply the special adjoint functor theorem (see [Bor94, Theorem

4.4.4,Volume 2]). Of course, U ◦UV has a left adjoint and reflects isomorphisms since

both U and UV do. The functor U creates split coequalizers (since it is monadic) and

UV creates all coequalizers (an easy consequence of Corollary 3.2.14), the composite

creates split coequalizers. �

3.4. Uniformly Birkhoff categories

We have shown that, if E is Birkhoff, Γ preserves regular epis and is a varietor,

then EΓ is Birkhoff. Thus, any variety V is defined by a collection of regular epis with

regular projective domains. In terms of equations, this means that any variety V is

defined by a class of equations over a class of variables. Birkhoff’s variety theorem

[Bir35] says something stronger. Namely, that any variety V is defined by a set of

equations over a countable set of variables.

Categorically, then, we must show that there is a regular projective X ∈ E such

that, for any variety V, there is a regular epi p with domain X such that V = {p}⊥.

We state this condition in general terms in the following definition.

Definition 3.4.1. A Birkhoff category C is uniformly Birkhoff if there is a regular

projective object X ∈ C such that for any variety V, V = {p}⊥ for some regular epi

p with domain X. The object X is called the equational domain for C.

From Theorem 3.2.7, we know that any variety V satisfies

V = (ηV)⊥.

In a uniformly Birkhoff category, any variety satisfies a stronger condition: namely,

that

V = {ηV

X :X //TVX }⊥,

where X is the equational domain for C.

Theorem 3.4.2. Let C be uniformly Birkhoff and let X be the equational domain

for C. Let V be a variety of C, with ηV the unit of the evident adjunction FV a UV.

Then V = {ηV

X}
⊥.
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Proof. Let V be a variety of C and let p :X � ,2Y be given such that V = {p}⊥.

It suffices to show that, for all A ∈ C, if ηV

X ⊥ A, then p ⊥ A. This is clear, since ηV

X

factors through p. �

The remainder of this section will be devoted to a discussion of conditions that

ensure a category of algebras is uniformly Birkhoff. These conditions will be suggested

by the original proof of the variety theorem. The conditions are also influenced by

the work of [AR94], in which the theory of locally finitely presentable categories

is developed. It appears, however, that a locally finitely presentable category isn’t

sufficient for this goal. In one sense, we need a stronger condition: that regular

projective objects are colimits of finitely presentable retracts. On the other hand, we

don’t require that every object has a presentation. Instead, it suffices that certain

regular projective objects have a retractable presentation in order to show that the

category is uniformly Birkhoff.

We recall the following definitions from ibid.

Definition 3.4.3. An object K in C is finitely presentable if the functor

Hom(K,−) :C //Set

preserves filtered colimits.

Definition 3.4.4. A category C is locally finitely presentable if it is cocomplete

and there is a set A of finitely presentable objects of C such that every object is a

filtered colimit of objects of A.

The remaining work is technical and abstruse. This section is self-contained —

there are no later results in this thesis that require the definitions and theorems that

follow. The casual reader may wish to skim what remains here.

Remark 3.4.5. Throughout this section, we use finitely presentable objects and

prove facts about filtered colimits in C. This work can be generalized, so that the ob-

jects of interest are κ-presentable and the colimits are colimits of κ-filtered diagrams.

We avoid the more general statements and proofs in order to present this work in a

simpler form.

As we will see, a key step in showing that a category C is uniformly Birkhoff is

showing that every variety of C is closed under filtered colimits. We first consider the

case in which V = {ηV

X}
⊥ where X is finitely presentable. In the classical setting,

this corresponds to a variety of algebras which are defined by a set of equations over

a finite set of variables. Such varieties are easily shown to be closed under filtered

colimits. This fact will be used in Theorem 3.4.9, in which we prove that every variety

(in a suitable category) is closed under filtered colimits.
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Lemma 3.4.6. Let f :X // //Q be given with X finitely presentable. Then {f}⊥ is

closed under filtered colimits.

Proof. Let A ∈ C and K :E //C be a filtered diagram such that A = colim K

with colimiting cocone

k :K +3A.

Assume, further, that for each E ∈ E, f ⊥ KE. We will show that f ⊥ A, so that

A ∈ {f}⊥.

Let g :X //A be given. Since X is finitely presentable, there is an E ∈ E and a

map

g :X //KE

such that g = kE ◦ g. Hence, there is a unique

g̃ :Q //KE

such that g = g̃ ◦ f and so g = kE ◦ g̃ ◦ f (see Figure 5). Uniqueness follows from the

X
g //

f
����

g

!!

A

Q �
g

// KE

kE

OO

Figure 5. {f}⊥ is closed under filtered colimits.

fact that f is epi. �

We now turn our attention to a special case of a presentation by finitely pre-

sentable objects. In this case, we assume that an object is the filtered colimit of

finitely presentable retracts, and so this is a stronger condition than that required

by a locally presentable category. However, we will not require that every object has

such a presentation (see Definition 3.4.8).

The notion of “retractably presentable regular projective” and Theorem 3.4.9 are

due to Steve Awodey.

Definition 3.4.7. Let X ∈ C. We call a filtered diagram J :D //C a retractable

presentation of C if J satisfies the following:

• colim J = X with cocone j :J +3X ;

• Each JD is finitely presentable;

• Each JD is a retract of X (i.e., for each jD, there is a pD :X � ,2JD such that

pD ◦ jD = idJD).
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If there is a retractable presentation of X, then we say that X is retractably pre-

sentable.

Definition 3.4.8. A category C has enough retractably presentable regular pro-

jectives if each object of C is a quotient of a retractably presentable regular projective

object.

It is easy to check that, in a Birkhoff category C with enough retractably pre-

sentable regular projectives, any variety is determined by regular epis with retractably

presentable regular projective domains. In fact, if B is any class of regular projectives

such that each object of C is covered by an object in B, then any variety is defined

by regular epis with domains in B. Moreover, to confirm that an object A is in a

variety V, it suffices to check that ηV

X ⊥ A for some X ∈ B covering A.

In a category with enough retractably presentable regular projectives, every va-

riety V is closed under filtered colimits. This implies that the monad TV preserves

filtered colimits.

Theorem 3.4.9. Let C have enough retractably presentable regular projectives.

Let V be a variety of C. Then V is closed under filtered colimits.

Proof. Let A ∈ C and K :E //C be a filtered diagram such that A = colim K

with colimiting cocone

k :K +3A.

Assume, furthermore, that each KE ∈ V. We will show that A ∈ V.

Let X be a retractably presentable regular projective which covers A and let

X = colim J with cocone j and retractions p, as in Definition 3.4.7. It suffices (by

the proof of Theorem 3.2.11) to show that ηV

X ⊥ A to prove A ∈ V. Let ΘX be the

kernel pair of ηV

X — so ΘX is the “set” of equations satisfied by TVX.

For each D ∈ D, take the pullback ΘD as shown below.

ΘD
� ,2 //

��

��

_� ΘX
��

��
JD × JD

� ,2
jD×jD

// X ×X

Because D is filtered, ΘX is the colimit of the ΘD’s. Define a functor Q :D //C by

taking QD to be the coequalizer of ΘD, as shown in Figure 6. Because colimits

commute with coequalizers, TVX is the colimit of Q.

We next show that

{ηV

X}
⊥ ⊆ {qD | D ∈ D}⊥.
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ΘX
// // X

pD

k��

ηVX � ,2 TVX

ΘD
_LR

ϑD

OO

//// JD qD

� ,2
SEL
jD

UU

QD

νD

OO

Figure 6. TVX is the colimit of Q.

Let ηV

X ⊥ B and let f :JD //B . Let x1, x2 (d1, d2, resp.) be the projections of ΘX

(ΘD, resp.). Then,

f ◦ d1 = f ◦ pD ◦ x1 ◦ ϑD

= f ◦ pD ◦ x2 ◦ ϑD (since ηV

X ⊥ B)

= f ◦ d2

and so qD ⊥ B.

Thus, since each ηV

X ⊥ KE by hypothesis, for each D ∈ D, we also have qD ⊥ KE.

Now, by definition, each JD is finitely presentable. Thus, by Lemma 3.4.6, A is

orthogonal to each qD. It is routine to check that, since colim Q = TVX and each

qD ⊥ A, then also ηV

X ⊥ A. �

Theorem 3.4.10. Let C be a quasi-Birkhoff category and let V be a quasi-variety

of C closed under filtered colimits (i.e., the inclusion V�

� //C creates such colimits).

Then the monad

TV :C //C

preserves filtered colimits.

Proof. Let E be filtered and let A be the colimit of K :E //C , with colimiting

cocone k :K +3A. Let j :TVK +3B be a colimiting cocone. We wish to show that

B ∼= TVA.

A
ηVA � ,2

))

TVA
m

��
KE

kE

OO

ηVKE

� ,2 TVKE

OO

jE

// B

n

\\

Because B ∈ V, ηV

A ⊥ B. Hence there is an m :TVA //B such that j = m ◦ TVk.

Because j is colimiting, there is an n :B //TVA such that n ◦ j = TVk. It is routine

to check that m and n are inverses. �

Let A = colim J :D //C , where D is a filtered category and let V be a variety closed

under filtered colimits. Then, in order to check whether an object C is orthogonal to
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ηV

A , it suffices to check that it is orthogonal to each ηV

JD. In the traditional setting,

where C is a category of algebras and A = FX and each JE = FY for some finite

Y , this means the following: an algebra 〈C, γ〉 satisfies each of the equations (for

V) over X just in case it satisfies each of the equations (for V) over a finite set of

variables. We prove this claim in a general setting presently.

Corollary 3.4.11. Let C be quasi-Birkhoff and D be filtered. Let J :D //C be

given and X = colim J with colimiting cocone j :J +3X . Suppose, further, that V is

closed under filtered colimits. Then

{ηV

JD | D ∈ D}⊥ ⊆ {ηV

X}
⊥.

Proof. Let {ηV

J } ⊥ A and f :X //A be given. Then, for each D ∈ D, there

is a map fD :TVD //A such that fD ◦ ηV

JD = f ◦ jD. The fD’s form a cocone over

TVJ . Since the colimit of TVJ is TVX, we have the factorization of f through ηV

X ,

as desired. �

Thus far, we have discussed a condition that ensures that every Birkhoff variety is

closed under filtered colimits. While this is a step towards proving that a category is

uniformly Birkhoff, there is still some work to be done. Specifically, given a Birkhoff

category C with enough retractably presentable regular projectives, we must pick out

a particular object X that will serve as an equational domain. The theorem below

shows sufficient conditions for X to be an equational domain. These conditions are

attained in Set, for instance, with X = N.

The following lemma is the dual of Lemma 3.7.21. We prove it in Section 3.7.2.

Lemma 3.4.12. Let V be a variety in the Birkhoff category C and let A be a

quotient of B. Then

{ηV

B }
⊥ ⊆ {ηV

A }
⊥.

Theorem 3.4.13. Let C be Birkhoff and have enough retractably presentable reg-

ular projectives and let X satisfy the following:

• X is regular projective;

• The set of non-empty, finitely presentable objects is a retractable presentation

for X.

Then C is uniformly Birkhoff and X is the equational domain for C.

Proof. Let B be the set of non-empty, finitely presentable objects, so that B is

a retractable presentation of X.

Let V be a variety of C. Let A ∈ C and ηV

X ⊥ A. We will show that A ∈ V.

It suffices to show that ηV

Y ⊥ A for a retractably presentable regular projective

Y covering A. Let J :D //C be a retractable presentation for Y . Then, for each
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D ∈ D, JD is a quotient of X and so ηV

JD ⊥ A (Lemma 3.4.12). Thus, ηV

Y ⊥ A

(Corollary 3.4.11). �

3.4.1. Uniformly Birkhoff categories of algebras. The preceding section

demonstrated sufficient conditions for an abstract category to be uniformly Birkhoff.

In this section, we show that, if E satisfies these conditions and Γ preserves reg-

ular epis and filtered colimits (more generally, κ-filtered colimits), then EΓ is also

uniformly Birkhoff. This will conclude the reconstruction of the classical Birkhoff

variety theorem in a categorical setting.

In particular, the category Set satisfies the conditions of Theorem 3.4.13 (so Set

is uniformly Birkhoff). Thus, if Γ :Set //Set preserves filtered colimits, then SetΓ is

uniformly Birkhoff. Moreover, the free algebra over a countable set is an equational

domain for SetΓ. In other words, if Γ preserves filtered colimits, then any variety of

SetΓ is definable by a set of equations over a countable set of variables (which is, of

course, just the classical Birkhoff theorem as found in [Bir35]).

We begin by showing that if X is finitely presentable and Γ preserves filtered col-

imits, then the free algebra FX is finitely presentable. Hence, applying Lemma 3.4.6,

we see that any V defined by a set of equations E over finitely presentable X is closed

under filtered colimits.

Lemma 3.4.14. Let Γ:E //E preserve filtered colimits and be a varietor with F left

adjoint to U :EΓ //E . If X ∈ E is finitely presentable then FX is finitely presentable.

Proof. Let 〈A, α〉 = colim K :E //EΓ , E filtered, and f :FX //〈A, α〉. Then

UA = colim UK

and so the adjoint transpose f̃ :X //A of f factors through some UKE. Thus, f

factors through KE. �

Lemma 3.4.14 ensures that EΓ inherits the relevant structure (for Theorem 3.4.13)

from E . In particular, one shows that if X is a retractably presentable regular projec-

tive, then so is FX (under the assumptions of Lemma 3.4.14). From this, it follows

that EΓ has enough retractably presentable regular projectives whenever E does. We

show this in Theorem 3.4.15, which directly implies Birkhoff’s variety theorem for

universal algebras. This completes the categorical approach to the 1935 theorem.

Theorem 3.4.15. Let E , X satisfy the conditions of Theorem 3.4.13. Let Γ be

preserve regular epis and filtered colimits. Then EΓ is uniformly Birkhoff and FX is

an equational domain for EΓ.

Proof. Let B be the category of non-empty, finitely presentable objects of E , so

X = colim B. Then FX is the colimit of FB (left adjoints preserve limits), and for
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each B ∈ B, FB is finitely presentable. Furthermore, each FB is a quotient of FX,

since F preserves coequalizers.

For each 〈A, α〉 ∈ EΓ, there is a retractably presentable regular projective YA such

that FYA covers 〈A, α〉. Furthermore, each FYA has a retractable presentation using

the objects of FB. Now, FB is not the collection of all finitely presentable algebras.

Nonetheless, a simple alteration of the proof of Theorem 3.4.13 using the above facts

shows that FX is an equational domain (for our purposes, FB is a sufficient collection

of finitely presentable algebras). �

Example 3.4.16. If Γ:Set //Set preserves filtered colimits (for instance, if Γ is

a polynomial), then FN is a presentational domain for SetΓ. Consequently, FN is

an equational domain for SetΓ. In other words, every variety in SetΓ is defined by a

set of equations over a countable set of variables.

We finish this section by showing that Theorem 3.4.17 does indeed yield the

traditional statement of Birkhoff’s theorem. To do this, we first recall the definitions

from Section 3.2.2

An equation over X is a pair of global elements

1 // //UFX

of UFX and that a set of equations over X is given by a pair of maps

E
e1 //
e2

//UFX .

An algebra 〈A, α〉 satisfies E just in case, for every homomorphism

σ̃ :FX //〈A, α〉,

Uσ̃ coequalizes e1 and e2. Equivalently, 〈A, α〉 |= E just in case q ⊥ 〈A, α〉, where q

is the coequalizer of

FE // //FX .

With these definitions in mind, it is easy to see that Birkhoff’s variety theorem is

a corollary to Theorem 3.4.15.

Theorem 3.4.17. Let E be a Birkhoff category and Γ preserve regular epis and is a

varietor. Suppose, further, that the category EΓ is uniformly Birkhoff, with equational

domain FX. A full subcategory V of EΓ is a variety iff there is a set E of equations

over X such that

〈A, α〉 ∈ V iff 〈A, α〉 |= E.

Proof. Let V be a variety and ηV the unit of the adjunction FV a UV. Let

ΘX be the kernel pair of ηV. Then

〈A, α〉 ∈ V iff 〈A, α〉 |= UΘX.
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�

3.5. Deductive closure

We continue developing the results of Section 3.4.1. Consequently, throughout we

assume that E is a Birkhoff category, Γ preserves regular epis and is a varietor. Also,

we fix a regular projective X ∈ E . For another presentation of this material and the

material of Section 3.8, see [Hug01].

Birkhoff’s variety theorem may be viewed as showing an equivalence between

equational definability on the one hand and closure under the operators H, S and P

from Section 3.2.1 on the other. When we say that a class V is equationally definable

(over the fixed set X of “variables”), we mean that there is a set E of equations over

X such that V consists of just those algebras which satisfy E. This suggests an

operator

SatX :Rel(UFX,UFX) // Sub(EΓ) ,

taking a set E of equations to the variety

SatX(E) = {〈A, α〉 ∈ EΓ | 〈A, α〉 |= E}

(hereafter, we omit the subscript). In other words, if q is the coequalizer of the

diagram

FE ////FX,

then Sat(E) = {q}⊥. In these terms, Theorem 3.4.17 says that, for any class V of

algebras,

V = HSPV

just in case there is some E ≤ UFX × UFX such that

V = Sat(E).

One may ask whether there is an analogous result for sets of equations. That is, given

a set E of equations, when does E consist of exactly those equations which hold in

some variety V?

More precisely, we define an operator

IdX :Sub(EΓ) // Rel(UFX,UFX)

(hereafter, omitting the subscript) taking a class of algebras V to the set of equations

{e1 = e2 | V |= e1 = e2}.

In terms of the ⊥ operators from Section 3.2.3,

IdV =
⋃

{ker(f :FX //•) | f ∈ V⊥}.
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Notice that the operators Id and Sat form a Galois correspondence. That is, for all

classes of algebras V and sets of equations E, we have

V ≤ Sat(E) iff Id(V ) ≥ E.

Remark 3.5.1. The operators Sat and Id could be defined for any algebra 〈A, α〉,

of course, and not just the free algebras FX. We focus on the free algebras here for

their importance in the completeness and variety theorems.

We would like to find conditions on E that ensure E = Id(V) for some class V

of algebras. Birkhoff’s completeness theorem [Bir35] provides that condition.

Classically, given a signature Σ, a set E of equations over X is deductively

closedclosed!deductively – if it satisfies the following:

(i) For each x ∈ X, x = x ∈ E;

(ii) If τ1 = τ2 ∈ E, then τ2 = τ1 ∈ E;

(iii) If τ1 = τ2 ∈ E and τ2 = τ3 ∈ E, then τ1 = τ3 ∈ E;

(iv) If f (n) ∈ Σ and τ1 = υ1, τ2 = υ2, . . . , τn = υn are in E, then f (n)(τ1, τ2, . . . , τn) =

f (n)(υ1, υ2, . . . , υn) ∈ E.

(v) For any assignment of variables σ :X //UFX , if τ1 = τ2 ∈ E, then σ̃(τ1) =

σ̃(τ2) ∈ E.

Theorem (Birkhoff’s completeness theorem). Let E be a set of equations. Then

E = Id(V) for some class of algebras V iff E is deductively closed.

We can restate the definition of deductive closure in categorical terms (and, in

particular, eliminate the reference to function symbols in (iv)). For this, we require

a definition.

Definition 3.5.2. Let E ////UFX be a set of equations over X. We say that

E is endomorphism-stable (or just stable) if, for every homomorphism

σ :FX //FX ,

there is a (necessarily unique) map ψ :E //E such that the diagram below commutes.

E

����

ψ // E

����
UFX

Uσ
// UFX

More generally, if

E
e1 //
e2

//A

is a relation over the carrier of a algebra 〈A, α〉, we say that E is stable if, for every

Γ-endomorphism φ :〈A, α〉 //〈A, α〉, there is a map ψ :E //E such that φ◦e1 = e1◦ψ

and φ ◦ e2 = e2 ◦ ψ.
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Let E be a relation over UFX. Then E is closed!deductively –deductively closed

just in case the following hold.

(i′) 〈ηX , ηX〉 factors through E;

(ii′) E is symmetric;

(iii′) E is transitive;

(iv′) E is (the carrier of) a pre-congruence;

(v′) E is stable.

We first show a couple of easy theorems about the relationship between deductive

completeness and stable congruences. The first theorem relates orthogonality to

stability, and so ties up some of the previous work with this section. The theorem

thereafter shows that stable congruences over FX just are the sets of deductively

closed equations — an easy consequence. Following this, we show that, given an

equationally defined variety V, the set of equations Id(V) is exactly the kernel of

ηV

FX .

Theorem 3.5.3. Let

E
e1 //
e2

//UFX

be a set of equations over regular projective X, and q :FX //〈Q, ν〉 the coequalizer of

FE ////FX.

If E is stable then q ⊥ 〈Q, ν〉. Conversely, if E is the kernel pair of q and q ⊥ 〈Q, ν〉,

then E is stable.

Proof. Suppose that E is stable and let f :FX //〈Q, ν〉 be given. Because FX

is regular projective, there is a map σ :FX //FX such that f = q◦σ. Let φ :E //E be

given as in Definition 3.5.2. Then, a simple diagram chase through Figure 7 confirms

that q ◦ σ coequalizes ẽ1 and ẽ2, yielding the desired map ψ, as shown.

FE

Fφ

��

�
e1 //�
e2

// FX

f
GG

GG

##G
GG

Gσ

��

q � ,2 〈Q, ν〉

ψ

��

FE

�
e1 //�
e2

// FX q

� ,2 〈Q, ν〉

Figure 7. E is stable iff q ⊥ 〈Q, ν〉.

Conversely, suppose that E is the kernel pair of q and q ⊥ 〈Q, ν〉. Let

σ :FX //FX
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be given. Since q ⊥ 〈Q, ν〉, there is a unique

ψ :〈Q, ν〉 //〈Q, ν〉

such that q ◦σ = ψ ◦ q. Hence, q coequalizes σ ◦e1 and σ ◦e2 and so, there is a unique

map

φ :E //E

as desired. �

Theorem 3.5.4. A set of equations E is deductively closed iff E is a stable con-

gruence.

Proof. E is a stable congruence if and only if, in addition to Conditions (ii’)

- (v’), E is reflexive (i.e., the diagonal arrow ∆UFX :UFX //UFX × UFX factors

through E // //UFX × UFX . If E is reflexive, then clearly 〈ηX , ηX〉 factors through

E and so Condition (i’) is satisfied.

UFX
δUFX //

''

UFX × UFX

X

ηX

OO

// E

OO

OO

Figure 8. If E is deductively closed, then it is a stable congruence.

On the other hand, suppose that E is deductively closed. By (i’), 〈ηX , ηX〉 fac-

tors through E, as shown in Figure 8. By (iv’), there is a structure map ε :E //ΓE

such that 〈E, ε〉 is a relation over FX in EΓ. Consequently, there is a unique homo-

morphism FX //〈E, ε〉 making the lower triangle commute, as shown. It is easy to

confirm that the upper triangle also commutes and thus that E is reflexive.. �

As one would expect, if V is defined by a set of equations over X, then ηV

FX is just

the coequalizer of Id(V). This shows the connection between the work in previous

sections and the current approach in terms of deductive completeness.

Lemma 3.5.5. For any variety V of the form V = Sat(E) for some set of equa-

tions E over X, Id(V) = ker ηV

FX .

Proof. Since ηV

FX ∈ V⊥ and IdV =
⋃
{ker(f :FX //•) | f ∈ V⊥}, we see

ker ηV

FX ≤ Id(V). Conversely, since TVFX ∈ V, it is orthogonal to each f ∈ V⊥.

Consequently, each ker f factors through ker ηV

FX and, hence, so does Id(V). �

Theorem 3.5.6 is the categorical version of Birkhoff’s deductive completeness the-

orem.
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Theorem 3.5.6. Let Γ preserve exact sequences, so EΓ is exact. Let

E
e1 //
e2

//UFX

be a set of equations over X. Then E = Id(V) for some class V of algebras iff E is

a stable congruence.

Proof. Let E = Id(V) for some class V of algebras. By the Galois correspon-

dence Id a Sat, we know that E ≤ IdSat(E). Since V ≤ Sat(E), we also have

IdSat(E) ≤ Id(V) = E. Thus, E = IdSat(E). Since Sat(E) is a variety, we can

make use of the work of the preceding sections. Let TE :EΓ //E be the associated

monad, with unit ηE.

By Lemma 3.5.5, E = ker ηEFX . Hence, in particular, E is a congruence. Let

σ :X //UFX be given. Since TEFX ∈ Sat(E), ηEFX coequalizes the composite σ̃ ◦ e1

and σ̃ ◦ e2. Because E is the kernel pair of ηEFX , we have the factorization E //E , as

desired. Hence, E is stable.

Let E be a stable congruence and let q :FX //〈Q, ν〉 be the coequalizer of

FE ////FX .

Let V = q⊥ (i.e., V = Sat(E)). Because E is stable, q ⊥ 〈Q, ν〉, so 〈Q, ν〉 ∈

V. Hence, 〈Q, ν〉 ∼= TVFX. Since E is a congruence, it is the kernel pair of its

coequalizer. Thus, by Lemma 3.5.5, Id(V) = E. �

Remark 3.5.7. Theorem 3.5.6 applies more generally than stated. If E is a

relation over A = U〈A, α〉 (not necessarily free), then E = Id(V) for some class

V of algebras iff E is a stable congruence. In this more general case, Sat(E) is, of

course, a quasi-variety rather than a variety.

Corollary 3.5.8. For any set E of equations over regular projective X,

Id(Sat(E)) = ker ηEFX ,

where ηE is defined as in the proof of Theorem 3.5.6.

Theorem 3.5.9. Assume that EΓ is uniformly Birkhoff, with FX an equational

domain. Let Var be the collection of varieties of EΓ, ordered by reverse inclusion

and let Ded be the collection of stable congruences over FX (an equational domain),

ordered by inclusion. Then Ded ∼= Var.

Proof. Var is the collection of fixed points of Sat ◦ Id, while Ded is the collection

of fixed points of Id ◦ Sat. The functors Id and Sat are isomorphisms when restricted

to Fix(Sat ◦ Id) and Fix(Id ◦ Sat), respectively. �
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The isomorphism between varieties and stable congruences is a result of the iso-

morphism between congruences and coequalizers in EΓ. We stated Theorem 3.5.9

in terms of stable congruences (i.e., deductively closed sets of equations) in keeping

with the historical motivation and with the traditional notion of “equationally de-

fined class”. However, one has the same result, more or less, in an abstract uniformly

Birkhoff category. We sketch the theorem here.

Let C be a uniformly Birkhoff category with equational domain X (i.e., for any

variety V, V = {ηV}⊥). Call a quotient q :X � ,2Q stable if q ⊥ Q. In other words,

q is stable just in case Q ∈ {q}⊥. If V = {q}⊥, then, q :X //Q is stable just in case

Q ∼= TVX (and q ∼= ηV

X ).

The quotients of X may be partially ordered by Q ≤ Q′ if there is a (necessarily

regular epi) Q � ,2Q′ in X/C. The resulting order StQ of stable quotients of X is

isomorphic to the collection Var of varieties in C, ordered by reverse inclusion. The

isomorphism takes a stable q to {q}⊥, while the inverse takes a variety V to the unit

ηV

X .

.

3.6. The coalgebraic dual of Birkhoff’s variety theorem

We now consider the dual of Birkhoff’s theorem in categories of coalgebras. To

begin, we dualize the definitions of Birkhoff, variety, etc., to prove the dual of The-

orem 3.2.11. Following this, we show how this theorem applies to categories of coal-

gebras.

The co-Birkhoff theorem has been a hot topic lately, beginning with Jan Rutten’s

co-Birkhoff theorem for Set ([Rut96]). Peter Gumm and Tobias Schröder contin-

ued developing the co-Birkhoff theorem over Set in [GS98]. The following material

essentially dualizes the work done in the previous sections, so coequation satisfac-

tion is again an orthogonality condition (formally dual to equation satisfaction). It

can be seen as an extension of the work in [BH76], further developed in the papers

of Andréyka and Németi [AN83, Ném82, AN81a, AN81b, AN79a, AN79b,

AN78], discovered by the author after this work was completed independently. The

same approach was taken by Alexander Kurz in his dissertation [Kur00], again in-

dependently of the author.

3.6.1. The dual definitions. Here, we give the dual of the relevant definitions

in Section 3.2.1. This is straightforward, but we will explicitly state the definitions

here.

An arbitrary category is a quasi-co-Birkhoff category if it is regularly well-powered,

cocomplete and has epi-regular mono factorizations. Recall that a category has
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enough regular injectives if every object is a regular subobject of an regular injec-

tive object. If, in addition, the category has enough regular injectives, then it is a

category!co-Birkhoff .

Example 3.6.1. Any co-complete topos E is co-Birkhoff. That it is regularly well-

powered and has epi-regular mono factorizations is clear. Because each object C ∈ E

has a mono C //PC and PC is regular injective, E has enough regular injectives

[LM92, Corollary IV.10.3].

Example 3.6.2. Top is a co-Birkhoff category. It is obvious that Top is regularly

well-powered, since monos in Top are regular injective functions. Also, every space

〈X, O〉 is a regular subobject of an regular injective space. Namely, we can take

the space X and adjoin a single point whose singleton is open. This new space is

regular injective. That Top is cocomplete and has epi-regular mono factorizations is

well-known (a regular mono in Top is an embedding).

In Theorem 3.6.7, we will show that, given the category E is co-Birkhoff and that

Γ preserves regular monos, then the category EΓ is also co-Birkhoff.

The dual of Birkhoff’s (quasi-)variety theorem will state an equivalence between

subcategories satisfying certain closure conditions and class of objects that are or-

thogonal to some collection of arrows. The closure conditions are easily found: they

are the dual of the defining properties of (quasi-)varieties. Consequently, we say that

a full subcategory is a quasi-covariety if it is closed under codomains of epimorphisms

and coproducts and it is a covariety if it is also closed under regular subobjects.

An object X is orthogonal to a map f :A //B (written X ⊥ f — sometimes

this condition is stated as, f is co-orthogonal to X) if, for each b :X //B , b factors

through f . In particular, if f is an equalizer for e1, e2 :B //C , then X ⊥ f iff every

map X //B equalizes e1 and e2. If S is a class of arrows and V is a full subcategory,

we define the notations X ⊥ S, V ⊥ f and V ⊥ S, as before. The class of arrows

V⊥ consists of all maps f such that V ⊥ f and the full subcategory S⊥ consists of

all those objects X such that X ⊥ S. These operators form a Galois correspondence.

3.6.2. The abstract dual to Birkhoff’s theorem. We can now dualize the

theorems of Section 3.2.5, providing quasi-covariety and covariety theorems for ab-

stract co-Birkhoff categories. These theorems will then be interpreted in categories

of coalgebras EΓ for co—Birkhoff E and covarietor Γ that preserves regular monos,

leading to a definition of coequation for such categories.
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Recall that G = 〈G, ε, δ〉 is a comonad just in case G is an endofunctor and ε

(the counit) and δ (the comultiplication) are natural transformations

ε :G //1C ,

δ :G //GG,

respectively, satisfying εG ◦ δ = idG = Gε ◦ ε and δG ◦ δ = Gδ ◦ δ.

The following theorem is the dual of Theorem 3.2.7.

Theorem 3.6.3. Let C be a quasi-co-Birkhoff category and V a full subcategory

of C. The following are equivalent.

(1) V is a quasi-covariety.

(2) The inclusion UV :V //C has a right adjoint HV such that each component

of the counit εV :1C //UVHV is a regular mono.

(3) V = S⊥ for some collection S of regular monos.

Example 3.6.4. Top has no interesting quasi-covarieties. Let V be a quasi-

covariety of topological spaces and suppose that there is a non-empty space A in V.

Then, since the space 1 is the codomain of an epi out of A, 1 ∈ V. Hence, so is every

discrete space (as a coproduct of 1) and hence every topological space (since injects

into the discrete space with the same underlying set).

Unfortunately, we don’t have any good examples of covarieties or quasi-covarieties

outside of categories of coalgebras yet.

Corollary 3.6.5. Let C be a quasi-co-Birkhoff category and V a quasi-covariety

of C. Then

(1) The inclusion UV :V //C has a right adjoint HV.

(2) The unit ηV :1V
//HVUV is an isomorphism.

(3) For each C ∈ C, we have C ∈ V iff C ⊥ εVC , where εV is the counit of the

adjunction UV a HV.

(4) The corresponding comonad, GV = 〈UVHV, εV, δV〉, is idempotent.

(5) The comonad GV preserves regular monos.

Thus, if V is a quasi-variety of C, we have an adjunction,

V
UV

**⊥ C
HV

jj ,

where UV is full and faithful and every component of the counit

εV :UVHV //1

is a regular mono, while every component of the unit

ηV :1 //HVUV
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is an isomorphism ([Bor94, Proposition 3.4.1, Volume 1]). Also, we have that any

object C ∈ C is in V iff C ⊥ εVC , in which case εVC is an isomorphism. From this, it

follows that the comonad GV is idempotent. In addition, the comonad GV preserves

regular monos, by the dual of Corollary 3.2.8, Item (5).

Theorem 3.6.3 provides a quasi-variety theorem which we will interpret in terms

of conditional coequations in Section 3.6.4. The following theorem is the formal

dual of the abstract Birkhoff theorem, Theorem 3.2.11. This is the theorem which,

when interpreted in categories EΓ, yields the co-Birkhoff theorem for categories of

coalgebras.

Theorem 3.6.6. If C is a co-Birkhoff category, then V is a covariety iff V = S⊥

for some collection S of regular monos with regular injective codomains.

3.6.3. Covarieties of coalgebras. The formal dualities of Sections 3.6.1 and

3.6.2 provide the basic background for the co-Birkhoff theorem, but our work is not

complete. In this section, we will show that categories of coalgebras over co-Birkhoff

categories are again co-Birkhoff, and also provide a definition of coequation and

coequation satisfaction to provide an interpretation of the co-Birkhoff theorem in EΓ.

That categories EΓ are co-Birkhoff follows, as before, by duality (of Theorem 3.3.1).

Theorem 3.6.7. Let E be co-Birkhoff and Γ:E //E be a covarietor (so that U has

a right adjoint H) that preserves regular monos. Then EΓ is co-Birkhoff.

It is worth noting that, if E and Γ satisfy the conditions of Theorem 3.6.7, then

each coalgebra 〈A, α〉 is a regular sub-coalgebra of HA, which is injective if A is. We

will use this fact in interpreting the covariety theorem.

In what follows, we assume that E is co-Birkhoff and Γ preserves regular monos.

Under these assumptions, we notice that U preserves and reflects epis, regular monos

and colimits (by the dual to Corollary 1.2.15), so that U preserves structure relevant

to covarieties.

The regular subcoalgebras of HC play a role in the co-Birkhoff theorem that

is analogous to the quotients of FX in Birkhoff’s variety theorem. This analogy

suggests the following definition.

Definition 3.6.8. A coequation over C is a regular subobject of UHC. That is,

a coequation K is a(n equivalence class of) regular monos

K � ,2 //UHC .

We take a coequation here to be a regular subobject. This is not the literal dual

of sets of equations in EΓ. There, the set of equations E is taken as a binary relation

on UFX. So, to dualize a set of equations, one would consider corelations on UHC.

Since these are less familiar objects, we prefer to consider the regular subcoalgebras
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themselves, which are dual to the quotients of FX by the pre-congruence generated

by E. For a discussion of corelations over coalgebras, see [Kur00].

There is also a sense in which the variety theorem is “really” about quotients

and orthogonality classes (rather than relations), and this motivates our definition

of coequations. Sets of equations arise in the classical setting, but as we saw in

Section 3.2.4, the variety theorem can be proved in terms of quotients in a wide variety

of categories in which one may not have a natural notion of “equational satisfaction”

(apart from orthogonality to a regular epi with regular projective domain, of course).

Some authors (notably, Peter Gumm in [Gum01a]) distinguish between single

coequations and sets of coequations, a distinction which we do not introduce. In order

for this distinction to arise, one states coequation satisfaction in terms of avoidance of

certain behaviors. We prefer the more straightforward definition given below (which

is equivalent for categories of coalgebras over Set), partly because it stresses the

coequation-as-predicate view which we exploit later.

Each coequation K � ,2 //UHC gives rise to a canonical subcoalgebra, of course, via

the [−]HC operator of Section 2.2.2. By Corollary 2.2.9, we know that any homo-

morphism f :〈A, α〉 //HC factors through [K]HC just in case Uf factors through K.

This fact, together with our work on equation satisfaction previously, suggests the

following definition.

Definition 3.6.9. Let K � ,2 //HC be a coequation over C and i : [K] � ,2 //HC the

evident inclusion. We say that a coalgebra 〈A, α〉 forces K (written 〈A, α〉 C K,

with the subscript sometimes omitted) just in case 〈A, α〉 ⊥ i.

In other words, 〈A, α〉 C K just in case, for every map p :A //C , the adjoint

transpose of p factors through K. Intuitively, this means that, no matter how one

“colors” the elements of A (with colors chosen from C), each element of A is behav-

iorally indistinguishable (in the sense of Γ-coalgebras) from an element of K of the

same color.

Remark 3.6.10. In some ways, the forcing terminology here does not fit well

with the definition, since coequation forcing is really derived from the usual notion

of predicate satisfaction (not forcing). Nonetheless, we use the forcing terminology

in order to keep the distinction between equation satisfaction (orthogonality to a

quotient) and coequation satisfaction (co-orthogonality to a subobject) clear.

Example 3.6.11. Again, let ΓA = X × A and suppose x ∈ X. Let C = 2, so

HC is (2 ×X)ω. Let

σ, τ :ω //2 ×X
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be defined by

σ(n) = 〈0, x〉

τ(n) = 〈1, x〉

for all n ∈ ω, and let K = {σ, τ}, so K is a coequation over C.

Consider the coalgebras 〈A, α〉 and 〈B, β〉, where A = {a} and α(a) = 〈x, a〉 and

B = {b, c} and

β(b) = 〈x, c〉

β(c) = 〈x, b〉

Then it is easy to see that 〈A, α〉  K, while 〈B, β〉 6 K. Moreover, one can show

that 〈C, γ〉  K just in case, for each c ∈ C, γ(c) = 〈x, c〉.

This example should support the view that coequational satisfaction says some-

thing about the internal structure of the coalgebra. Bisimilarity tells one about the

behavior of a coalgebra — what sorts of output the structure maps can generate.

In Section 3.9, we will see that coequation satisfaction is a finer way to distinguish

between coalgebras than bisimilarity classes. Example 3.6.11 suggests that coequa-

tion satisfaction gives some ability to distinguish the internal composition of distinct

coalgebras.

We now have a natural definition for coequational variety. A coequational variety

is the class of all coalgebras which satisfy some collection of coequations. That is,

V is a coequational covariety iff there is a collection S of regular monics with cofree

codomains such that V = S⊥. With the new terminology, the following theorem is

an easy consequence of Theorem 3.6.7.

Theorem 3.6.12. Let E be co-Birkhoff and Γ:E //E preserve regular monos. Sup-

pose also that U :EΓ
//E is comonadic (i.e., Γ is a covarietor) and let V be a full

subcategory of EΓ. Then V is a Birkhoff covariety iff V is a coequational covariety.

In Theorem 3.6.7, we showed that any covariety is the co-perp of some collection

of regular monos with regular injective codomains. Here, we simply note that each

object is a regular subobject of HC for some regular injective C. The dual of this

was shown in the proof of Corollary 3.3.2.

Example 3.6.13. In [GS98], it is shown that the category Topopen of topological

spaces and open maps is a covariety of SetF (where F is the filter functor).

Example 3.6.14. Fix a set Z and let Γ:Set //Set be the functor

ΓA = Z × A,
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so that any Γ-coalgebra 〈A, α〉 can be viewed as a collection of streams over Z (see

Example 1.1.7).

The cofree coalgebra HN is the final N×Z×− coalgebra — i.e., HN = (N×Z)ω.

Given an element σ ∈ HN, we can define

Col(σ) = {π1 ◦ σ(i) | i < ω}

(equivalently, Col(σ) = {ε � ◦ ti(σ) | i < ω}, where t is the tail destructor). In other

words, Col(σ) is the set of all colors that occur in the stream σ. Define a coequation

ϕ over N by

ϕ = {σ | card(Col(σ)) < ℵ0},

(where card(X) is the cardinality of X) so σ ∈ ϕ just in case only finitely many

colors occur in σ.

One can check that, for any Γ-coalgebra 〈A, α〉, we have 〈A, α〉  ϕ just in case,

for all a ∈ A, there is n ≥ 0, m > 0 such that

tn(a) = tn+m(a),

(where α = 〈h, t〉). In other words, 〈A, α〉  ϕ iff each stream in A has only a finite

number of “states”.

Example 3.6.15. Fix a set I and let Γ:Set //Set be the functor

ΓS = (PfinS)I.

In Example 1.1.11, we learned that Γ-coalgebras 〈S, σ〉may be regarded as non-

deterministic automata, where the elements of S are the states of the automata. We

say that, on input i ∈ I, there is a transition s
i //s′ just in case s′ ∈ σ(s)(i).

The deterministic automata are those automata 〈S, σ〉 such that, for each s ∈ S

and each i ∈ I, there is at most one s′ such that s
i //s′ . Let Det denote the class of

deterministic automata, so Det ⊆ SetΓ. Then it is easy to see that Det is a covariety

in SetΓ.

In fact, one can show that there is a coequation K over 2 colors that defines Det.

Namely, define K ⊆ UH2 by

K = {x ∈ UH2 | ∀i ∈ I ∀y, z ∈ δ(x)(i) . ε2(y) = ε2(z)},

where δ :UH2 � ,2 � ,2ΓUH2 is the structure map for H2. Then, it is easy to show that

〈A, α〉  K iff 〈A, α〉 ∈ Det .

Example 3.6.16. In this example, we will use an coalgebraic specification syntax

for object oriented programming languages adopted from Bart Jacobs (see [Jac99,

RTJ01], for instance). In Section 2.1.5, we discussed a simple specification in which

we gave the signature of certain methods, thus determining a category SetΓ of models

of the class. In this specification, we extend the previous example to include such
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assertions, thus restricting the coalgebras in which we are interested to a subclass of

SetΓ. In fact, these assertions determine a covariety of SetΓ (and so, in fact, the

models form a category of coalgebras for a comonad).

Typically, in coalgebraic specifications, one allows assertions about the “observ-

able” behavior of methods, so that the class of coalgebras which serve as models

for the specifications is closed under bisimulations. We extend the usual class of

assertions to allow for equations between states of the coalgebras, in order to fully

utilize the expressive power of coequations, ignoring the usual conceptual reason for

restricting attention to observable behavior.

We consider the class DecCounter introduced in Section 2.1.5, although we view

it as a basic class (rather than a class which inherits from Counter). We add to the

previous specification two assertions, as shown here.

begin DecCounter

operations
inc :X //X
val :X //N
dec :X //X + 1

assertions
∀x. val(inc(x)) = val(x) + 1
∀x. dec(inc(x)) ∼ x
∀x. dec(x) = ∗ iff val(x) = 0

end DecCounter

Here, ∼ indicates the bisimilarity relation. Thus, the class of models of DecCounter

is intended to be the class of −× N × (− + 1)-coalgebras 〈A, α〉such that, for every

a ∈ A,

vα ◦ iα(a) = vα(a) + 1,

dα ◦ iα(a) ∼ a,

dα(a) = ∗ iff vα(a) = 0

where α = 〈iα, vα, dα〉. Note that dα ◦ iα(a) ∼ a just in case !◦dα ◦ iα(a) =!(a), where

! is the unique homomorphism from 〈A, α〉 to the final −× N × (− + 1)-coalgebra.

It is easy to see that the class of models of DecCounter is a variety for a co-

equation K over 1 color (i.e., a subset of the final coalgebra, H1). In fact, this is a

corollary to the discussion of behavioral covarieties in Section 3.9, but we explicitly

give the coequation here. Indeed, let 〈iσ, vσ, dσ〉 :UH1 � ,2 � ,2UH1 ×N × (UH1 + 1) be

the structure map for the final coalgebra and define sets

K1 = {x ∈ UH1 | vσ ◦ iσ(x) = vσ(x) + 1}

K2 = {x ∈ UH1 | dσ ◦ iσ(x) = x}

K3 = {x ∈ UH1 | dσ(x) = ∗ iff vσ(x) = 0}
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Let K = K1 ∩K2 ∩K3. Let 〈A, α〉 be given, α = 〈iα, vα, dα〉. Then, for any a ∈ A,

vα ◦ iα(a) == vσ ◦ iσ◦!(a) and

vα = vσ◦!(a) + 1,

so 〈A, α〉  K1 just in case 〈A, α〉 satisfies the first assertion. Similarly, one checks

that 〈A, α〉 forces K2, K3 resp., just in case 〈A, α〉 satisfies the second, third resp.,

assertion.

If, on the other hand, we want the result of applying dec ◦ inc to return an object

to the same state, rather than to a “merely” indistinguishable state3, then we may

replace the second assertion with the related assertion

∀x. dec(inc(x)) = x.

In this case, a coequation over one color does not suffice, again for reasons that we

present in Section 3.9. However, there is a related coequation over two colors that

defines the class of models for this specification. Namely, we define again three sets

as follows:

K ′
1 = {x ∈ UH2 | vσ ◦ iσ(x) = vσ(x) + 1}

K ′
2 = {x ∈ UH2 | ε2 ◦ dσ ◦ iσ(x) = ε2 ◦ x}

K ′
3 = {x ∈ UH2 | dσ(x) = ∗ iff vσ(x) = 0}

(We implicitly require that the equation in the definition of set K ′
2 is well-typed, so

that dσ ◦ iσ(x) ∈ UH2.) We define K ′ ⊆ UH2 to be the intersection of K ′
1, K

′
2 and

K ′
3. We assert that 〈A, α〉  K ′ just in case K ′ satisfies the requisite assertions. In

particular, 〈A, α〉  K ′
2 just in case, for every a ∈ A,

dα ◦ iα(a) = a.(18)

Indeed, suppose that, for every a, Equation (18) holds, and let p :〈A, α〉 //H2 be

given. Then, for every a ∈ A,

ε2 ◦ dσ ◦ iσ ◦ p(a) = ε2 ◦ p ◦ dα ◦ iα(a) = ε2 ◦ p(a),

and so p(a) ∈ K ′
2.

On the other hand, suppose that there is an a ∈ A such that Equation (18) does

not hold. If dα ◦ iα(a) = ∗, then it is easy to show that (for any p :〈A, α〉 //H2),

p(a) 6∈ K ′
2,

and so 〈A, α〉 6 K ′. Suppose, then, that dα ◦ iα(a) ∈ A. We may define a coloring

p̃ :A //2 such that

p̃(dα ◦ iα(a)) 6= p̃(a).

3Again, we do not justify this desire here, although one has the idea that the strengthened
assertion regarding equality of states is related to assertions describing final methods.
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Let p :〈A, α〉 //H2 be the adjoint transpose of p̃. Then

ε2 ◦ dσ ◦ iσ ◦ p(a) = p̃(dα ◦ iα(a)) 6= p̃(a) = ε2(a),

and so again 〈A, α〉 6 K ′. Consequently, if 〈A, α〉  K ′, then every a ∈ A satisfies

Equation (18).

3.6.4. Quasi-covarieties of coalgebras. We interpreted the covariety theorem

in categories of coalgebras by introducing a notion of coequations. In this section,

we revisit the quasi-covariety theorem (Theorem 3.6.3) and interpret it in terms of

conditional coequations. Conditional coequations arise as an obvious generalization

of coequations, by relaxing the condition that the codomain of the regular mono is

cofree. We hope to motivate the use of the term “conditional” by showing that the

natural forcing definition for these regular subobjects is equivalent to a conditional

forcing of a “proper” coequation.

A similar presentation of conditional coequations (in terms of modal rules) can

be found in [Kur00, Kur99]). The material of this section covers much of the

same ground as Andréyka and Németi covered for the dual (algebraic) theorems in

[Ném82, AN81a, AN81b, AN79b]. This material was developed independently

prior to the author’s discovery of the related research.

A coequation over C is just a regular subobject of the cofree coalgebra UHC.

More generally, we could consider regular subobjects of the carriers of arbitrary coal-

gebras. This suggests the following definition, although we postpone justifying the

use of the term “conditional”.

Definition 3.6.17. A coequation!conditional – (over 〈A, α〉) is just a regular

subobject

K � ,2 //A

of A = U〈A, α〉. We sometimes subscript a conditional coequation by α to indicate

its codomain.

Recall that [K] is the largest subcoalgebra of 〈A, α〉 whose carrier is contained in

K. We say that 〈B, β〉 α K just in case 〈B, β〉 ⊥ i, where

i : [K] � ,2 //〈A, α〉

is the inclusion.

Hence, a coequation K over C is just the same as a conditional coequation over

HC, and so the conditions 〈B, β〉 C K and 〈B, β〉 HC K are really just the same

statement. Nonetheless, we hope no confusion arises from the notational differences

between coequations and conditional coequations.

In terms of conditional coequations, Theorem 3.6.3 yields the following theorem.
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Theorem 3.6.18. Let E be quasi-co-Birkhoff and Γ preserve regular monos. Then,

for any class V of Γ-coalgebras, V is a quasi-covariety iff there is a collection S of

conditional coequations such that

〈B, β〉 ∈ V iff ∀Kα ∈ S . 〈B, β〉 α K

Example 3.6.19. Let G = 〈G, ε, δ〉 be a comonad over E , and assume that G

preserves regular monos. Then, the category E � of coalgebras for the comonad is a

variety in the category EG of coalgebras for the endofunctor. Indeed, it is easy to

check that E � is closed under epis, regular subcoalgebras and coproducts.

If G is not a covarietor4, then Theorem 3.6.12 does not apply — so, we cannot

guarantee a collection of coequations defining E � . However, we may apply Theo-

rem 3.6.18 in this case, to conclude that there is a collection S of conditional coequa-

tions defining the covariety E � .
Indeed, it is not hard to explicitly give a collection S which suffices. For each

〈A, α〉 ∈ EG, let Φα be the equalizer shown below.

Φα
� ,2 //A

εA◦α //
idA

//A

That is, Φα is just the equalizer of the counit diagram from Definition 2.1.2. Similarly,

let Ψα be the equalizer of the co-distributivity diagram, shown below.

Ψα
� ,2 //A

δA◦α //
Gα◦α

//G2A

Let S be the collection (abusing set notation)

{Φα ∧ Ψα | 〈A, α〉 ∈ EG}.

Then it is easy to show that, for any 〈B, β〉 ∈ EG,

〈B, β〉 ∈ E � iff 〈B, β〉  S.

In the remainder of this section, we will focus on a special class of quasi-covarieties:

those that are defined by a single conditional coequation. Our purpose is to show

that the so-called conditional coequations really do reflect a notion of conditional

forcing. Namely, given a conditional coequation i :K � ,2 //U〈A, α〉, we may view A as a

coequation as well — namely a coequation over the object A of colors (or, if A is not

projective, then a coequation over some projective of which A is a regular subobject).

4Note: The fact that G is the functor part of a comonad does not seem sufficient to infer that

U :EG
//E

has a right adjoint — although the related forgetful functor

U :EG
//E

certainly does have a right adjoint.
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We will show that a coalgebra 〈B, β〉forces K just in case 〈B, β〉  A⇒ K (although

we still owe a definition of this latter condition).

Given a pair of coequations K, L over a common object of colors, C, we call

K ⇒ L an ⇒-coequation. We say that a coalgebra 〈A, α〉 forces K ⇒ L (written

〈A, α〉 C K ⇒ L) just in case, for every homomorphism p : 〈A, α〉 //HC , if Up

factors through K, then Up factors through L. In other words, 〈A, α〉 C K ⇒ L if,

whenever p :〈A, α〉 //HC and Im p ≤ [K], then Im p ≤ [L].

Remark 3.6.20. The condition that

〈A, α〉  K ⇒ L

is not the same as

〈A, α〉  K → L

, where K → L is defined in terms of the Heyting algebra structure of RegSub(UHC).

In fact, one can show that, for any K, L, 〈A, α〉, if 〈A, α〉  K → L, then 〈A, α〉 

K ⇒ L, but the converse does not hold.

For example, let ΓX = X ×X. Let

〈ε2, l, r〉 :UH2 � ,2 � ,22 × UH2 × UH2

be the structure map for H2. Define coequations K, L over 2 by

K = {σ ∈ UH2 | σ = l(σ)}

L = {σ ∈ UH2 | σ = r(σ)}

Let A = {a, b} and α = 〈lα, rα〉 :A //A× A be defined by

α(a) = 〈b, b〉,

α(b) = 〈b, a〉.

We will first show that 〈A, α〉  K ⇒ L. Let

p :A //2

be given such that Im p̃ ≤ K, where p̃ is the adjoint transpose of p. Then, since

p̃(a) ∈ K, it follows that p̃(a) = p̃(b). Hence, Im p̃ ≤ L.

However, it is not the case that 〈A, α〉  K → L. Let p(a) = 0 and p(b) = 1.

Then, p(b) ∈ K but p(b) 6∈ L. Hence,

Im p̃ ∧K 6≤ L

and so Im p̃ 6≤ K → L.

We wish to show that conditional coequations (in the sense of Definition 3.6.17)

coincide with ⇒-coequations. More precisely, given any conditional coequation M
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over 〈A, α〉, there is an ⇒-coequation K → L over C, for an appropriate projective

object C, such that

〈B, β〉 α M iff 〈B, β〉 C K ⇒ L.

Also, given any ⇒-coequation K ⇒ L, there is an 〈A, α〉 and M ≤ A such that the

same equivalence holds. This fact motivates the terminology “conditional coequa-

tion”, since each conditional coequation can be expressed as a coequation of the form

K ⇒ L.

Theorem 3.6.21. Let E be a Birkhoff category, Γ a varietor the preserves regular

monos. Let 〈A, α〉 ∈ EΓ and C an injective object such that A ≤ C. Then, for any

conditional coequation M over 〈A, α〉, there is an ⇒-coequation K ⇒ L over C such

that

〈B, β〉 α M iff 〈B, β〉 C K ⇒ L.(19)

Conversely, if E has binary intersections, for any ⇒-coequation K ⇒ L over C, there

is a 〈A, α〉, with A ≤ C and a conditional coequation M over 〈A, α〉 such that (19)

holds.

Proof. Let m :M � ,2 //A, where A = U〈A, α〉 and C injective with i :A � ,2 //C . We

claim that 〈B, β〉 α M just in case 〈B, β〉 C A⇒M .

Indeed, suppose that 〈B, β〉  M , so that every homomorphism 〈B, β〉 //〈A, α〉

factors through M . Let f :〈B, β〉 //HC be given and suppose that f factors through

A (as in Figure 9), f = i ◦ g for some g :B //A . Then, by Corollary 1.2.10, g is also

a homomorphism and so g factors through m. Hence, 〈B, β〉  A⇒M .

UHC

B

f
;;xxxxxxxxx

g //

k ##F
FF

FF
FF

FF A
_LR
i

OO

M
_LR
m

OO

Figure 9. 〈B, β〉 α M iff 〈B, β〉 C A⇒M

Conversely, suppose that 〈B, β〉  A ⇒ M and let g :〈B, β〉 //〈A, α〉 be given.

Then i ◦ g factors through A and hence factors through M , i ◦ g = i ◦m ◦ k. Since i

is monic, we see that g factors through M .

On the other hand, let K,L ≤ UHC. Let [K]HC = 〈A, α〉 (so 〈A, α〉 is the

largest subcoalgebra of HC contained in K). We claim that 〈B, β〉 α L∩A just in

case 〈B, β〉 C K ⇒ L.
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Suppose that 〈B, β〉 α L ∩ A. Let f :〈B, β〉 //HC be given and suppose that

ImUf ≤ K. Then, by Corollary 2.2.9, Im f ≤ [K] = 〈A, α〉 and so ImUf ≤ L∩A ≤

L. Hence, 〈B, β〉 C K ⇒ L.

Suppose now that 〈B, β〉 C K ⇒ L, and let g :〈B, β〉 //〈A, α〉 be given. Since

A ≤ K, the map g factors through L and hence through A ∩ L. Thus,

〈B, β〉 α A ∩ L.

�

3.7. Uniformly co-Birkhoff categories

In Section 3.4, we considered those categories in which every variety V is of the

form V = {p :A � ,2•}⊥ for some regular epi p, regular projective A. In the case of

categories of algebras, we could take A to be free over some projective object X

“of variables”. Thus, if EΓ is uniformly Birkhoff, then there is some X such that

every variety is definable by a set of equations over X. In the classical setting of

Set
�
, where P is a polynomial functor, we could take X to be any infinite set, in

accordance with the 1935 Birkhoff variety theorem.

We wish to consider the analogous conditions for categories of coalgebras and

their covarieties. Namely, what conditions suffice to conclude that there is an regular

injective C such that every covariety V of EΓ is definable by a coequation over C? In

more detail, we want conditions that ensure that, for every V, there is a K � ,2 //UHC

such that

V = {〈A, α〉 ∈ EΓ | 〈A, α〉 C K}.

As we shall see in Section 3.8, K can always be taken to be the carrier of a sub-

coalgebra. Thus, the question is when V = {i :• � ,2 //HC }⊥ for some regular mono

Γ-homomorphism i.

Definition 3.7.1. A co-Birkhoff category C is uniformly co-Birkhoff just in case

there is an regular injective C ∈ C such that, for every variety V, there is a regular

mono i :K � ,2 //C such that V = {i}⊥. In this case, we call C a coequational codomain.

3.7.1. Conjunctly irreducible coalgebras and conjunct sums. Here, we

prove an analogue to Birkhoff’s subdirect representation theorem ([Bir44]). The so-

called conjunct representation theorem was first proved by Gumm and Schröder for

categories of coalgebras over Set (see [Gum01b, Gum98, Gum99]). We generalize

their work here. We begin by stating the relevant definitions for the classical theorem

as well as the theorem itself, which we take from [Grä68]. For the classical theorem,

we work in Set
�

for a polynomial functor P.
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Call an algebra 〈A, α〉subdirectly irreducible just in case, whenever {Θi}i∈I is a

family of congruences on 〈A, α〉with
∧

Θi = ∆α, the diagonal on 〈A, α〉, then one of

the Θi equals ∆α.

Theorem 3.7.2 (Subdirect representation). For any 〈A, α〉 in Set
�
, there is a

family {〈Ai, αi〉}i∈I such that each 〈Ai, αi〉 is a quotient of 〈A, α〉 and

〈A, α〉 ≤
∏

〈Ai, αi〉.

The material that follows is a good example of the limitations of formal dualities.

The proof of the conjunct representability theorem given here does not follow from

a simple dualization of the proof of the subdirect representability theorem. The

classical theorem relies on finding, for each a 6= b in an algebra 〈A, α〉, a congruence

Ra,b such that ¬Ra,b(a, b) and taking the product of the A/Ra,b for pairs of distinct

a, b. This approach does not easily dualize to yield the coalgebraic theorem, and

so a different approach is used. Nonetheless, an analogous result is obtained — the

conclusion of the theorem is dual to the subdirect representation theorem, but the

assumptions required and the methods used are not dual.

Throughout this section, we assume that E has epi-regular mono factorizations,

finite limits and all coproducts and that Γ preserves regular monos.

The following definition is dual to subdirect products in the classical theorem.

Definition 3.7.3. Let A ∈ C. A conjunct covering of A is a collection of regular

monos

{ Ci
� ,2ci //A | i ∈ I}

such that the map
∐

i∈I Ci
[ci]i∈I//A

is a regular epi.

The requirement that
∐
Ci //A is a regular epi, instead of just epi, is necessary

only so that conjunct covers are stable under pullbacks. In what follows, we may

replace regular epis with epis if we also require that all epis are stable under pullback,

rather than just requiring that C is a regular category.

Next, we dualize the notions of subdirect irreducibility and representability.

Definition 3.7.4. We say that an object A ∈ C is conjunctly irreducible iff,

whenever we have a non-empty conjunct covering of A,

∐
i∈I Ci

[ci]i∈I� ,2A ,

then one of the ci’s is an epi (and hence an isomorphism).
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Definition 3.7.5. We say that a conjunct covering

{ci :Ci
� ,2 //A}i∈I

of A is a conjunct representation of A if each Ci is conjunctly irreducible. We say

that C is conjunctly presentable if each object A ∈ C has a conjunct representation.

An object A is, by definition, conjunctly irreducible just in case, for every family

{Ci}i∈I of regular subobjects of A, if
∐
Ci covers A, then one of the Ci covers A.

The following theorem shows that whenever A is conjunctly irreducible, then, for any

family {Ci}i∈I which covers A, one of the Ci //A is epi.

Theorem 3.7.6. Let C be a category with epi-regular mono factorizations. An

object A ∈ C is conjunctly irreducible iff for every collection of maps (not necessarily

monic)

{ Ci
ci //A | i ∈ I}

such that the induced map
∐

i∈I Ci
[ci]i∈I//A

is a regular epi, there is some i ∈ I such that ci is epi.

Proof. Suppose that A is conjunctly irreducible. For each i, take the epi-regular

mono factorization, as shown below.

Ci

ci
++

pi && &&

A

Di

1 4= di

FF

Then, it is easy to see that the di’s form a regular cover of A, and so there is some i

such that di is an epi. Hence, ci is also an epi. �

For the remainder of this section, we will be interested in categories in which

coproducts commute with pullback, a generalization of distributive categories. Such

categories are called extensive. We present the definition here and state without

proof a theorem (found as Theorem 5.5.8 in [Tay99]) giving an equivalent definition

of extensive. See also [Coc93] for a discussion of extensive categories, a subject we

return to in Section 4.1, where we show that EΓ is extensive, given that E is extensive

and Γ preserves regular monos and pullbacks along regular monos.

Definition 3.7.7. A category with finite coproducts is extensive if, in the dia-

gram in Figure 10, the squares are pullbacks just in case the top row is a coproduct

diagram.

Any extensive category with finite limits is distributive.
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X

��

// Z

��

Yoo

��
A κA

// A+B BκB

oo

Figure 10. In an extensive category, the squares are pullbacks iff
Z = X + Y .

Theorem 3.7.8. Let C have all pullbacks. C is extensive just in case

• C has a strict initial object, i.e., any map • //0 is an isomorphism;

• coproducts are disjoint, i.e., the diagram below is always a pullback;

0 //

��

_� A

��
B // A+B

• coproducts are stable under pullback, i.e., if the squares in Figure 10 are

pullbacks, then Z ∼= X + Y .

In particular, then, every topos is extensive.

We use the property that coproducts commute with pullbacks to ensure that the

pullback of a conjunct covering is again a conjunct covering. This, in turn, will ensure

that a coalgebra is conjunctly irreducible just in case it is generated by a conjunctly

irreducible subobject.

Theorem 3.7.9. Assume C is a regular, extensive category. Let f :A //B be given

and let

{ Ci
� ,2ci //B | i ∈ I}

be a conjunct covering of B. Then pulling each Ci back along f yields a conjunct

covering of A. In other words, pullbacks preserve conjunct coverings.

Proof. For each i, take the pullback

Di
� ,2 di //

��

_� A

f

��
Ci

� ,2
ci

// B

(20)

Pullbacks preserve regular monos, so all that remains is to show that the map from

the coproduct of the Di’s is also a regular epi. But, since pullbacks commute with
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coproducts, the following square is a pullback.

∐
iDi

[di] � ,2

��

_� A

f

��∐
i Ci [ci]

� ,2 B

By regularity, the top arrow is a regular epi. �

Theorem 3.7.10. Let C be regular and extensive. Let A be conjunctly irreducible

and suppose f :A // //B is an epi. Then B is conjunctly irreducible.

Proof. Let

{ Ci
� ,2ci //B | i ∈ I}

be a regular covering of B and take the pullbacks as in the proof of Theorem 3.7.9.

Since A is conjunctly irreducible, there is an i such that Di
∼= A. Because of the

commutativity of the pullback square (20), ci is an epi and hence is an isomorphism.

�

Definition 3.7.11. Let 〈A, α〉 be a Γ-coalgebra and S a regular subobject of A.

We say that S generates 〈A, α〉 if no proper regular subcoalgebra of 〈A, α〉 contains

S.

Recall that in Section 2.3, we showed that whenever Γ preserves non-empty in-

tersections, the subcoalgebra forgetful functor Uα :SubCoalg 〈A, α〉 // RegSubA has

a left adjoint, 〈〉α :RegSub(A) // SubCoalg 〈A, α〉. In this case, it is easy to see that

S generates 〈A, α〉 just in case 〈S〉α = 〈A, α〉.

Theorem 3.7.12. Let E be a regular, extensive category. Suppose further that

E is conjunctly presentable. Let 〈A, α〉 be a Γ-coalgebra. Then 〈A, α〉 is conjunctly

irreducible (in EΓ) iff there is some regular subobject S of A such that S is conjunctly

irreducible (in E) and S generates 〈A, α〉.

Proof. Suppose that there is some conjunctly irreducible S which generates

〈A, α〉 and let

{ 〈Ci, γi〉
� ,2ci //〈A, α〉 | i ∈ I}

be a conjunct covering of 〈A, α〉. Then

{ Ci
� ,2ci //A | i ∈ I}

is a conjunct covering of A in E (since U preserves regular monos and regular epis).

Consequently, when we pull it back to S, as shown below, we have a conjunct covering
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of S. ∐
i C

′
i_��

��

_�
� ,2 S_��

��∐
i Ci

� ,2 A

Hence, for some i, C ′
i is isomorphic to S, and so we have S ≤ Ci and so, since S

generates 〈A, α〉, 〈A, α〉 ∼= 〈Ci, γi〉.

For the converse, assume that, for every conjunctly irreducible C in A, there is a

proper regular subcoalgebra 〈D, δ〉 containing C. Pick a conjunct representation of

A,

{ Ci
� ,2ci //A | i ∈ I}.

For each Ci, pick a proper regular subcoalgebra 〈Di, δi〉 of 〈A, α〉 that contains Ci.

Then the 〈Di, δi〉’s form a conjunct cover of 〈A, α〉 and none of the 〈Di, δi〉’s are

isomorphic to 〈A, α〉. Consequently, 〈A, α〉 is not conjunctly irreducible. �

Hence, if Γ preserves non-empty intersections, so that we have 〈〉 a U, the category

EΓ is conjunctly presentable if E is. This is because every coalgebra 〈A, α〉can be

conjunctly covered by 〈Ci〉, where {Ci}i∈I is a conjunct representation of A.

Theorem 3.7.13. Let E be regular, extensive and conjunctly presentable and let

Γ preserve non-empty intersections. Then EΓ is conjunctly presentable.

Proof. Let 〈A, α〉 be a Γ-coalgebra and let

{ci :Ci
� ,2 //A}

be a conjunct representation of A (in E). Then, by Theorem 3.7.12, each 〈Ci〉α is

conjunctly irreducible. Because the diagram below commutes (in E), and because U

creates colimits, the 〈Ci〉’s form a conjunct representation of 〈A, α〉.
∐
U〈Ci〉

� ,2 // A

∐
Ci

OO 7 7Awwwwwwwww

�

In the remainder of this section, we give sufficient conditions to ensure that the

base category E is conjunctly presentable. As a corollary to this, Set is a conjunctly

presentable, but that fact is easy enough that one would prove it directly. We offer

this discussion to indicate that other categories are also presentable — although the

assumption we use (that E is well-pointed) is a strong assumption. In a sense, we

show here that sufficiently “Set-like” categories are conjunctly presentable.
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Definition 3.7.14. Let C be a cocomplete category. A set {Ui}i∈I of objects of

C is a (regular, resp.) generating family if, for every C ∈ C, there is a J ⊂ I such

that there is (regular, resp.) epi
∐

i∈J Ui
// //C .

It is immediate that, if E has a regular generating family of conjunctly irreducible

objects, then E is conjunctly presentable. It is almost as obvious that, if E has a

regular generating family in which each object is conjunctly presentable, then E is

conjunctly presentable, as the following theorem shows.

Theorem 3.7.15. Let E have a set {Ui}i∈I of regular generators and assume that

each Ui has a conjunct representation. Then E is conjunctly presentable.

Proof. Let Si be the set of conjunctly irreducible objects in the conjunct repre-

sentation of Ui. Then
⋃
i∈I Si is a regular generating family of conjunctly irreducible

objects. �

The following definition is stated in terms of toposes with all colimits just for

consistency with the definition of generating families above. Both definitions are

more general than we have stated here, but we are at present interested only in

generating families in cocomplete categories, as it is in these categories that the

concept is closely related to conjunct coverings.

Definition 3.7.16. A topos E with all colimits (equivalently, limits) is well-

pointed if 0 6= 1 and 1 is a (regular) generator for E (i.e., {1} is a generating family).

See any good topos theory book for a discussion of well-pointed toposes, including

[LM92, BW85] or [Bor94, Volume III]. In what follows, we use the fact that, in a

topos, every epi is regular.

Claim 3.7.17. In a well-pointed topos, any A 6= 0 has a global point.

Proof. If A 6= 0, then the classifying maps for 0 ≤ A and A ≤ A are distinct.

Hence, there must be a map 1 //A which distinguishes them. �

Theorem 3.7.18. Let E be a well-pointed topos with all colimits and suppose that

E is regular. Then E is conjunctly presentable.

Proof. We first show that 1 is conjunctly irreducible. Let

{ci :Ci
� ,2 //1}

be a conjunct covering. Then
∐
Ci 6= 0 and so, for some i, Ci 6= 0. Hence, Ci has a

global point x. Since the composite

1
x //C � ,2ci //1
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is the identity, ci is an isomorphism.

Since every object is covered by a coproduct of 1’s, the result follows. �

As a final aside, we point out that in a well-pointed topos with all colimits, the

only conjunctly irreducible objects are 0 and 1.

Corollary 3.7.19. An object C in a well-pointed topos with all colimits is con-

junctly irreducible iff C ∼= 1 or C ∼= 0.

Proof. Clearly, 0 and 1 are irreducible. Let C be given, and suppose C is

conjunctly irreducible. Suppose also that C is not initial. Then C can be written

as a non-empty coproduct of 1’s. Hence, since C is assumed irreducible, C must be

isomorphic to 1. �

3.7.2. Bounded functors. Throughout this section, we assume that E is co-

Birkhoff and that Γ is a covarietor that preserves regular monos. We use some of the

terminology of the preceding section in order to define the relevant terms here — in

particular, in order to define bounded functor. It should be noted that Jiri Adámek

recently showed that bounded Set functors are just the accessible functors ([AP01]),

although we do not exploit this discovery in what follows.

Definition 3.7.20. Let E be conjunctly presentable and let Γ:E //E . We say

that Γ is a bounded by C ∈ E just in case for each Γ-coalgebra 〈A, α〉, there is a

conjunct representation

{ci :Ci
� ,2 //A}i∈I

of A such that, for each i, there is a regular subcoalgebra

〈Di, δi〉 ≤ 〈A, α〉

such that Ci ≤ Di ≤ C.

The lemma below is the dual of Lemma 3.4.12.

Lemma 3.7.21. Let V be a covariety in the co-Birkhoff category C and let A be a

regular subobject of B. Then

{εVB}⊥ ⊆ {εVA}⊥.

Proof. Let C ⊥ εVB and let f :C //A be given. Let

A � ,2 //B ////E

be an equalizer diagram. Because GV preserves equalizer diagrams (the dual of

Corollary 3.2.14), the bottom row in Figure 11 is an equalizer. The vertical arrows are

counits for the comonad 〈GV, εV, δV〉. Because C ⊥ εVB , we have a map C //GVB ,
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C
f //

))""

A
� ,2 // B

//// E

GVA
_LR

OO

� ,2 // GVB
_LR

OO

//// GVE
_LR

OO

Figure 11. If A ≤ B then {εVB}⊥ ⊆ {εVA}⊥.

as shown. By naturality, the diagram

C � ,2 //GVB ////GVE

commutes, yielding the factorization of f through GVA, as shown. �

The next theorem is another example of a “dual” theorem which is not proved

“by duality”. The algebraic analogue to Theorem 3.7.22 is Theorem 3.4.15, in which

we showed that, if E is Birkhoff with enough retractably presentable regular projec-

tives and a regular projective X satisfying certain properties and Γ preserves filtered

colimits and regular epis, then EΓ is uniformly Birkhoff. These assumptions do not

dualize in a reasonable way (since the dual of the conditions on X, say, involves dual-

izing finitely presentable objects, and the result of that is unfamiliar and apparently

uncommon). Hence, we offer a separate proof of the uniformly co-Birkhoff theorem

here, one which is apparently simpler than the algebraic version, but again does not

dualize in an obvious way.

The reader should note that in the following theorem, we do not suppose that E is

uniformly co-Birkhoff. Again, this is a different approach to reach a result analogous

to that of Theorem 3.4.15.

Theorem 3.7.22. Let E be conjunctly presentable. If Γ:E //E is bounded by C,

then EΓ is uniformly co-Birkhoff.

Proof. Let D be a regular injective object of E such that C ≤ D (E has enough

regular injectives). Clearly Γ is bounded by D. We already know V ⊆ {εVHD}⊥.

We will prove the other inclusion, in order to conclude that HD is a coequational

codomain.

Let 〈A, α〉 ⊥ εVHD and let

{ci :Ci
� ,2 //A}

be a conjunct representation of A. For each i, choose a regular subcoalgebra 〈Di, δi〉

of A such that Ci ≤ Di ≤ D. Because {εVHD}⊥ is closed under regular subobjects, we

see that 〈Di, δi〉 ⊥ εVHD for each 〈Di, δi〉.
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Each Uηδi is a regular mono (since εU ◦ Uη = 1), and U reflects regular monos.

Hence, since U and H also preserve regular monos, we see that

〈Di, δi〉 ≤ HDi ≤ HD.

We apply Lemma 3.7.21 to conclude that each 〈Di, δi〉 ⊥ εVδi . Hence, each 〈Di, δi〉 ∈

V (Corollary 3.6.5), and so
∐

〈Di, δi〉 ∈ V. Because U creates coproducts and

reflects epis, ∐
〈Di, δi〉 // //〈A, α〉

is an epi, and so 〈A, α〉 ∈ V. �

3.8. Invariant coequations

In Section 3.5, we presented Birkhoff’s deductive completeness theorem in terms

of closure operators on sets of equations, that is, subsets of UFX × UFX. In this

section, we present the dual theorem, which we call the invariance theorem. As we will

see, the dual of deductive closure leads to two S4 necessity operators for coequations.

The first operator is just the subcoalgebra operator � from Section 2.2.2. The second

operator, �, was first introduced in [Hug01], in which this material is also covered.

It takes a coequation to the largest endomorphism-invariant sub-coequation.

Throughout this section, we assume that E is a co-Birkhoff category and Γ is a

regular-mono-preserving covarietor, so that the coalgebraic covariety theorem applies.

The deductive completeness theorem says that a set E of equations is the equa-

tional theory for some class V of algebras just in case E is deductively closed. Pre-

viously, we introduced a closure operator

IdX :Sub(EΓ) // Rel(UFX,UFX) ,

taking a class V to the largest set of equations over X which V satisfies. This

operator forms a Galois correspondence with the operator

SatX :Rel(UFX,UFX) // Sub(EΓ) ,

taking a set of equations to the variety it defines. Dually, we may define operators,

for each injective C,

CoIdC :Sub(EΓ) // RegSub(UHC),

FrcC :RegSub(UHC) // Sub(EΓ),

in the obvious way. Namely, if V is a class of coalgebras, and K ≤ UHC, then

(abusing set notation in the second definition)

CoId(V) =
∧

{L ≤ UHC | V  L},

Frc(K) = {〈A, α〉 | 〈A, α〉  K}.
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Again, of course, we have a pair of adjoint functors, CoId a Frc. Note, however,

that both of these functors are covariant. That is,

CoId(V) ≤ K iff V ≤ Frc(K).

In ibid, the coequation CoId(V) is called a generating coequation , since it gives

a measure of the “coequational commitment” of the class V. In particular, whenever

V  K, then CoId(V) ≤ K.

Our goal, then, is to find conditions on K ≤ UHC such that K = CoId(V) for

some class V of coalgebras. As before, the conditions should be “syntactic” terms,

without reference to the coalgebras which force K. We begin by introducing the

notion of endomorphism-invariance.

The notion of an endomorphism-invariant coequation arises as the dual to a stable

set of equations, that is, a set of equations closed under substitutions of terms for

variables. More accurately, endomorphism-invariant coequations are dual to stable

quotients, and the invariance operator plays the role of closure under substitution.

Definition 3.8.1. A coequation K over C is endomorphism-invariant just in

case, for every homomorphism

p :HC //HC,

the image of K under p is contained in K, i.e.,

∃pK ≤ K.

Sometimes, we write endo-invariant, or possibly just invariant, for endomorphism-

invariant. However, the reader should be aware that other authors say that a sub-

object K of U〈A, α〉 is invariant (or “α-invariant”) just in case K is the carrier of a

subcoalgebra of 〈A, α〉. Indeed, we use a similar terminology (“α, β-invariant”) in the

proof of Theorem 2.5.25. This is a different concept than endomorphism-invariant.

An endomorphism HC //HC is equivalent to a “re-painting” of the elements of

UHC, again drawing colors from C. A coequation K is endo-invariant if, under every

such re-painting, the elements of K are behaviorally (including color) indistinguish-

able from elements that were already in K before the re-painting.

Remark 3.8.2. The definitions of endomorphism-invariant, CoId and Frc could

be stated for arbitrary coalgebras, rather than just cofree coalgebras. We ignore the

generality here in favor of focusing on the problem at hand, but see [Hug01].

Remark 3.8.3. Coequations over 1 are always endomorphism invariant, and so

�1 is just the identity.
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Let Inv(C) denote the full subcategory of RegSub(UHC) consisting of the invariant

coequations over C and let

IC : Inv(C) // RegSub(UHC)

be the inclusion functor.

Theorem 3.8.4. IC has a right adjoint.

Proof. Let K ≤ UHC and define

PK = {L ≤ UHC | ∀p :HC //HC (∃pL ≤ K)}.

We define a functor JC :RegSub(UHC) // RegSub(UHC) by

JC(K) =
∨

L∈ � K

L,

omitting the subscripts on I and J when convenient.

We first show that JK is invariant. Let

r :HC //HC

be given. In order to show that ∃rJK ≤ JK, it suffices to show that ∃rJK ∈ PK , i.e.,

for every homomorphism p :HC //HC, we have ∃p(∃rJK) ≤ K. A quick calculation

shows

∃p∃rJK = ∃p◦r
∨

L∈ � K

L =
∨

L∈ � K

∃p◦rL ≤ K.

Next, we show that I a J . Let L be invariant. If L ≤ K, then, for every

endomorphism p,

∃pL ≤ L ≤ K,

so L ∈ PK and hence L ≤ JK. On the other hand, if L ≤ JK, then

L ≤ JK ≤ K.

�

The adjoint pair IC a JC yields a comonad �C = ICJC . We will prove that �C

is an S4 necessity operator, just as we showed in Theorem 2.2.16 that � is an S4

operator. First, some examples calculating �K for a coequation K.

Example 3.8.5. Let ΓS = (PfinS)I, as in Example 3.6.15. Recall that the class of

deterministic automata Det forms a covariety of SetΓ, where the defining coequation

K over 2 is given by

K = {x ∈ UH2 | ∀i ∈ I ∀y, z ∈ σ(x)(i) . ε2(y) = ε2(z)}.

It is easy to show that

�K = {x ∈ UH2 | ∀i ∈ I ∀y, z ∈ σ(x)(i) . y = z},



3.8. INVARIANT COEQUATIONS 165

or, more simply,

�K = {x ∈ UH2 | ∀i ∈ I . card(σ(x)(i)) < 2}.

Example 3.8.6. Recall the functor ΓA = Z × A and the coequation ϕ over N

defined by

ϕ = {σ | card(Col(σ)) < ℵ0},

from Example 3.6.14. For each σ ∈ UHN, let

St(σ) = {tn(σ) | n ∈ ω},

where 〈ε � , h, t〉 :UHN � ,2 � ,2N × Z × UHN is the structure map for HN. Then

�ϕ = {σ | card(St(σ)) < ℵ0}.

In other words, σ ∈ �ϕ just in case the coalgebra [σ] ≤ HN generated by σ, as in

Section 2.3, forces ϕ.

Theorem 3.8.7. � is an S4 necessity operator.

Proof. Again, since � is a comonad, it suffices to show that � preserves finite

limits. It is obvious that > is invariant (so > ≤ �>). We now show that

�K ∧ �L ≤ �(K ∧ L).

Let p :HC //HC be given (where K, L are coequations over C). Then

∃p(�K ∧ �L) ≤ ∃p � K ≤ K

and, similarly, ∃p(�K ∧ �L) ≤ L. Hence, ∃p(�K ∧ �L) ≤ K ∧ L. Since p was an

arbitrary endomorphism, �K ∧ �L ≤ �(K ∧ L). �

Remark 3.8.8. Unlike �, the operator � does not commute with pullbacks along

homomorphisms. Let Γ:Set //Set be the identity functor. We will consider a co-

equation K over 2 colors, that is, a subset of UH2 = 2ω, the set of streams over 2.

Specifically, let

K = {0, 1},

where 0 and 1 are the constant streams. Note that K is invariant.

Let p :H3 //H2 be the homomorphism induced by the coloring p :3 //2, where

p(0) = 0, p(1) = 0, p(2) = 1

(i.e., p = H(p)). Then p∗K is the set

{σ ∈ 3ω | ∀n σ(n) < 2} ∪ {2}.

It is easy to check that

�p∗K = {0, 1, 2} 6= p∗(�K) = p∗K.
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In terms of substitutions, then, it is not the case that, for every homomorphism

f :〈B, β〉 //〈A, α〉,

(�K)[f(y)/x] = �(K[f(y)/x]).

Next, we show that, for any coequation K over C, �K and �K define the same

covarieties as K. Dually, then, we are proving that, given a set of equations E, the

varieties defined by taking the least congruence containing E and by closing E under

substitutions are the same as the variety that E defines.

Theorem 3.8.9. Let C be given, K a coequation over C.

CoId(K) = CoId(�K).

Proof. Since �K ≤ K, clearly CoId(�K) ≤ CoId(K). For the other inclusion,

suppose that 〈B, β〉  K. Let

p :〈B, β〉 //HC

be given. To show that Im(p) ≤ �K, we will show that, for every endomorphism

r :HC //HC,

∃r Im(p) ≤ K. But, ∃r Im(p) = Im(r ◦ p) ≤ K, since 〈B, β〉  K. �

Theorem 3.8.10. Let C be given and K a coequation over C.

CoId(K) = CoId(�K).

Proof. Again, trivially, CoId(�K) ≤ CoId(K). Let 〈B, β〉  K and let

p :〈B, β〉 //HC

be given. Then U Im(p) = Im(Up) ≤ K and so, by the adjunction U a [−], Im(p) ≤

[K]. Thus,

Im(Up) = U Im(p) ≤ U[K] = �K.

�

Recall the [−] functor from Section 2.2.1, which takes a regular subobject of

A = U〈A, α〉 to the largest subcoalgebra contained in A. Hence, if K is a coequation

over C, then [K]HC is a subcoalgebra of HC. Since it is a coalgebra, in particular,

one may ask whether the coalgebra [K] forces the coequation K. In general, this

is not the case. However, if K is invariant, then [K]  K, as the following lemma

shows.

Lemma 3.8.11. Let K be a coequation over injective C. Then [�K]  K.
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Proof. Let p : [�K] //HC be given. Because HC is regular injective, p extends

to a homomorphism HC //HC , as shown in Figure 12. Hence, because

� � K < �K

and �K is invariant, there is a unique map � � K // � K making the square and

thus the lower triangle commute, as desired. �

UHC // UHC

� � K
_LR

OO

//

pssss

99ssss

�K
_LR

OO

Figure 12. [�K]  K.

The final lemma shows the relationship between � and �. One has the idea that

� and � “ought” to commute, but at this point we have not found a general proof

of that claim. See, however, Theorem 3.8.14 for a proof that � commutes with �

when Γ preserves non-empty intersections.

Lemma 3.8.12. For any injective C,

�� ≤ ��.

Proof. By definition of �, it suffices to show that, for every endomorphism

p :HC //HC , ∃p� �K ≤ �K. We know that, for every p, ∃p� �K ≤ ∃p �K ≤ K.

Thus, since U commutes with ∃p,

U∃p[�K]HC = ∃pU[�K ]HC ≤ K,

and so ∃p[�K]HC ≤ [K]HC . Thus,

∃p� � K = U∃p[�K]HC ≤ U[K]HC = �K.

�

These lemmas allow a simple proof of the invariance theorem.

Theorem 3.8.13 (Invariance theorem). Let C be injective, K ≤ UHC. Then

K = CoId(V) for some class V of coalgebras just in case K = � � K.

Proof. Let K = � � K and define

V = {〈B, β〉 | 〈B, β〉  K}.
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Then, clearly, V  K. We will show that, if V  L, then K ≤ L. From

Lemma 3.8.12, we see that

K = � � K = � � �K ≤ �� � K = K

so K = �K. From Lemma 3.8.11, we know that [�K] = [K] is in V. Consequently,

[K]  L and hence

K = ∃id� � K ≤ L.

�

As we said previously, one suspects that � ought to commute with �. Instead, we

have shown (by Lemma 3.8.12) the weaker claim that �� ≤ ��. We have neither

a proof that, in general, �� = �� nor a counterexample. However, the following

theorem gives some progress to the goal. It shows that, if the forgetful functor

UHC :SubCoalgHC // RegSub(UHC)

has a left adjoint, as discussed in Section 2.3.

Theorem 3.8.14. If UHC has a left adjoint, 〈〉HC , then �� = ��.

Proof. To show that �� ≤ ��, it is sufficient (by the adjunction U〈〉 a �) to

show that U〈〉 � � ≤ �.

Let K ≤ UHC. We will show that, for every homomorphism p :HC //HC ,

∃pU〈〉 � �K ≤ K and conclude (by definition of �) that U〈〉 � �K ≤ �K. By

Theorem 2.2.17 (� commutes with pullback along homomorphisms), it suffices to

show that

��K ≤ �p∗K = p∗�K,

or, equivalently, ∃p � �K ≤ �K. This is immediate from the definition of �. �

3.9. Behavioral covarieties and monochromatic coequations

In typical applications of coalgebras in computer science, one is concerned with

behavior “up to bisimulation”. That is, if two coalgebras behave the same (according

to bisimulation equivalence), then we do not distinguish the two, regardless of differ-

ences in “internal structure”. Thus, one is often concerned with covarieties which are

closed under total bisimulations. In this section, we discuss such covarieties, which

were first studied in [GS98]. For another description of the same class of covarieties,

see [Roş01]. The material covered here is also found in [AH00].

Definition 3.9.1. A total relation is a relation for which each projection is epi.

Definition 3.9.2. A behavioral covariety is a covariety which is closed under

total bisimulations. That is, a covariety V such that, whenever 〈A, α〉 ∈ V and

there is a total bisimulation relating 〈A, α〉 to 〈B, β〉, then 〈B, β〉 is also in V.
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We differ from Gumm on terminology here, as he refers to covarieties closed under

total bisimulations as complete covarieties.

The following theorem ensures that total bisimulations are the images of total

relations in EΓ.

Theorem 3.9.3. If 〈S, σ〉 is a relation on 〈A, α〉 and 〈B, β〉. Then Uα,β〈S, σ〉

is a total bisimulation iff 〈S, σ〉 is a total relation.

Proof. Let R = Uα,β〈S, σ〉, with epi projections r1 and r2 and let p :S // //R be

the epi part of the epi-regular mono factorization, 〈Us1, Us2〉 = 〈r1, r2〉 ◦ p. Then

Us1 = r1 ◦ p and Us2 = r2 ◦ p, so Us1, Us2 are epis iff r1, r2 are epis, respectively.

By Theorem 1.2.13, U preserves and reflects epis. �

Gumm shows that behavioral covarieties over Set are definable as coequations

over 1. We generalize that result to this setting and show some further equivalences.

In particular, the following theorem shows that the behavioral covarieties are exactly

the covarieties which are sinks, in the terminology of [Roş01].

Theorem 3.9.4. Let V be a covariety of EΓ. The following are equivalent.

(1) V is closed under total bisimulations.

(2) V is closed under domains of epis.

(3) V is closed under domains of arbitrary homomorphisms.

(4) V is definable by a coequation over one color (i.e.,

V = {i :• � ,2 //H1}⊥

for some regular mono i).

Proof. We prove 1⇒2 ⇒3 ⇒1 and 3 ⇔4.

1 ⇒ 2: The graph of epis are total bisimulations.

2 ⇒ 3: Let f :〈A, α〉 //〈B, β〉 be given, 〈B, β〉 ∈ V, and take the epi-regular

mono factorization, f = i ◦ p. The domain of i is in V as a regular subcoal-

gebra of 〈B, β〉. Hence 〈A, α〉 ∈ V.

3 ⇒ 1: Let 〈A, α〉 and 〈B, β〉 be given and let 〈R, ρ〉 be a total bisimulation on

〈A, α〉 and 〈B, β〉. Suppose, further, that 〈A, α〉 ∈ V. Then, 〈R, ρ〉 ∈ V,

since it is the domain of the projection

〈R, ρ〉 //〈A, α〉.

Since V is closed under codomains of epi homomorphisms, 〈B, β〉 ∈ V.

3 ⇒ 4: Since V ⊆ {εVH1}⊥, it suffices to show the other inclusion. Let 〈A, α〉 be

given and suppose that 〈A, α〉 ⊥ εVH1. Then ! :〈A, α〉 //H1 factors through

εVH1, and so 〈A, α〉 is the domain of an arrow into UVHVH1, which is in V.
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4 ⇒ 3: Let V = {i}⊥, where i is a regular mono into H1. Let

p :〈A, α〉 //〈B, β〉

be given and suppose 〈B, β〉 ∈ V. Then !β :〈B, β〉 //H1 factors through i,

say, !β = i ◦ f . Consequently, !α = i ◦ f ◦ p. Since !α is the only map from

〈A, α〉 to H1, it follows that 〈A, α〉 ⊥ i.

�

Remark 3.9.5. In the proof of 3 ⇒ 1, we see that if 〈A, α〉 in V and 〈R, ρ〉 is a

bisimulation on 〈A, α〉 and 〈B, β〉 such that

〈R, ρ〉 //〈B, β〉

is epi, then 〈B, β〉 ∈ V. We do not require that both projections are epis.

Example 3.9.6. Very often, the initial Γ-algebra can be realized as a regular

subcoalgebra of the final Γ-coalgebra, via the comparison map of Section 1.5.4 (see

[Adá01, Bar93] for development of this topic). In these cases, the initial algebra

can also be viewed as a coequation ϕ over 1 color.

This provides a useful coequation in the standard examples, allowing one to dis-

tinguish between coalgebras consisting of well-founded trees, say, and those which

also contain non-well-founded trees.

It is instructive to compare Theorem 3.9.4 to its dual, which says that a variety

of algebras is closed under codomains of monos iff it is definable by a set of equations

with no variables. See Section 3.9.3 for details.

3.9.1. A covariety closure operation. We can also consider a covariety clo-

sure operation, taking a covariety to the least behavioral covariety containing it.

Specifically, we define an operator

CoVar(E � ) // CoVar(E � )
taking a covariety V to the collection V, where 〈A, α〉 ∈ V iff there is some map

f : 〈A, α〉 //〈B, β〉 with 〈B, β〉 ∈ V, thus closing V under domains of arbitrary

homomorphisms.

It is easy to show that this closure produces another covariety. Hence,

Theorem 3.9.7. If V is a covariety, then V is a behavioral covariety.

The next theorem states in coequational terms how to obtain V. We know that

V is defined by a collection of coequations, in the sense that V is exactly the class

of coalgebras co-orthogonal to a collection of regular monos with cofree codomains.

In fact, we can say more about the collection of regular monos — namely, that

the regular monos are the components of the counit of a regular mono co-reflection
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(Corollary 3.2.8). We show that this counit also gives a defining coequation for V. Of

course, since V is a behavioral covariety, the only component one needs to consider

is that of the final coalgebra.

Theorem 3.9.8. Let V be a variety and εV :UVHV //1E � be the counit of the

associated adjunction

V
UV

++
⊥ E �
HV

kk

Then V = {εVH1}⊥.

Proof. Let 〈A, α〉 ∈ V. Then there is an f :〈A, α〉 //〈B, β〉 such that 〈B, β〉 ∈

V. Since 〈B, β〉 ∈ V, clearly 〈B, β〉 ⊥ εVH1. Consequently, 〈A, α〉 ⊥ εVH1.

On the other hand, if 〈A, α〉 ⊥ εVH1, then the factorization of 〈A, α〉 //H1 through

εVH1 is a homomorphism into a coalgebra in V. Hence 〈A, α〉 ∈ V. �

Note that behavioral covarieties are defined by a single coequation, regardless of

any boundedness conditions on Γ.

3.9.2. An example of a non-behavioral covariety. We have given a couple of

examples of non-behavioral covarieties previously, including Examples 3.6.11, 3.6.14,

3.6.15 and 3.6.16. We provide an example here that arises from a comparison of

categories of streams.

Consider the functors N × − and 1 + N × − on the category Set. As usual, we

think of coalgebras for these functors as collections of streams over N (see [JR97],

for instance). In particular, a coalgebra for N × − can be thought of as a collection

of infinite streams, closed under the tail destructor. A coalgebra for 1 + N × − can

be understood as a collection of finite or infinite streams over N, again closed under

the tail destructor (when defined).

It is clear that the category Set � ×− is a full subcategory of Set1+ � ×−. What is

less obvious is that one can regard Set1+ � ×− as a full subcategory of Set � ×−, and it

is this perspective on which we will focus. Define a functor Set1+ � ×−
//Set � ×− as

follows. If 〈A, α〉 is a 1 + N×− coalgebra, then I(〈A, α〉) = 〈A, α〉′ will be a N×−

coalgebra. Specifically, let α′ be defined by

α′(a) =

{
〈0, a〉 if α(a) = ∗

〈hα(a) + 1, tα(a)〉 else

(where hα(a) = π1 ◦α(a) and tα = π2 ◦α(a) when α(a) ∈ N×A). Intuitively, I takes

infinite lists to the list one gets by applying successor in each position. For finite lists,

I again applies successor in each position and then tacks on 0’s at the end. However,

the 0’s are tacked on in a particular manner — once we hit 0 in the list, the “state”

never changes. We stay at the same element of A and continue outputting 0’s. This
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description should lend plausibility to the claim that V is not behavioral, which we

will later prove. The property that a coalgebra stabilizes at a particular state is not

a property closed under total bisimulation.

It is routine to check that this defines a functor and, furthermore, that it is full,

faithful and regular injective on objects. Let V be the image of Set1+ � ×−. One

could check directly that V is a covariety, but we prefer to explicitly give a defining

coequation (over 2 colors) instead. In keeping with the coloring metaphor, we denote

the elements of 2 by red and blue.

Let 〈h, t〉 be the structure map on H2 and define ϕ ≤ UH2 by

ϕ = {σ ∈ UH2 | h(σ) = 0 → ε2(σ) = ε2 ◦ t(σ)}.

We will show that V = Frc(ϕ).

Suppose that a ∈ A and hα(a) = 0, but tα(a) 6= a (i.e., assume 〈A, α〉 6∈ V).

Then, we define a coloring p on A by

p(b) =

{
red if a = b

blue else

Then, let p̃ be the adjoint transpose of p. We see that

h(p̃(a)) = hα(a) = 0,

but ε2(p̃(a)) = red and

ε(t(p̃(a))) = ε(p̃(t(a))) = p(t(a)) = blue .

Hence, p̃(a) 6∈ ϕ, and so 〈A, α〉 6 ϕ.

On the other hand, suppose that 〈A, α〉 ∈ V and let p :A //2 be given. Let

a ∈ A and we will show that p̃(a) ∈ ϕ. Accordingly, assume that h(p̃(a)) = 0. Then,

hα(a) = 0 and so tα(a) = a. Consequently, ε2(p̃(a)) = ε2(tp̃(a)) and so p̃(a) ∈ ϕ.

Since this holds for any a ∈ A, we see that p̃ factors through ϕ and so 〈A, α〉  ϕ.

Remark 3.9.9. While this coequation defines the covariety V, it is worth noting

that ϕ is not itself an element of the covariety. Instead, there is a proper regular

subcoalgebra of ϕ which is in the covariety and which also defines V, namely U� [ϕ],

where � is the modal operator from Section 3.8 which takes a coequation to its

largest invariant subcoalgebra. This coequation is given by

U � [ϕ] = {σ ∈ UH2 | ∀nhtn(σ) = 0 → tn+1(σ) = tn(σ)}.

3.9.3. The dual to behavioral covarieties. In this section, we relate the

discussion of behavioral covarieties to categories of algebras. Throughout this section,

we assume that E is a Birkhoff category and Γ preserves regular epis and is a varietor,

so that U :EΓ //E is monadic.
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Definition 3.9.10. Let V be a full subcategory of EΓ. We say that V is an

elementary variety if V = {p}⊥ for some regular epi p :F0 � ,2•.

Clearly, if V is an elementary variety, then it is a variety.

In the traditional setting, then, a variety is elementary just in case it is definable

by a set of variable-free equations. Of course, if the signature has no constants, then

this means that the only elementary variety is trivial.

Definition 3.9.11. We say that two Γ-algebras 〈A, α〉 and 〈B, β〉 are con-

structibly equivalent just in case 〈0〉α ∼= 〈0〉β (i.e., just in case the least subalgebra of

〈A, α〉 is isomorphic to the least subalgebra of 〈B, β〉).

We call this constructible equivalence because it requires that the “constructible”

parts of 〈A, α〉 and 〈B, β〉 are isomorphic. That is, it requires that those elements

of 〈A, α〉 and 〈B, β〉 which can be specified by a variable-free term (i.e., by terms

in F0) satisfy the same equations. This description hints at the relation between

constructible equations and elementary varieties. We make the relation explicit in

the following theorem.

Theorem 3.9.12. Let V be a variety of EΓ. The following are equivalent.

(1) V is closed under constructible equivalences.

(2) V is closed under codomains of monos.

(3) V is closed under codomains of arbitrary homomorphisms.

(4) V is elementary.

Proof. This theorem is the dual of Theorem 3.9.4. However, we have not du-

alized closure under total bisimulations directly, since corelations are not familiar

objects of study. Instead, we’ve replaced that condition with the closure under con-

structible equivalence. We provide the relevant steps.

1 ⇒ 2: Let 〈A, α〉 // //〈B, β〉 be given. Then, by Theorem 1.3.7, 〈0〉α is given

as the factorization of !α, as shown below.

F0
!α //

� �&
CC

CC
CC

C 〈A, α〉 // // 〈B, β〉

〈0〉α

;;

;;wwwwwwww

By the uniqueness of regular epi-mono factorizations, 〈0〉α ∼= 〈0〉β, so 〈A, α〉

and 〈B, β〉 are constructibly equivalent.

4 ⇒ 1: Let

V = {p :F0 � ,2〈Q, ν〉}⊥
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and let 〈A, α〉 and 〈B, β〉 be constructibly equivalent, with 〈A, α〉 ∈ V.

Then, !α factors through p, as shown in the diagram below.

F0

p
_��

� ,2 〈0〉α // // 〈A, α〉

〈Q, ν〉

55;;

Because p is regular (and hence, strong), we have the factorization of

〈Q, ν〉 //〈A, α〉

through 〈0〉α ∼= 〈0〉β, as shown. This gives a factorization of !β through ηV

F0,

as desired.

�



CHAPTER 4

The internal logic of EG

It is well-known that, if E is a topos and a comonad G :E //E is left exact, the

category of coalgebras E � is also a topos [BW85, Theorem 6.4.1]. Furthermore,

Johnstone, et al, strengthened this result in [JPT+98] by showing that, if G preserves

pullbacks (but not necessarily all finite limits), then E � is again a topos. One corollary

to these theorems is that there is a natural logic for at least certain categories of

coalgebras, the “internal logic” associated with a topos.

In this chapter, we weaken the conditions on E and G, so that E � is not necessarily

a topos, while retaining sufficient structure so that we can define an internal logic

for E � . In particular, in this section, we show that if E is a locally complete logos,

with regular epi-regular mono factorizations and coproducts, and G nearly preserves

pullbacks, then E � is a locally complete logos. Consequently, we can define a logic

L(E � ) which can be interpreted in E � . We discuss the internal logic of a an arbitrary

locally complete logos in Section 4.1.2.

Since, by assumption, the base category E is also a locally complete logos, there is

an internal logic, L(E), for it as well. We introduce types for the carriers of coalgebras

and a modal operator for the largest subcoalgebra construction in Section 4.2. We

also introduce a translation of formulas from L(E � ) to L(E) which preserves and

reflects valid sequents.

We conclude the chapter by relating the Kripke-Joyal semantics for L(E) to the

definition of coequation forcing given in Chapter 3, and offering a definition of point-

wise forcing of coequations which we relate to the comonad associated with a coequa-

tion.

Throughout this chapter, we develop the theory for categories of coalgebras for a

comonad, rather than coalgebras for an endofunctor. We do this so that the internal

logic we develop can be applied to the covarieties from Chapter 3. In fact, the

presence of a right adjoint to the forgetful functor plays little role otherwise.

4.1. Preliminary results

We begin with a result found in [GHS01]. One could develop the internal logic of

E � without requiring that the category is extensive, although this would preclude our

definitions for coproduct types. We want to exploit coproducts in E � by introducing

175
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the appropriate types and terms in L(E � ), and so we begin with a proof that, if

G preserves pullbacks along regular monos, E � inherits extensiveness from the base

category E . A similar result can be found in [JPT+98, Lemma 3.8].

Theorem 4.1.1. If E is extensive, with epi-regular mono factorizations, and G

preserves regular monos and non-empty pullbacks along regular monos, then E � is

extensive.

Proof. Let the commutative diagram in Figure 1 be given. Since co-projections

〈X, χ〉

��

// 〈Z, ζ〉

��

〈Y, υ〉oo

��
〈A, α〉 � ,2

κα

// 〈A, α〉 + 〈B, β〉 〈B, β〉�lr
κβ

oo

Figure 1. E � is extensive.

in extensive categories are regular monos [Tay99, Lemma 5.5.7] and U reflects regular

monos, the co-projections κα and κβ are also regular monos.

Hence, U creates pullbacks along co-projections. Since U also creates coproducts,

the result follows. �

Until now, we have been satisfied with epi-regular mono factorizations without

assuming that these factorizations are stable under pullback. To develop a reasonable

internal logic, one wants this stability condition. Without stable factorizations, we

would lose basic structural features in the language, including that existentials and

joins commute with substitutions.

One way to ensure stable factorizations is to ensure that our epi-regular mono

factorizations involve epis which are stable under pullbacks. This is the approach we

take here, exploiting results from [JPT+98], in which they show that, if G nearly

preserves pullbacks, then E � inherits regularity from E .

Definition 4.1.2. A functor F :C //D nearly preserves pullbacks if, for each

pullback A×C B, F (A×C B) covers FA×FC FB, i.e., the canonical isomorphism

F (A×C B) //FA×FC FB

is a regular epi.

In ibid, they show that, if F nearly preserves pullbacks, then it preserves pull-

backs along monos and hence it preserves monos. Using this, they prove that, if the

comonad G nearly preserves pullbacks and E is regular, then E � is regular ([JPT+98,
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Lemma 3.9]). We adapt that result to our setting, in which regular monos are of spe-

cial interest. Hence, we will assume that the category E has regular epi-regular mono

factorizations. First, we note that this implies that every mono is regular (and every

epi is regular, too). While this seems a somewhat strong restriction, it is true in any

topos.

Lemma 4.1.3. In a category E with regular epi-regular mono factorizations, every

mono (epi,resp.) is regular.

Proof. Let i :A // //B be given and take the regular epi-regular mono factoriza-

tions i = j ◦ p. Since p is both regular epi and mono, it is an isomorphism. Dualize

to conclude that every epi is regular, too. �

Theorem 4.1.4. If E is regular, with regular epi-regular mono factorizations

(equivalently, E regular and every mono regular) and G nearly preserves pullbacks,

then E � is regular, with regular epi-regular mono factorizations created by U .

Proof. Essentially that from [JPT+98]. There, they assume that U preserves

monos. Here, we use the fact that G preserves monos and every mono is regular to

conclude that G preserves regular monos. Thus, we may apply Corollary 1.2.15 to

conclude that U preserves regular monos. The rest of the proof goes as in ibid. �

Corollary 4.1.5. Under the assumptions of Theorem 4.1.4, every mono in E �
is regular and hence U preserves and reflects monos.

We adopt the material that follows from [Tay99]. See also [FS90].

A logos is a category in which one may interpret first order logic. We sketch how

this is done in Section 4.1.2. In the remainder of this section, we show that if E

is a “locally complete” logos (a logos with arbitrary, stable unions), and G nearly

preserves pullbacks, then E � is also a locally complete logos.

Definition 4.1.6. A regular category in which finite unions of subobjects exist

and are stable under pullbacks and each subobject pullback functor

f ∗ :Sub(B) // Sub(A)

has a right adjoint is called a logos.

Definition 4.1.7. A regular category in which arbitrary unions of subobjects

exist and are stable under pullbacks is called a locally complete logos.

From [Tay99, Definition 5.8.1] and [Tay99, Theorem 3.6.9]:

Theorem 4.1.8. In a locally complete logos, for each f :A //B , the subobject

pullback functor

f ∗ :Sub(B) // Sub(A)
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has a right adjoint (i.e., a locally complete logos is, in particular, a logos).

The following theorem is the main theorem justifying the rest of the chapter. We

show that E � is a locally complete logos, assuming that E is (together with some

other assumptions). This allows the definition of a first-order internal logic for E � .
Since, by assumption, E is also a locally complete logos, it, too, has a natural internal

logic. We exploit these two logics in Section 4.2.

Theorem 4.1.9. Let E be regular, with regular epi-regular mono factorizations

and G nearly preserve pullbacks (and, hence, G preserves monos), and suppose further

that E is a locally complete logos with all coproducts. Then E � is also a locally complete

logos.

Proof. The forgetful functor creates unions and pullbacks along monos. Thus,

if {〈Ai, αi〉}i∈I is a family of subcoalgebras of 〈B, β〉 and f : 〈C, γ〉 //〈B, β〉 is a

G-homomorphism, then

Uf ∗
⋃

〈Ai, αi〉 = f ∗
⋃

Ai =
⋃

f ∗Ai = U
⋃

f ∗〈Ai, αi〉,

and so f ∗
⋃
〈Ai, αi〉 =

⋃
f ∗〈Ai, αi〉. �

We can give an explicit definition of the functor ∀f in terms of [−], U and the

functor ∀Uf in E . Since we need this characterization in Theorem 4.2.5, we include

it here.

Theorem 4.1.10. For any homomorphism f :〈A, α〉 //〈B, β〉,

∀f = [−]β ◦ ∀Uf ◦ Uα.

Proof. Because f ∗∀f ≤ 1 and [−] commutes with pullbacks of homomorphisms

(Corollary 2.2.8), we have, for every 〈C, γ〉 ≤ 〈A, α〉,

f ∗[∀fC]β = [f ∗∀fC]α ≤ [C]α = 〈C, γ〉.

Hence, [∀fC]β ≤ ∀f 〈C, γ〉.

Conversely,

f ∗Uβ∀f 〈C, γ〉 = Uαf
∗∀f 〈C, γ〉 ≤ Uα〈C, γ〉 = C,

and so ∀f 〈C, γ〉 ≤ [∀fC]β. �

We summarize the results of Theorems 2.2.5, 2.2.5 and 2.2.6 in the following

corollary.

Corollary 4.1.11. The forgetful functor Uα :RegSub(〈A, α〉) // RegSub(A) pre-

serves ∧, ∨, ∃, ⊥ and > (but not ∀, → or ¬). That is, for any subcoalgebras

〈P, ρ〉, 〈Q, ν〉 ≤ 〈A, α〉, we have

(1) Uα(〈P, ρ〉 ∧ 〈Q, ν〉) = P ∧Q
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(2) Uα(〈P, ρ〉 ∨ 〈Q, ν〉) = P ∨Q

(3) For every homomorphism f :〈A, α〉 //〈B, β〉, ∃f 〈P, ρ〉 = ∃UfP .

(4) Uα〈A, α〉 = A and Uα〈0, !〉 = 0.

In other words, Uα “almost” preserves geometric logic (see [LM92, Chapter

X]). The situation is complicated by the fact that Uα does not, in general, pre-

serve finite limits. Thus, it doesn’t preserve the interpretation of contexts Γ =

x1 : T1, . . . , xn : Tn, which complicates the translation of formulas in the internal logic

of E � into formulas in the internal logic of E . Also, it doesn’t preserve equalizers, so

equations in E � are not translated to equations in E . We will see how to avoid these

difficulties in Section 4.2, where we define a translation of formulas from L(E � ) to

related formulas in L(E).

4.1.1. A weak regular subobject classifier. In this section, we show that

if E has a weak regular subobject classifier, then so does E � . This section is self-

contained, in the sense that we do not exploit the weak regular subobject classifier

when we develop the internal logic. Throughout, we assume that E is almost co-

regular and G preserves regular monos.

Definition 4.1.12. Let Ω ∈ E and true :1 //Ω be given. We say that Ω (or the

pair 〈Ω, true〉) is a weak regular subobject classifier if, for every regular mono P � ,2 //A,

there is a (not necessarily unique) A //Ω such that the diagram below is a pullback.

P //
_��

��

_� 1

true

��
A // Ω

Theorem 4.1.13. Let Ω in E be a weak regular subobject classifier. Then HΩ is

a weak regular subobject classifier in E � .
Proof. Let 〈P, ρ〉 ≤ 〈A, α〉. We will show that there is a homomorphism

〈A, α〉 //HΩ such that the front face of Figure 2 is a pullback.

Let r :A //Ω be a classifying map for p in E and let r̃ :〈A, α〉 //HΩ be the adjoint

transpose of r, as in Figure 2. A quick diagram chase confirms that the front face of

the prism commutes.

Suppose that g :〈B, β〉 //〈A, α〉 satisfies r̃ ◦ g = Htrue◦!. Then

r ◦ Ug = εΩ ◦ U(r̃ ◦ g) = εΩ ◦ UHtrue ◦ U ! = true◦!,

and so Im(g) ≤ P . Corollary 1.2.10 ensures that the factorization of g through P is

a homomorphism. �

Corollary 4.1.14. Suppose E is regular and every mono of E is regular. Further

suppose that G nearly preserves pullbacks. Then E � has a weak subobject classifier.
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1

��

P

??~~~~~~~~

_��

��

// UH1

ε1

bbFFFFFFFFF

UHtrue

��

Ω

A
U
�
r

//

r
??~~~~~~~

UHΩ

εΩ

bbFFFFFFFFF

Figure 2. HΩ is a weak regular subobject classifier

Proof. Apply Corollary 4.1.5. �

The presence of a regular subobject classifier (not weak) in E is not sufficient to

ensure that E � has a regular subobject classifier in general. To see this, consider a

homomorphism r̃ :〈A, α〉 //HΩ, and let r :A //Ω with P the subobject of A charac-

terized by r, as in Figure 2. Then P is the pullback of UHtrue along Ur̃. It is easy

to check that �αP is the pullback of Htrue along r̃. Thus, for any homomorphisms

p :〈A, α〉 //HΩ,

q :〈A, α〉 //HΩ,

we see that p and q classify the same subcoalgebra just in case �P = �Q, where

εΩ ◦ p classifies P and εΩ ◦ q classifies Q.

This observation does give a canonical choice for a characteristic map for a sub-

coalgebra. Given 〈P, ρ〉 ≤ 〈A, α〉, as in Theorem 4.1.13, let r̃ be the transpose of

the (unique) characteristic map of P in E . Then, r̃ is minimal in the sense that, if s

is any other characteristic map for 〈P, ρ〉, then (the object classified by) εΩ ◦ Ur̃ is

smaller than (the object classified by) εΩ ◦ Us.

4.1.2. The internal logic of a logos. Given a locally complete logos C, one

can define a first order language L(C) which can be interpreted in C. The first order

intuitionistic logic is sound under this interpretation. Applying this result to the

current setting, this leads to two first order languages. On the one hand, the base

category E is, by assumption, a locally complete logos and thus we may define a

language L(E) and an interpretation of the language in the category E . On the other

hand, E � is also a locally complete logos and so we may define a language L(E � ) over

E � . In Section 4.2, we will translate formulas in the language L(E � ) to formulas in

L(E)



4.1. PRELIMINARY RESULTS 181

In this section, we will show how one defines a first order language L(C) for

any distributive, locally complete logos C with coproducts (for the coproduct types

below). This construction applies to the categories E and E � , yielding the languages

L(E) and L(E � ).
See any of [But98, Bor94, LM92, Tay99, LS86] for presentations of the in-

ternal logic of a category.

The language L(C) is a typed first order language. We write x : T to indicate that

x is a variable of type T (we assume a countable set of variables). A context Γ is a

finite list of such declarations. We write Γ, x : T to indicate the context Γ with a new

declaration for x. Whenever we write this, we assume that x does not already occur

in Γ. We write Γ | t : T to indicate that, in context Γ, the term t is of type T . This

notation presumes that the free variables of t appear in Γ. We write Γ |ϕ to indicate

that ϕ is a well-formed formula in context Γ.

For each object C ∈ C, we define a type C in L(C). For each pair of types S and

T , we define types S×T and S +T . The types are interpreted as objects in C in the

obvious way. I.e., � C � = C, � S × T � = � S � × � T � , etc. The type formation rules and

interpretation of types are summarized in Table 1.

Type formation rule Interpretation
C C
S × T � S � × � T �
S + T � S � + � T �
1 1

Table 1. The inductive definition of types.

A context inherits its interpretation from the terms, so that

� x1 : T1, x2 : T2, . . . , xn : Tn � = � T1 � × � T2 � × . . .× � Tn � .
The empty context is, of course, interpreted as 1, the final object of C. We want to

treat the contexts as unordered, so that we don’t differentiate between the contexts

Γ = x : S, y : T and ∆ = y : T, x : S.

We may do this by assuming an ordering on the types, so that there is a canonical

representative for each equivalence class of contexts (and so that a context is inter-

preted as its representative is). None of this is crucial in what follows, but it simplifies

the presentation.

A term t : T in context Γ is interpreted as a function

� Γ | t : T � = � t � : � Γ � // � T � .
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We omit the types and write � Γ | t � , or just � t � , when convenient. For each type T ,

and each variable x, we have the term formation rule

Γ, x : T | x : T .

We interpret variables as the projection

� Γ � × � T � πT // � T � .
For each arrow f : � S � // � T � , we have also a term formation rule

Γ, x : S | fx : T ,

and an interpretation

� Γ, x | fx � = f ◦ � Γ, x | x � : � Γ � × � S � // � T � .
In addition to variables and terms for each function symbol, we include the following

term formation rules in Table 2. In what follows, we let t[s/x] denote the result of

substituting the term s for the variable x in term t, where this operation is defined

inductively as usual. Similarly, ϕ[s/x] denotes the substitution of s for x in the

formula ϕ, where this is defined as usual.

Term formation rule Interpretation
Γ, x : T | x : T πT : � Γ � × � T � // � T �
Γ, x : S | fx : T f ◦ � x �
Γ | ∗ : 1 ! � Γ � : � Γ � // � 1 �
Γ, x : S, y : T | (x, y) : S × T 〈 � x � , � y � 〉
Γ, x : S × T | π1x : S π1 ◦ � x �
Γ, x : S × T | π2x : T π2 ◦ � x �
Γ, x : S | inlx : S + T κ1 ◦ � x �
Γ, y : T | inr y : S + T κ1 ◦ � x �

Γ, x : S | s : U Γ, y : T | t : U
Γ, z : S + T | case z of x⇒ s, y ⇒ t : U

[ � s � , � t � ]
Γ, x : S | t : T Γ | s : S

Γ | t[s/x] : T
� t � ◦ 〈id � Γ � , � s � 〉

Table 2. Term formation rules for L(C).

Remark 4.1.15. In the interpretation of the case statement in Table 2, we im-

plicitly use the isomorphism

� Γ � × � S + T � ∼= ( � Γ � × � S � ) + ( � Γ � × � T � ).
Remark 4.1.16. It is easy to verify that, if Γ | t : T , then Γ,∆ | t : T . Furthermore,

� Γ,∆ | t � = � Γ | t � ◦ π � Γ � .
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A formula ϕ in context Γ is interpreted as a subobject of � Γ � . We give the

inductive definition of the class of formulas of L(C) together with their interpretations

in Table 3.

Formula formation rule Interpretation
x : T |ϕP (x) P � ,2 // � T �
x : T, y : T | x = y ∆T

Γ | > � T � id // � T �
Γ | ⊥ 0 � ,2 // � T �
Γ |ϕ Γ |ψ

Γ |ϕ ∧ ψ
� ϕ � ∧ � ψ �

Γ |ϕ Γ |ψ
Γ |ϕ→ ψ

� ϕ � → � ψ �
Γ, x : T |ϕ
Γ | ∃x : Tϕ

∃π � Γ � � ϕ �
Γ, x : T |ϕ
Γ | ∀x : Tϕ

∀π � Γ � � ϕ �
Γ, x : T |ϕ Γ | t : T

Γ |ϕ[t/x]
〈id � Γ � , � t � 〉∗ � ϕ �

Γ |ϕ
Γ,∆ |ϕ

(π � Γ � )∗ � ϕ �
Table 3. Formula formation and interpretation

The following theorem is standard. We omit the proof.

Theorem 4.1.17. For any x : S | t : T and any formula x : S |ϕ,

� y : T | ∃x : S(t(x) = y ∧ ϕ(x)) � = ∃ � t � � ϕ � ,
� y : T | ∀x : S(t(x) = y → ϕ(x)) � = ∀ � t � � ϕ � .

We use a Gentzen-style proof system, although we allow only a single formula as

the antecedent of the sequent. A sequent comes in context, where the context applies

to both the antecedent and consequent. Thus, a sequent

Γ |ϕ ` ψ

is understood as the assertion that Γ |ϕ entails Γ |ψ.

Accordingly, a sequent Γ |ϕ ` ψ is valid (written |= Γ |ϕ ` ψ) just in case

� Γ |ϕ � ≤ � Γ |ψ � (as subobjects of � Γ � ).
The following are sound rules of inference for L(E). We just write the sequent for

axioms, and we write
Γ |ϕ ` ψ
∆ |ϑ ` χ
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to indicate a rule that, from ϕ ` ψ, one can infer ϑ ` χ. We denote equivalences

with a double underline, so that

Γ |ϕ ` ψ

∆ |ϑ ` χ

means that from ϕ ` ψ, one can infer ϑ ` χ and also from ϑ ` χ, one can infer ϕ ` ψ.

Structural rules:

(Str1) Γ |ϕ ` ϕ

(Str2)
Γ |ϕ ` ψ Γ |ψ ` ϑ

Γ |ϕ ` ϑ

(Str3)
Γ, x : T |ϕ ` ψ Γ | t : T

Γ |ϕ[t/x] ` ψ[t/x]

Logical rules:

(Log1) Γ |ϕ ` >

(Log2)
Γ |ϕ ` ψ Γ |ϕ ` ϑ

Γ |ϕ ` ψ ∧ ϑ

(Log3)
Γ |ϕ ` ψ Γ |ϑ ` ψ

Γ |ϕ ∨ ϑ ` ψ

(Log4)
Γ |ϕ ` ψ → ϑ

Γ |ϕ ∧ ψ ` ϑ

(Log5)
Γ |ϕ ` ∀x : Tψ

Γ, x : T |ϕ ` ψ

(Log6)
Γ | ∃x : Tϕ ` ψ

Γ, x : T |ϕ ` ψ

Equality:

(Eq1) Γ | > ` x = x

(Eq2) Γ | x1 = x2 ` x2 = x1

(Eq3) Γ | x1 = x2 ∧ x2 = x3 ` x1 = x3

(Eq4) Γ | x1 = x2 ` t(x1) = t(x2)

(Eq5) For each atomic formula ϕP , Γ | x1 = x2 ∧ ϕP (x1) ` ϕP (x2)

Pairing:

(Pr1) Γ, x : 1 | > ` x = ∗

(Pr2) Γ | x1 = y1 ∧ x2 = y2 ` (x1, x2) = (y1, y2)

(Pr3) Γ, z : S × T | > ` z = (π1z, π2z)

(Pr4) Γ, x : Sy : T | > ` π1(x, y) = x ∧ π2(x, y) = y
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As usual, one introduces tupling and projections πni for arbitrary finite products

and shows that rules (Pr3) and (Pr4) generalize to theorems

Γ, z : T1 × . . .× Tn | > ` z = 〈πn1 z, . . . , π
n
nz〉

Γ, x1 : T1, . . . , xn : Tn | > ` πni 〈x1, . . . , xn〉 = xi

Co-pairing:

(CoPr1) Γ, z : S | > ` (case inl z of x ⇒ s, y ⇒ t) = s[z/x]

(CoPr2) Γ, z : T | > ` (case inr z of x⇒ s, y ⇒ t) = t[z/y]

(CoPr3) Γ, z : S + T | > ` (case z of x⇒ inl x, y ⇒ inr y) = z

4.1.3. An example using the internal logic. In this section, we use the

internal logic to offer an alternate approach to some of the results in Section 3.9.

In Theorem 3.9.4, we showed that, 〈A, α〉 and 〈B, β〉 are related by a coalgebraic

relation 〈R, ρ〉 such that the projection rα :〈R, ρ〉 //〈A, α〉 is epi just in case 〈A, α〉

forces any coequations over 1 that 〈B, β〉 forces. Now, there is a relation 〈R, ρ〉

whose projection to 〈A, α〉 is epi if and only if the projection

π1 :〈A, α〉 × 〈B, β〉 //〈A, α〉

is epi. Also,

{ϕ ≤ H1 | 〈B, β〉  ϕ} ⊆ {ϕ ≤ H1 | 〈A, α〉  ϕ}

just in case Im(!α) ≤ Im(!β). Thus, we could restate this part of Theorem 3.9.4 as

follows.

Theorem 4.1.18. The projection π1 :〈A, α〉 × 〈B, β〉 //〈A, α〉 is epi just in case

Im(!α) ≤ Im(!β).

It is easy to show (see [LS86]) that, in any locally complete logos, a map f :A //B

is epi just in case

|= y : B | > ` ∃x : Afx = y.

Similarly, it is immediate from the definition of the semantics that Im(!A) ≤ Im(!B)

just in case

|= ∃x : A> ` ∃y : B>.

So, we can regard this fact more generally as a fact about locally complete logoses1

(rather than a fact about categories of coalgebras). Stated in the internal logic,

Theorem 4.1.18 can be expressed as follows.

Theorem 4.1.19. x : S | > ` ∃z : S×T (π1z = x) just in case ∃x : S> ` ∃y : T>.

1We can actually weaken the requirements on the category, since the proofs don’t involve uni-
versal quantification. A prelogos (see [Tay99]) should suffice.
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Proof. From x : S, z : S × T | ∃y : T> ` ∃y : T>, we infer

x : S, y : T, z : S × T | > ` ∃y : T>.

Since any formula proves >, by the cut rule (i.e., (Str2)) we have

x : S, y : T, z : S × T | (π1z = x) ` ∃y : T>.

Substituting π2z for y (which does not appear free in the sequent), we infer

x : S, z : S × T | (π1z = x) ` ∃y : T>,

and hence x : S | ∃z : S×T (π1z = x) ` ∃y : T>. Now, assuming

x : S | > ` ∃z : S×T (π1z = x),

we see x : S | > ` ∃y : T> and hence ∃x : S> ` ∃y : T>.

For the other direction, we use the axiom

x : S, y : T, z : S × T | z = 〈x, y〉 ∧ π1〈x, y〉 = x ` (π1z = x) (Eq5)

and the theorem x : S, y : T, z : S × T | (π1z = x) ` ∃z : S×T (π1z = x) to infer

x : S, y : T, z : S × T | z = 〈x, y〉 ∧ π1〈x, y〉 = x ` ∃z : S×T (π1z = x)

and thus

x : S, y : T | 〈x, y〉 = 〈x, y〉 ∧ π1〈x, y〉 = x ` ∃z : S×T (π1z = x).

Since > proves the antecedent, an application of cut yields

x : S, y : T | > ` ∃z : S×T (π1z = x)

and hence x : S | ∃y : T> ` ∃z : S×T (π1z = x). Under the assumption that ∃x : S> `

∃y : T>, we see that x : S | > ` ∃y : T> and so another application of cut completes the

proof. �

4.2. Transfer principles

Throughout this section, we assume that E is an extensive, well-powered, locally

complete logos with regular epi-regular mono factorizations and all coproducts. We

also assume that G nearly preserves pullbacks, so that the category E � is also an

extensive, locally complete logos with all coproducts.

Given a locally complete logos E , Section 4.1.2 constructs a first order logic that

can be naturally interpreted in E . More generally, given a first order language L, an

interpretation of L in a locally complete logos E consists of an assignment � − � which

• assigns to each type T an object � T � of E ;

• assigns to each term Γ | t : T an arrow � t � : � Γ � // � T � ;
• assigns to each formula Γ |ϕ a regular subobject � ϕ � of � Γ � (= � T1 � × . . .×

� Tn � ).
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4.2.1. Translation of types. We augment the language L(E) by adding types

pTq for each type T in L(E � ). The interpretation of pTq is given by

� pTq � = U � T � .
Thus, we have the following interpretations. Notice that by introducing new types for

Translation type Interpretation
pα :A //GAq A
pS × Tq U( � S � × � T � )
pS + Tq U � S � + U � T �
p1q UH1

Table 4. The interpretation of translated types.

each type T in L(E � ), we can distinguish between coalgebras with the same carrier.

That is, if

α :A //GA,

α′ :A //GA

are distinct structure maps for A, then we have two types pαq and pα′q in L(E),

both of which are interpreted as A.

The translation of a context Γ = x1 : T1, . . . , xn : Tn is given by

pΓq = z : pT1 × . . .× Tnq.

We add the variable z of type pT1 × . . .× Tnq because the forgetful functor U does

not, in general, preserve products. This translation is motivated by the observation

that, given x1 : T1, . . . , xn : Tn | t : T , then we have

z : T1 × . . .× Tn | t[π1z/x1] . . . [πnz/xn] : T ,

and that this term is provably equivalent to the original t (in the sense that, if we

substitute 〈x1, . . . , xn〉 for z, then the result is equal to the original term t).

For readability, we abuse notation and denote the translated product

pT1 × . . .× Tnq ( = U(pT1q × . . .× pTnq))

by pΓq, where the meaning of pΓq should be clear from context. Thus, we write

pΓq = z : pΓq,

where the translation on the left is the translation of the context and the translation

on the right is the translation of the associated product.
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4.2.2. Translation of terms. For each homomorphism f in E � , we define pfq =

Uf . We refer to Table 5 for the translation of terms. We write ptq for the translation

of a term t. So, for instance,

pΓ, x : T | fxq = z : pΓ, Tq | pf ◦ πSqz,

where the p−q on the right hand side refers to the function symbol for U(f ◦ πi) in

L(E). For each term-in-context Γ | t : T of L(E � ), there is a corresponding translation

pΓq | ptq : pTq.

Term formation rule Translation
Γ, x : T | x : T z : pΓ, Tq | pπTqz : pTq

Γ, x : S | fx : T z : pΓ, Sq | pf ◦ πSqz : pTq

Γ | ∗ : 1 z : pΓq | p!q : p1q
Γ | s : S Γ | t : T
Γ | 〈s, t〉 : S × T

z : pΓq | p � 〈s, t〉 � qz : pS × Tq

Γ, x : S × T | π2x : T z : pΓ, S, Tq | pπ2 ◦ πS×Tqz : pTq

Γ, x : S | inlx : S + T z : pΓ, Sq | inlpπSqz : pSq + pTq

Γ, y : T | inr y : S + T z : pΓ, Tq | inrpπTqz : pSq + pTq

Γ, x : S | s : U Γ, y : T | t : U
Γ, z : S + T | case z of x ⇒ s, y ⇒ t : U

See below

Γ, x : S | t : T Γ | s : S
Γ | t[s/x] : T

See below

Table 5. Term translations rules for L(E � ).

Notice that for pairing, we use the function symbol p � 〈s, t〉 � q (that is, U � 〈s, t〉 � in

L(E)). Since � 〈s, t〉 � is a homomorphism in E � , U � 〈s, t〉 � is an arrow in E . Hence, it

makes sense to translate the term 〈s, t〉 this way, because every arrow in E corresponds

to a function symbol in L(E). Unfortunately, this translation hides the relevant

features of the term 〈s, t〉 — namely, that it is a term built by pairing. Also, it is the

only translation rule which relies on the semantics of our logic to translate a term of

L(E � ). Nonetheless, this translation or something like it is necessary, to ensure that

arbitrary terms of L(E) cannot be substituted for x (say) in p〈x, y〉q.

In the translation of the case statement, we use the fact that E � is distributive.

Thus,

T1 × . . .× Tn × (S + T ) = (T1 × . . .× Tn × S) + (T1 × . . .× Tn × T ).

Since U preserves coproducts, we may take pΓ, S + Tq = pΓ, Sq + pΓ, Tq. Conse-

quently, we translate a case statement constructed thus

Γ, x : S | s : U Γ, y : T | t : U
Γ, z : S + T | case z of x ⇒ s, y ⇒ t : U
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to a construction

x : pΓ, Sq | psq : pUq y : pΓ, Tq | ptq : pUq

z : pΓ, Sq + pΓ, Tq | case z of x⇒ psq, y ⇒ ptq : pUq

We next discuss the translation of a term constructed by substitution. Suppose

that Γ, x : S | t : T and Γ | s : S. The translation of the former is a term

z : pΓ, Sq | ptq : pTq.

We will construct a term that allows a substitution for z. Let

f = 〈id � Γ � , � s � 〉 : � Γ � // � Γ � × � S � .
Then the translation of f (in the context Γ) is given by

y : pΓq | pfqy : pΓ, Sq.

Thus, we can now use the substitution constructor in L(E) to construct

z : pΓ, Sq, y : pΓq | ptq : pTq y : pΓq | pfqy : pΓ, Sq

y : pΓq | ptq[pfqy/z] : pTq
(21)

(note the use of weakening in the term ptq). We take this term to be pt[s/x]q.

By the definition of the translation of terms, it is easy to confirm the following.

Theorem 4.2.1. For any term Γ | t : T ,

� pΓ | tq � = U � Γ | t � .
Proof. By induction on the construction of the term. For variables,

pΓ, x : T | x : Tq = z : pΓ × Tq | pπSqz : pTq,

and so

� pΓ, x | xq � = UπS ◦ � z � = UπS = U � Γ, x | x � .
Other cases are proved similarly, while pairing is trivial. We include the proof for

case and substitution.

Given a case term,

Γ, z : S + T | case z of x⇒ s, y ⇒ t : U,

its translation is

z : pΓ, Sq + pΓ, Tq | case z of x⇒ psq, y ⇒ ptq : pUq.

This term in L(E) is interpreted as [ � psq � , � ptq � ] = [U � s � , U � t � ] = U [ � s � , � t � ].
As in (21), a substitution Γ | t[s/x] : T is translated to the term

y : pΓq | ptq[pfqy/z] : pTq,

where f = 〈id � Γ � , � s � 〉. Thus, one calculates the interpretation of pt[s/x]q as

� ptq � ◦ π ��� Γ,S ��� ◦ 〈id ��� Γ ��� , � pfqy � 〉 = U � t � ◦ U � f � ◦ � y � = U( � t � ◦ 〈id � Γ � , � s � 〉).
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�

4.2.3. The internal � operator in L(E). Before defining the translation of

formulas in L(E � ) to L(E), we must introduce an internal � operator. This operator

takes formulas ϕ over one variable z of type pΓq to the largest subcoalgebra of � ϕ � .
Given this operator for unary predicates over coalgebra types, we can then define

the � operator for bisimulations and n-simulations generally, by using the work of

Sections 2.5 and 2.7, although these extended operators are not S4. We will show

that, if G preserves regular relations, the n-ary � operator is “almost” S4 — that

is, it will preserve binary meets, but still one does not expect � to preserve >. In

Section 4.2.6, we will show that if the bisimulation � operator preserves binary meets,

then bisimulations compose, using the internal logic.

In order to give this translation, we must first augment the language L(E) with a

modal operator � representing the “greatest subcoalgebra” construction. Thus, we

add the formula formation rule

z : pΓq |ϕ
z : pΓq |�ϕ

(22)

Notice that this modal operator is only defined for formulas over one variable of type

pΓq for some context Γ in L(E � ). The interpretation of � is defined by

� z : pΓq |�ϕ � = � � Γ � � ϕ � .
In other words � �ϕ � is the carrier of the largest subcoalgebra of � Γ � contained in

� ϕ � .
Theorem 2.2.16 stated that � is an S4 modal operator. Consequently, we add

the standard S4 axioms, together with an axiom for substitution of homomorphic

terms (justified by Theorem 2.2.17).

(�1)
z : pΓq |ϕ ` ψ

z : pΓq |�ϕ ` �ψ
(�2) z : pΓq |�ϕ ` ϕ

(�3) z : pΓq |�ϕ ` ��ϕ

(�4) z : pΓq |�ϕ ∧ �ψ ` �(ϕ ∧ ψ)

(�5) For any term Γ | t : T in L(E � ) and formula z : pTq |ϕ,

w : pΓq | (�ϕ(z))[ptq/z] a` �(ϕ(z)[ptq/z])

(�6) z : pΓq | > ` �>

Because � does not commute with arbitrary substitutions, in general,

� �(ϕ[t/x]) � 6= (�ϕ)[t/x].

In fact, the formula on the left is defined only if the domain of � t � is the carrier of

a coalgebra, while the right hand formula requires that the codomain of � t � is the
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carrier of a coalgebra. Hereafter, we will write �ϕ[t/x], or just �ϕ(t), to denote

� �(ϕ[t/x]) � . Similarly, when we write

x : pΓq,∆ |�ϕ(x),

we mean the formula obtained by weakening the context of x : pΓq |�ϕ. Notice that,

in general,

(�ϕ(x))[t/x] 6= �ϕ(t).

In Section 2.7, we saw that there is a modal operator � taking n-ary relations R

on U〈A1, α1〉, . . . , U〈An, αn〉 to the largest n-simulation contained in R, which is

“almost” S4 (in particular, it is normal, but � does not typically preserve >) if G

preserves regular relations. This modal operator is defined in terms of ∃, U and the

subcoalgebra operator �. Thus, we can explicitly define the n-simulation � operator

in our internal logic. To simplify notation, let Γ be the context x1 : T1, . . . , xn : Tn in

L(E � ) and

p = 〈Uπ1, . . . , Uπn〉 : � pT1q � × . . .× � pTnq � // � pΓq � .
More precisely, we want the interpretation of x1 : pT1q, . . . , xn : pTnq |�ψ to be

� �ψ � = ∃p� ��� T1 ��� ×...× ��� Tn ��� p∗ � ψ � .

Accordingly, we define �ψ to denote the formula

x1 : pT1q, . . . , xn : pTnq | ∃z : � Γ � (
∧

i

pπiqz = wi ∧ �ψ(pπ1qz, . . . , pπnqz))(23)

Here, the formula �ψ(pπ1qz, . . . , pπnqz) stands for the formula constructed by ap-

plying � to ψ(pπ1qz, . . . , pπnqz), that is, it denotes

z : pΓq |�(ψ[pπ1qz/x1] . . . [pπnqz/xn]).

Since the � operator for variables z : pΓq was previously defined, this formula is

well-defined. Next, we show that this definition does what it is supposed to.

Theorem 4.2.2. For any formula x1 : pT1q, . . . , xn : pTnq |�ϕ,

� �ϕ � = � � T1 � ,... , � Tn � � ϕ �

Proof. One uses the fact that

z : � Γ � , x1 : � T1 � , . . . , xn : � Tn � |
∧

i

pπiqz = xi a` 〈pπiqz, . . . , pπnqz〉 = 〈x1, . . . , xn〉.
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By definition of �ϕ in (23), we have

� �ϕ � = � ∃z : � Γ � (
∧

i

pπiqz = xi ∧ �ϕ(pπ1qz, . . . , pπnqz)) �

= � ∃z : � Γ � (〈pπ1qz, . . . , pπnqz〉 = 〈x1, . . . , xn〉 ∧ �ϕ(pπ1qz, . . . , pπnqz)) �
= ∃ � 〈 � π1 � z,... , � πn � z〉 � � �ϕ(pπ1qz, . . . , pπnqz) �
= ∃p� � ϕ(pπ1qz, . . . , pπnqz) �
= ∃p�p

∗ � ϕ � = � � ϕ � .
�

The axioms (�1) - (� 5) generalize to axioms of the analogous formulas for the

n-simulation � operator — assuming that the comonad G preserves regular relations

for the normality axiom. Some of these axioms are easily provable in the internal logic

(for instance, the deflationary axiom �ϕ ` ϕ), and perhaps all of them are provable

with sufficient work (although it appears the normality axiom would require some

semantic argument to use the assumption that G preserves pullbacks). Nonetheless,

we rely on the work of Sections 2.5 and 2.7 to justify each of the following, which we

take to be axioms.

Notably, axiom (�6) does not typically hold for the n-ary � operator. Instead,

�> is properly contained in > — that is, the largest bisimulation of 〈A, α〉 and

〈B, β〉 is typically a proper subobject of A× B.

Let Γ = y1 : T1, . . . , yn : Tn (in L(E � )) and ∆ = x1 : pT1q, . . . , xn : pTnq (in L(E)).

(�1′)
∆ |ϕ ` ψ

∆ |�ϕ ` �ψ
(�2′) ∆ |�ϕ ` ϕ

(�3′) ∆ |�ϕ ` ��ϕ

(�4′) (If G preserves regular relations) ∆ |�ϕ ∧ �ψ ` �(ϕ ∧ ψ)

(�5′) For any term y : S | t : T in L(E � ) and formula ∆, x : pTq |ϕ,

∆, y : pSq | (�ϕ)[ptq/x] a` �(ϕ[ptq/x])

That the axioms (�1) - (�3) are sound follows from the fact that (the interpretation

of) � is a comonad, the soundness of (�4) was proved in Corollary 2.5.26, and

of (�5) follows from Theorem 2.5.19, in which we proved that � commutes with

pullback along products of homomorphisms.

The next theorem is provably equivalent to Theorem 2.7.8, in which we showed

that �π∗ ≤ π∗�. The following theorem can be understood as stating that, if R is

an n-simulation, then ∃πR is also an m-simulation (where π is a projection — and

for suitable m). The statement of the theorem is an internal version of this claim.
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Theorem 4.2.3. If G preserves regular relations, then for any formula ϕ over

context x : pSq, y1 : pT1q, . . . , yn : pTnq,

|= ∃x : S�ϕ ` �∃x : Sϕ.

Proof. Let π denote the projection � pSq � × ∏ � pTiq � //
∏ � pTiq � . Then, by

Theorem 2.7.8,

� � ϕ � ≤ �π∗∃π � ϕ � ≤ π∗�∃π � ϕ �
and so ∃π� � ϕ � ≤ �∃πϕ. Thus, ∃x : S�ϕ ` �∃x : Sϕ. �

Thus, in case G preserves regular relations, then we may add another � axiom:

(�6′) |= ∃x : S�ϕ ` �∃x : Sϕ.

4.2.4. Translation of formulas. We next give a translation of formulas in

L(E � ) to formulas in L(E). The inductive definition of the translation is given in

Table 6.

Formula formation rule Translation
x : T |ϕP (x) x : pTq |ϕP (x)
x : T, y : T | x = y z : pT × Tq |�(pπ1qz = pπ2qz)
Γ | > z : pΓq | >
Γ | ⊥ z : pΓq | ⊥
Γ |ϕ ∧ ψ z : pΓq | pϕq ∧ pψq

Γ |ϕ→ ψ z : pΓq |�(pϕq → pψq)
Γ | ∃x : Tϕ z : pΓq | ∃x : � Γ,T � (pπΓq(x) = z ∧ pϕq(x))
Γ | ∀x : Tϕ z : pΓq |�∀x : � Γ,T � (pπΓqx = z → pϕq(x))
Γ |ϕ[t/x] z : pΓq | pϕq[p〈x1, . . . , xn, t〉q/w]
Γ,∆ |ϕ z : pΓ,∆q | pϕq[pπΓqz/z]

Table 6. Formula formation and interpretation

Remark 4.2.4. One could add a closure operator � to the language of E � as

well, where the interpretation comes from the closure operator in Section 2.7. The

standard axioms for closure operators would apply, as well as the following axiom

(taking its premise from L(E), its conclusion is in L(E � )):
x : pT1q × . . .× pTnq | ∃z : � Γ � (pz = x ∧ pψq(z)) ` ∃z : � Γ � (pz = x ∧ pϕq(z))

Γ |ψ ` � ϕ
We translate the formula Γ | � ϕ into L(E) as

z : pΓq |�(∃y : � Γ � (
∧

i

pπiqy = pπiqz ∧ pϕq(y))).
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One can show (as an extension of the following theorem) that

� p � ϕq � = U � � ϕ � ,
but we omit the details.

Theorem 4.2.5. For every formula Γ |ϕ of L(E � ),
� pΓ |ϕq � = U � Γ |ϕ � .

Proof. As in the proof of Theorem 4.2.1, we prove the result by induction, but

present only a few of the cases here.

For formulas of the form Γ |ϕ→ ψ, we see that

� ϕ→ ψ � = � ϕ � → � ψ �
= [U � ϕ � → U � ψ � ] (by Theorem 2.2.24)

= [ � pϕq � → � pψq � ] (by inductive hypothesis)

On the other hand,

� pϕ→ ψq � = � �(pϕq → pψq) �
= � � (pϕq → pψq) �
= �( � pϕq � → � pψq � ) = U[ � pϕq � → � pψq � ].

We next consider formulas of the form Γ | ∀x : Tϕ. We use the fact that, in any

logos, for any f ,

� ∀x : T (f(x) = y → ϕ(x, y)) � = ∀f � ϕ(x, y) � ,
and also that, for any homomorphism f , ∀f = [−] ◦ ∀Uf ◦ U (Theorem 4.1.10).

Consequently,

U � ∀x : Tϕ � = U(∀πΓ
� ϕ � ) = �∀UπΓ

� pϕq � = � �∀x : � Γ,T � (pπΓqx = z → pϕq) � .
We translate substitutions

Γ, x : T |ϕ Γ | t : T
Γ |ϕ[t/x]

to substitutions

w : pΓ, Tq | pϕq

w : pΓ, Tq, z : pΓq | pϕq

z : pΓq | ptq : pTq

z : pΓq | p〈x1, . . . , xn, t〉q : pΓ, Tq

z : pΓq |ϕ[p〈x1, . . . , xn, t〉q/w]

The interpretation of pϕ[t/x]q, then, is calculated as

� pϕ[t/x]q � = � pϕq[p〈x1, . . . , xn, t〉q/w] �
= � p〈x1, . . . , xn, t〉q � ∗ � pϕq �
= (U � 〈x1, . . . , xn, t〉 � )∗(U � ϕ � )
= U(〈1, � t � 〉∗ � ϕ � ) = U � ϕ[t/x] � .



4.2. TRANSFER PRINCIPLES 195

�

Thus, we have constructed a translation from the language L(E � ) to the language

L(E) which takes a formula Γ |ϕ to a formula of L(E) which is interpreted as the

carrier of � ϕ � . This translation is “truth-preserving” in the sense that ϕ ` ψ is valid

in E � just in case pϕq ` pψq is valid in E .

Theorem 4.2.6. For every sequent Γ |ϕ ` ψ in L(E � ), |= pΓq | pϕq ` pψq iff

|= Γ |ϕ ` ψ.

Proof. Suppose |= Γ |ϕ ` ψ. Then

� pΓq | pϕq � = U � Γ |ϕ � ≤ U � ( � Γ |ψ) = � pΓq | pψq � .
Conversely, suppose |= pΓq | pϕq ` pψq. Then

U � Γ |ϕ � = � pΓq | pϕq � ≤ � pΓq | pψq � = U � Γ |ψ � .
Corollary 1.2.10 completes the proof. �

Hence, we may add a rule of inference

(Tr1)
Γ |ϕ ` ψ

pΓq | pϕq ` pψq

4.2.5. Coinduction. We will use the internal logic to prove a formula intended

to represent the principle of coinduction. The principle of coinduction for the final

coalgebra H1 states that the largest coalgebraic relation on H1 is equality, i.e.,

∆H1 = H1.

Equivalently, coinduction says that the largest bisimulation �H1,H1> is just ∆UH1

(see Theorem 2.6.3). In what follows, recall that the type 1 in L(E � ) is interpreted as

H1, the final coalgebra, so that p1q is interpreted as UH1. Thus, we wish to prove

the formula

x : p1q, y : p1q |�>(x, y) ` x = y.

By definition of � (in the formula (23)), this is the formula

x : p1q, y : p1q | ∃z : � 1×1 � (pπ1qz = x ∧ pπ2qz = y ∧ �>) ` x = y.(24)

Since �> ` >, it is sufficient to prove the simpler formula

x : p1q, y : p1q | ∃z : � 1×1 � (pπ1qz = x ∧ pπ2qz = y) ` x = y.(25)

Indeed, since > ` �> (for the unary � which appears here), (24) and (25) are

equivalent.

In L(E � ), the formula

x : 1, y : 1 | > ` x = y
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is provable, using (Pr1) and the equality axioms. Hence, by Theorem 4.2.6, its

translation

z : p1 × 1q | > ` �(pπ1qz = pπ2qz)

holds in L(E). Again, we apply the deflationary axiom (�2) to conclude

z : p1 × 1q | > ` pπ1qz = pπ2qz.

From this, it is a simple exercise to prove (25).

We may prove a stronger claim regarding coinduction. From Theorem 1.5.25, we

know that, if G preserves weak pullbacks, then a coalgebra 〈A, α〉satisfies coinduction

iff 〈A, α〉is simple. From (the dual of) Theorem 1.5.14, we know that, if G preserves

weak pullbacks, then 〈A, α〉is simple iff ! :〈A, α〉 //H1 is a regular mono. We will

now present this connection in the internal logic.

By assumption, E has regular epi-regular mono factorizations, so every mono is

a regular mono. Thus, we can represent the claim that ! is a regular mono by the

familiar sequent

x : pTq, y : pTq | p!qx = p!qy ` x = y.(26)

Here, we use the fact that U preserves regular monos, and so ! is a regular mono in

E � iff ! is a mono in E . Hence, the theorem we wish to prove is that (26) is equivalent

to (25) (replacing 1 with T in the latter). We do this by proving the antecedents are

equivalent. This has the advantage that it makes clear that two elements are mapped

via ! to the same element of UH1 just in case the elements are bisimilar.

First, we must see how to represent the assumption that G preserves weak pull-

backs. We use it in the proof by applying Theorem 2.5.7, to conclude that the

pullback of two G-homomorphisms is a bisimulation. This fact suggests the following

internal formula for each term s, t in L(E � )
x : pSq, y : pTq | psqx = ptqy ` �(psqx = ptqy).(27)

We treat this formula as an axiom in the following proof.

Theorem 4.2.7. Suppose that G preserves weak pullbacks. For any type T in

L(E � ),
x : pTq, y : pTq | p!qx = p!qy a` ∃z : � T×T � (pπ1qz = x ∧ pπ2qz = y).

Proof. By (27), we have

x : pTq, y : pTq | p!qx = p!qy ` �(p!qx = p!qy).

By definition of �, the consequent is the formula

x : pTq, y : pTq | ∃z : � T×T � (pπ1qz = x ∧ pπ2qz = y ∧ �(p!π1qz = p!π2qz))(28)
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In the language of E � , one can prove that

z : T × T | > ` ∗(π1z) = ∗(π2z),(29)

and �(p!π1qz = p!π2qz) is the translation of that consequent. Hence, (28) is provably

equivalent to

x : pTq, y : pTq | ∃z : � T×T � (pπ1qz = x ∧ pπ2qz = y).(30)

Hence, we have shown

x : pTq, y : pTq | p!qx = p!qy ` ∃z : � T×T � (pπ1qz = x ∧ pπ2q = y).

For the other direction, we again translate (29) and apply (�2) (� is deflationary)

to yield the sequent

z : pT × Tq | p!π1qz = p!π2qz ` .

Using the axioms for equality, we get

z : pT × Tq, x : pTq, y : pTq | pπ1qz = x ∧ pπ2qz = y ` p!qx = p!qy.

An application of existential introduction (i.e., (Str6)) completes the proof. �

Corollary 4.2.8. Let G preserve weak pullbacks. Then, for any type T ,

|= x : pTq, y : pTq | p!qx = p!qy ` x = y

just in case

|= x : pTq, y : pTq | ∃z : � T×T � (pπ1qz = x ∧ pπ2qz = y) ` x = y.

In other words, the internal principle of coinduction is valid just in case p!q is monic.

4.2.6. Composition of bisimulations. We offer an example of the internal

logic at work in the following theorem, in which we prove that, if G preserves regular

relations, then the composition of two bisimulations is again a bisimulation. From

[JR97], one finds the well-known theorem that, if E satisfies the axiom of choice,

then bisimulations compose. These two theorems suffice to prove that bisimulations

compose in a variety of familiar settings, but in both theorems, the category of

bisimulations consists of relations which come with a structure map (as opposed to

bisimulations in the sense of Definition 2.5.4, which is more general). We know of no

results for categories in which bisimulations are not “merely” relations which come

with a structure map.

Theorem 4.2.9. If G preserves regular relations, then bisimulations compose.

That is, for any x : pRq, y : pSq |ϕ and y : pSq, z : pTq |ψ such that

x : pRq, y : pSq |ϕ ` �ϕ and y : pSq, z : pTq |ψ ` �ψ,

we have x : pRq, z : pRq |ψ ◦ ϕ ` �(ψ ◦ ϕ).
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Proof. By the assumption, one infers that ψ ∧ ϕ ` �ψ ∧ �ϕ. Hence, ψ ∧ ϕ `

�(ψ ∧ ϕ). Applying the cut rule to this sequent and to the sequent

�(ψ ∧ ϕ) ` ∃y : S�(ψ ∧ ϕ)

yields ψ ∧ ϕ ` ∃y : S�(ψ ∧ ϕ) and thus ∃y : S(ψ ∧ ϕ) ` ∃y : S�(ψ ∧ ϕ). By Theo-

rem 4.2.3, ∃y : S�(ψ ∧ ϕ) ` �∃y : S(ψ ∧ ϕ), and so ∃y : S(ψ ∧ ϕ) ` �∃y : S(ψ ∧ ϕ), as

desired. �

Remark 4.2.10. This proof really doesn’t require all of the assumptions on E �
that we’ve made in this chapter. Rather, it holds whenever E has epi-regular mono

factorizations, is cocomplete and finitely complete and G preserves regular relations.

In fact, G may be an endofunctor, rather than a comonad. Thus, it holds under

the same assumptions that applied in Section 2.5.2, where we discussed relation-

preserving functors.

4.3. A Kripke-Joyal style semantics

Throughout this section, we continue with the assumptions from Section 4.2.

That is, we assume that E is an extensive, well-powered, locally complete logos with

all coproducts and regular epi-regular mono factorizations. We also assume that G

nearly preserves pullbacks.

One of the motivations for considering the internal logics L(E � ) and L(E) is that,

given an injective object C, a coequation over C is just a regular subobject of UHC,

where H is right adjoint to U :E � //E . In other words, a coequation over C is the

interpretation of some formula x : pHCq |ϕ.

A coalgebra 〈A, α〉 forces the coequation ϕ just in case, for every p :〈A, α〉 //HC ,

the image of p (more precisely, Up) is contained in the interpretation of ϕ. Thus,

〈A, α〉  ϕ just in case, for every element p of HC centered at 〈A, α〉, we have

Im(p) ≤ � ϕ � . This suggests that the standard Kripke-Joyal semantics can be used to

express coequation satisfaction in a simple, familiar way.

In this section, we first introduce Kripke-Joyal semantics for a locally complete

logos and state (without proof) the Kripke-Joyal semantics theorem. We adopt this

semantics for the category L(E), in which certain formulas represent coequations.

Namely, those formulas pΓq |ϕ are interpreted as subobjects of � pΓq � = U � Γ � , and

hence as conditional coequations over � Γ � . We complete this section by proving

a couple of theorems about coequation forcing in terms of the internal logic, first

introducing an internal version of the S4 modal operator � from Section 3.8.

Let Γ be a context in L(E) and ϕ a formula in context Γ. Let A be given and a

an element of � Γ � , centered at A, i.e.,

a :A // � Γ � .
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Then we say that A  ϕ(a) just in case Im(a) ≤ � ϕ � , i.e., pa ∈A � ϕ � .
The following theorem (which can be found, essentially, in [LS86, Bor94], etc.)

can be proved in any locally complete logos. As it is a well-known theorem (the

Kripke-Joyal theorem — sometimes called Beth-Kripke-Joyal), we omit the proof

but include the statement for completeness.

Theorem 4.3.1. Let Γ |ϕ be given and p ∈A � Γ � . In each of the clauses below,

the context of the formula is Γ, unless stated otherwise.

(1) A  >(p) always.

(2) A  ⊥(p) iff A = 0.

(3) A  (ϕ ∧ ψ)(p) iff A  ϕ(p) and A  ψ(p).

(4) A  (ϕ → ψ)(p) iff, for every b ∈B A such that B  ϕ(pb), then also

B  ψ(pb).

(5) A  ∃x : Tϕ(x, p) iff there is a regular epi b :B //A and a c ∈B � T � such that

B  ϕ(c, pb).

(6) A  ∀x : Tϕ(x, p) iff, for all b ∈B A and c ∈B � T � , B  ϕ(c, pb).

(7) A  ϕ[t/x](a) iff A  ϕ( � t � a).
(8) (Weakening) A  ∆,Γ |ϕ(a) iff A  Γ |ϕ(π � Γ � a).

Let pΓq |ϕ be given. The � ϕ � is a conditional coequation over � pΓq � . A coalge-

bra 〈A, α〉forces � ϕ � just in case, for every homomorphism p :〈A, α〉 // � Γ � , we have

Im(Up) ≤ � ϕ � , equivalently, Im(p) ≤ � �ϕ � .
Theorem 4.3.2. Let pΓq |ϕ and 〈A, α〉 be given. Then 〈A, α〉  � Γ � � ϕ � (over

� Γ � ) just in case, for every element p ∈〈A,α〉 � Γ � , that is, every homomorphism

p :〈A, α〉 // � Γ � ,
A  ϕ(Up).

We next show that a coalgebra forces ϕ at Up just in case it forces �ϕ at Up. This

is an easy corollary to Corollary 2.2.9. It also implies that the quasi-covariety defined

by ϕ is the same as that defined by �ϕ, i.e., Theorem 3.8.10. In Theorem 4.3.4, we

present a similar theorem for the � operator.

Theorem 4.3.3. Let pΓq |ϕ and 〈A, α〉 be given, and p :〈A, α〉 // � Γ � a homo-

morphism. Then A  ϕ(Up) iff A  �ϕ(Up).

Proof. Corollary 2.2.9 states that Up factors through � ϕ � just in case p factors

through [ � ϕ � ] (the largest subcoalgebra of � ϕ � ). Hence, Up factors through � ϕ � iff it

factors through � � ϕ � = � �ϕ � (see Corollary 1.2.10). �

For the next theorems, we augment the language L(E) with another S4 modal

operator, �. The interpretation of �ϕ is � � ϕ � , that is, the largest invariant subcoal-

gebra of � ϕ � (see Section 3.8).
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Theorem 4.3.4. 〈A, α〉  ϕ(p), for every p ∈〈A,α〉 � Γ � , just in case we also have

〈A, α〉  �ϕ(p) for every p ∈〈A,α〉 � Γ � .
Proof. This is just a restatement of Theorem 3.8.9 in terms of the Kripke-Joyal

semantics. �

Theorem 4.3.5. Let pΓq |ϕ be given. If � Γ � is injective (say, Γ = x : HC), and

p ∈〈A,α〉 � Γ � , then

A  �ϕ(p)

iff, for every homomorphism g : � Γ � // � Γ � , A  ϕ(gp).

Proof. Let A  �ϕ(p), where p is a homomorphism, and g : � Γ � // � Γ � be given.

Then, by definition of �, ∃g � �ϕ � ≤ � ϕ � and thus,

Im(gp) = ∃g Im p ≤ � ϕ � .
Conversely, suppose that for every such g, A  ϕ(gp). Then, for every homomor-

phism g : � Γ � // � Γ � , we have ∃g Im(p) ≤ � ϕ � . But � � ϕ � was defined to be the join of

all those subobjects K of U � Γ � such that, for every homomorphism g : � Γ � // � Γ � , we

have ∃gK ≤ � ϕ � (see Section 3.8). Hence, the result follows. �

4.4. Pointwise forcing of coequations

Again, throughout this section, E is an extensive, well-powered, locally com-

plete logos with all coproducts and regular epi-regular mono factorizations and that

G :E //E is a comonad that nearly preserves pullbacks.

Let Γ be a context in L(E � ), and ϕ a formula over pΓq, so that � ϕ � is a condi-

tional coequation over � Γ � . As we saw in the previous section, a coalgebra 〈A, α〉

forces ϕ just in case, for every element p of � Γ � centered at 〈A, α〉, A  ϕ(Up). In

other words, the Kripke-Joyal semantics give a means of stating that 〈A, α〉 forces a

coequation under a particular coloring, where 〈A, α〉 forces the coequation (with no

qualifications) if it forces it under every coloring.

Alternatively, we could consider the elements of A and ask which elements satisfy

ϕ. That is, which elements are mapped into � ϕ � under every mapping p :〈A, α〉 // � Γ � ?
Clearly, 〈A, α〉 iff for all p :〈A, α〉 // � Γ � and all a ∈ A, pa ∈ � ϕ � . In Section 4.3,

we stripped away the quantifier ranging over colorings and defined “〈A, α〉 forces ϕ

under p.” In this section, we strip away the quantifier ranging over elements of A

and define “〈A, α〉 forces ϕ at a,” where a is an element of A (i.e., a ∈B A for some

B ∈ E).

Definition 4.4.1. Let pΓq |ϕ and 〈A, α〉 be given, with a ∈ A (i.e., a :• //A in

E). Then we say

〈A, α〉  ϕ[a]
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iff, for every homomorphism p :〈A, α〉 // � Γ � , we have Im(pa) ≤ � ϕ � .
We use the square brackets for pointwise forcing to distinguish the notation from

A  ϕ(p), where p ∈〈A,α〉 � Γ � . Clearly, 〈A, α〉  ϕ[a] iff, for every p ∈〈A,α〉 � Γ � ,
B  ϕ(pa)

(where B is the domain of a, i.e., a ∈B A).

Theorem 4.4.2. Let pΓq |ϕ be given. If C is a generating set for E , then

〈A, α〉  � Γ � � ϕ �
just in case 〈A, α〉  ϕ[a] for each a ∈C A, C ∈ C.

Proof. Let 〈A, α〉  � ϕ � , so for every p :〈A, α〉 // � Γ � , we have 〈A, α〉  ϕ(p).

Clearly, for every a ∈C A, C ∈ C, then, C  ϕ(pa), so 〈A, α〉  ϕ[a].

On the other hand, suppose that 〈A, α〉  ϕ[a] for all a ∈C A, C ∈ C. Let

p : 〈A, α〉 // � Γ � be given. Then, for each a ∈C A, C ∈ C, we have C  ϕ(pa).

Hence, p ◦ a equalizes Coker( � ϕ � � ,2 // � pΓq � ) for each a :C //A, C ∈ C and thus (by

the assumption that C is a generating set for E), p equalizes Coker( � ϕ � � ,2 // � pΓq � ),
too. Hence p factors through � ϕ � . Since p was an arbitrary homomorphism, we see

〈A, α〉  � Γ � � ϕ � . �

It is natural to ask whether this semantics comes with a Kripke-Joyal style the-

orem, similar to Theorem 4.3.1. Unfortunately, we do not have any such theorem

relating the condition that 〈A, α〉  ϕ[a] and the structure of ϕ.

The motivation for this section is the intuition that, in order to show that a

coalgebra 〈A, α〉 forces a coequation � ϕ � , one checks that, for each element of a ∈ A

and homomorphism p :〈A, α〉 // � Γ � , p(a) ∈ � ϕ � . In other words, in practice, one may

verify that 〈A, α〉 forces � ϕ � at each a ∈ A.

Supposing that, in fact, 〈A, α〉 does not force � ϕ � , one may still be interested in

those elements a ∈ A that do force ϕ. In what remains, we will define an functor Jϕ
taking coalgebras 〈A, α〉 to the subobject B ≤ A consisting of all those elements of A

which pointwise force ϕ. We conclude by showing that if � ϕ � is a coequation over an

injective � Γ � (i.e., a proper coequation, rather than a conditional coequation), then

we can define the comonad Gϕ in terms of Jϕ and [−].

Given pΓq |ϕ and 〈A, α〉 ∈ E � , we define

Jϕ〈A, α〉 =
∨

{S ≤ A | ∀p :〈A, α〉 // � Γ � . ∃pS ≤ � ϕ � }.
It is easy to check that for all p :〈A, α〉 // � Γ � ,

∃pJϕ〈A, α〉 ≤ � ϕ � .
In other words, ∃pJϕ〈A, α〉 ≤ Jϕ〈A, α〉.
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Theorem 4.4.3. Jϕ〈A, α〉 is invariant, in the sense of Section 3.8. That is, for

every homomorphism p :〈A, α〉 //〈A, α〉,

∃pJϕ〈A, α〉 ≤ Jϕ〈A, α〉.

Proof. Let p : 〈A, α〉 //〈A, α〉 be given. It suffices to show that, for every

r :〈A, α〉 // � Γ � ,
∃r∃pJϕ〈A, α〉 ≤ � ϕ � ,

i.e., ∃r◦pJϕ〈A, α〉 ≤ � ϕ � . This follows, since Jϕ〈A, α〉 is a join of subobjects S such

that ∃r◦pS ≤ � ϕ � and joins commute with ∃. �

We still must show that Jϕ defines a functor. Let f :〈B, β〉 //〈A, α〉 be given.

We will show that ∃fJϕ〈B, β〉 ≤ Jϕ〈A, α〉. This allows one to define Jϕf to be the

composite along the top row of Figure 3.

Jϕ〈B, β〉
� ,2

_��

��

∃fJϕ〈B, β〉
� "*

''NNNNNNNNNN

� ,2 // Jϕ〈A, α〉
_��

��
〈B, β〉

f
// 〈A, α〉

Figure 3. Definition of Jϕ on arrows.

To show that ∃fJϕ〈B, β〉 ≤ Jϕ〈A, α〉, it suffices to show that, for every homo-

morphism p :〈A, α〉 // � Γ � ,
∃p∃fJϕ〈B, β〉 = ∃p◦fJϕ〈B, β〉 ≤ � ϕ � .

But this is clear, since p ◦ f is a homomorphism.

Theorem 4.4.4. Let a ∈B A. Then a ∈ Jϕ〈A, α〉 just in case 〈A, α〉  ϕ[a].

Proof. Clearly, if 〈A, α〉  ϕ[a], then a ∈ JϕA.

On the other hand, suppose that a ∈ JϕA and let r :〈A, α〉 // � Γ � be given. Then

∃rJϕA =
∨

{∃rS ≤ A | ∀p :〈A, α〉 //pΓq . ∃pS ≤ � ϕ � } ≤ � ϕ � .
Hence, ra ∈ � ϕ � . �

From Chapter 3, we know that there is a comonad

Gϕ :E � //E � ,
Gϕ = 〈Gϕ, εϕ, δϕ〉, such that 〈A, α〉  � ϕ � just in case 〈A, α〉 ⊥ εϕα. In fact, Gϕ〈A, α〉

is the greatest subcoalgebra 〈B, β〉 of 〈A, α〉 such that 〈B, β〉  � ϕ � . Hence, there

is some similarity between Gϕ〈A, α〉 and our definition of Jϕ〈A, α〉. The following

theorem makes the relationship between the two clearer.
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Theorem 4.4.5. If � Γ � is injective (so that � ϕ � defines a covariety, rather than

a quasi-covariety), then

G〈A, α〉 = [Jϕ〈A, α〉]α.

In other words, Gϕ〈A, α〉 is the largest subcoalgebra of Jϕ〈A, α〉.

Proof. Since G〈A, α〉  � ϕ � , it follows that for every p :〈A, α〉 // � Γ � , we have

∃pUG
ϕ〈A, α〉 ≤ � ϕ � . Hence, by definition of Jϕ, UG

ϕ〈A, α〉 ≤ Jϕ〈A, α〉 and so

Gϕ〈A, α〉 ≤ [Jϕ〈A, α〉].

On the other hand, to prove the reverse inclusion, it suffices to show that the

coalgebra [Jϕ〈A, α〉] forces the coequation � ϕ � . That is, for every homomorphism

p :[Jϕ〈A, α〉] // � Γ � ,
Im p ≤ � ϕ � . Since � Γ � is injective, p extends to a homomorphism

p̃ :〈A, α〉 // � Γ � .
Since ∃ �pJϕ〈A, α〉 ≤ � ϕ � , the conclusion follows. �





Concluding remarks and further research

In this thesis, we had three main goals in mind. First, we wanted to develop the

theory of coalgebras alongside the theory of algebras in a general setting. Second,

we wanted to apply the principle of duality to some well-known and fundamental

theorems of universal algebra to learn their implications in the theory of coalgebras.

Lastly we wanted to provide an internal logic for categories of coalgebras which is

appropriate for representing relevant constructions and for expressing the relation

between E and E � via certain transfer principles.

The first task yielded sufficient conditions for a category of coalgebras to be well

enough behaved for the development of basic results like the co-Birkhoff theorem.

Among other results, we found that a category E � of coalgebras for a comonad G

inherits much of the relevant structure from E presuming E has epi-regular mono

factorizations and cokernel pairs and G preserves regular monos. If we further assume

that E has enough injectives, then so does E � , and these injectives provide a natural

interpretation of coequations. We also showed that E � is “as complete” as E is,

although the limits in E � are not created by the forgetful functor. Supposing that E

is a locally complete logos with regular epi-regular mono factorizations, and G nearly

preserves pullbacks, then E � is also a locally complete logos and thus interprets first

order logic.

We further contributed to the theory of coalgebras by offering a new definition

of bisimulation which is, we hope, more natural in settings in which choice is not

available. This definition preserves the intuition behind bisimulation — two elements

are bisimilar just in case there’s a coalgebraic relation 〈R, ρ〉 such that they are

related by the image of R. Furthermore, while it allows for greater structure than

the traditional definition in categories without choice, it also reduces to that definition

if choice is available (or if G preserves pullbacks).

The second task is closely related to the first. In order to dualize familiar theorems

from universal algebra, one must first state and prove these theorems in categorical

terms. In this stage, one sees what is really relevant, categorically speaking, for a

theorem like, say, the variety theorem and this in turn helps guide the development

of the theory of coalgebras. To the extent that we are interested in the duals of such

fundamental algebraic theorems, we are committed in assuming the dual conditions

205



206 CONCLUDING REMARKS AND FURTHER RESEARCH

(with certain exceptions – the proof of the subdirect product theorem is an example

of a proof which is not easily dualized. Our approach, following [GS98], involved

finding an alternate proof.).

Once a classic theorem has been stated and proved in terms which are easily

dualized, the dual theorem must still be interpreted. For the variety theorem, this

meant understanding coequations as predicates over the carrier of a cofree coalgebra,

and coequation forcing as an assertion about the images of a coalgebra under the

various colorings. This in turn led to an understanding of the invariance theorem.

Namely, it allowed a definition of a modal operator which takes a coequation to the

largest subobject which is invariant under all colorings. Without interpretations such

as these, the result of dualizing a theorem is largely formal — we receive a provable

statement but are at a certain loss for what it means.

The final task, too, relied on the first task for establishing the inheritance in

E � of the relevant structure in E . This established that an internal logic for E �
could include full first-order logic. The work on bisimulations suggested a closure

operator for the language L(E � ), in which the closed propositions correspond to n-

simulations. The work on the invariance theorem suggested an interior operator as

well, taking each proposition (i.e., conditional coequation) to its largest invariant

subcoalgebra. For each of these operators, however, there were important properties

which are semantically verifiable but not expressible in the internal logic – unless E �
has exponentials.

The relation between E and E � suggested the addition of certain transfer rules

which allow one to make inferences in L(E � ) based on derivations in L(E) and vice

versa. These transfer rules allowed the characteristic property of cofree coalgebras to

be expressed in a natural way in the join of the logics involved.

The work presented here can be extended in several ways. First, one may be

interested in base categories with less structure than we’ve assumed. For instance,

if one considers coalgebras over various categories of posets, then the assumption of

“enough injectives” is unreasonable. Hence, it would be worthwhile to investigate

what structural properties may be lost in such settings and to try to understand

what the appropriate notion of a coequation is in these settings.

Related to this concern is a question that has, unfortunately, largely remained

unanswered in this thesis. Namely, what applications are there for coalgebras over

categories other than Set and related categories? There is a notable lack of examples

of such coalgebras – although, one should stress that the broad approach developed

here does not depend on mathematical applications for its justification. Rather, it

is motivated by a desire to make clear which theorems of universal algebra can be

dualized in a straightforward way. Since we are not interested in coalgebras over

Setop, this means that we must make clear what properties of Set are relevant in
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the classical theorem, so that we can see whether these properties are reasonable for

categories of coalgebras as well. Nonetheless, compelling examples of coalgebras over

other categories would be most helpful in understanding the basic theory.

The project of dualizing theorems in universal algebra is still in its infancy.

One can go through any standard text in universal algebra and find candidates

for dualization. One needs, however, to develop a few methods for dualizing cer-

tain common assertions in algebra. A survey of the work of Andréka and Németi

[AN83, Ném82, AN81a, AN81b, AN79b, AN79a, AN78] shows great promise

in this direction. In the early 1980’s, they extended the work of Herrlich and Ba-

naschewski [BH76] to give an analysis of “cone-injectivity” and classes of algebras

defined by an extension of equational logic. This work was unknown to the author

until an anonymous reviewer for CMCS 2001 brought it to his attention. A review

of these earlier results, with an eye towards applications of their coalgebraic dual,

seems most promising.

The development of the internal logic in Chapter 4 should lead to clean proofs

of certain claims about coalgebras. One would certainly like more examples of such

proofs. To begin, it is reasonable to take well-known properties of (certain) coalgebras

and prove them in the internal logic, as we did with the property of coinduction for

the final coalgebra and also the proof that bisimulations compose (given that G

preserves regular relations). However, time did not permit as broad a development

of these proofs in the internal logic as one would like, and in particular, we did not

attempt to represent the property of corecursion and prove that it holds in the final

coalgebra. The aim of using the internal logic to re-prove well-known results is two-

fold: First, it gives a measure of the practical strength of the logic and shows how the

transfer principles can be used, and second, it allows one to develop skills of reasoning

internally, much simplifying (and formalizing) proofs, and this skill can be applied

for “real” advances to the theory as well.





APPENDIX A

Preliminaries

A.1. Notation

We adopt the following notation conventions for morphisms in a category.

Morphism Arrow
Monos i :A // //B
Epis p :A // //B
Regular monos i :A � ,2 //B
Regular epis p :A � ,2B
Isomorphisms i :A � ,2 � ,2B
Natural transformations τ :F +3G
Cones τ :A +3G
Table 1. Notation conventions

A.2. Factorization systems

This section gives a brief review of factorization systems with a special emphasis

on the factorization systems of special interest here: regular epi-mono factorizations

(for categories of algebras) and epi-regular mono factorizations (for categories of

coalgebras). For a more thorough treatment of factorization systems, see [Bor94,

Volume I] or [AHS90]. First, we review the definition of regular epi/regular mono.

Definition A.2.1. We say that a map p :A � ,2B is a regular epi if there is a pair

of maps e1 and e2 such that

•
e1 //
e2

// A
p � ,2 B

is a coequalizer diagram. Dually, a regular mono is a map that is an equalizer of

some pair of arrows.

Throughout, we will often use the fact that regular epis are strong, so we include

a definition and proof of this connection.

Definition A.2.2. An epi e is strong just in case, whenever the square below

commutes, with m mono, then there is a (necessarily unique) map d making each
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triangle commute.

•
e // //

��

•

��
d

��
• //

m
// •

A strong mono is a mono m as in the diagram above such that, whenever the square

commutes and e epi, then again there is a unique d making the triangles commute.

Theorem A.2.3. Every regular epi is strong (and, dually, every regular mono is

strong).

Proof.

•
k1 //
k2

// •
e � ,2

f

��

•

g

��
d

��
• //

m
// •

Figure 1. Every regular epi is strong.

Let e be the coequalizer of k1, k2 as shown in Figure 1 and let m be a mono

making the diagram commute. Then it is easy to see that (because m is monic),

f also coequalizes k1 and k2 and so there is a unique d making the upper triangle

commute. The lower triangle also commutes, since e is epi. �

Definition A.2.4. A factorization system for a category C consists of a pair

〈E , M〉 where E and M are class of morphisms of C satisfying the following:

(1) Every isomorphism is in E and M;

(2) E and M are closed under composition;

(3) Whenever e ∈ E and m ∈M such that the square below commutes, there is

a unique d as shown, making each triangle commute.

•
e //

��

•

��
d

��
•

m
// •

(4) For each f :A //B in C, there is an e :A //C in E and a m :C //B in M such

that f = m ◦ e (as shown below).

A

f
**

e ((

B

C
66 m

GG
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Note that our definition of factorization system does not require that E be a

subclass of the epis of C or that M be a subclass of the monos. Nonetheless, the

common examples of factorization systems do have this property, and certainly the

factorization systems in which we are interested are no exception.

Theorem A.2.5. Let 〈E , M〉 be a factorization system for C. Factorizations

f = m ◦ e, where e ∈ E and m ∈ M, are unique up to isomorphism.

Proof. If m◦e = m′ ◦e′, where e, e′ ∈ E and m, m′ ∈ M, then there are unique

d, d′, as shown in Figure 2, making the triangles commute. The uniqueness part of

Condition 3 from Definition A.2.4 implies that the composites d ◦ d′ and d′ ◦ d are

the identity. �

A
e //

e′

��

C

m

��d
ww

D
m′

//

d′

77

C

Figure 2. 〈E , M〉-factorizations are essentially unique.

For the remainder of this section, let Ee denote the epis of C and Mm the monos.

Also, let Ere denote the regular epis and Mrm the regular monos. We complete

our review of factorization systems by introducing the notion of regular epi-mono

factorizations and its dual, epi-regular mono factorizations. We show that, if every

map factors by a regular epi followed by a mono, then 〈Ere, Mm〉 is a factorization

system (and the dual result as well).

Definition A.2.6. Let E be a category. We say that E has regular epi-mono

factorizations if every arrow f :A //B can be factored into a regular epi followed by

a mono.

A

f
++

 !*

B

A/f
88

FF

The codomain of the regular epi is denoted A/f , as shown above.

Dually, we say that E has epi-regular mono factorizations if every arrow f :A //B

can be factored into a epi followed by a regular mono.

A

f
++

%% %%

B

Im(f)
2 5=

DD
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The domain of the regular mono is denoted Im(f), as shown above.

Theorem A.2.7. If E has regular epi-mono factorizations (epi-regular mono fac-

torizations, resp.), then 〈Ere, Mm〉 (〈Ee, Mrm〉, resp.) form a factorization system.

Proof. Conditions (1) and (2) are obvious, and (4) is by hypothesis. The diago-

nal condition (by (3)) is just the fact that regular epis (monos, resp.) are strong. �

As we can see in the proof of Theorem A.2.7, the strong epis provide most of

the properties we require. Indeed, throughout this thesis, the assumption of regular

epi-mono factorizations in EΓ could be largely replaced by strong epi-mono factor-

izations, weakening some assumptions while strengthening others in the process. We

nonetheless prefer to stick with the regular epis, since in the algebraic setting, they

correspond to deductively closed sets of equations. We also use epi-regular mono

factorizations in EΓ in keeping with the duality.

We close this section with a categorical definition of the axiom of choice.

Definition A.2.8. We say that an epi p (a mono i, resp.) splits if there is a map

f such that p ◦ f = id (f ◦ i = id, resp.) Such epis (monos, resp.) are necessarily

regular.

Definition A.2.9. Let E be given. We say that E satisfies the axiom of choice if

every epi splits. That is, if for every epi p, there is a (necessarily monic) i such that

p ◦ i = id

.

We say that E satisfies the weak axiom of choice if every regular epi splits.

Theorem A.2.10. If E satisfies the weak axiom of choice, then every endofunctor

Γ:E //E preserves regular epis.

Proof. Let p be a regular epi in E . Then p splits, and hence Γp splits. �

A.3. Predicates and Subobjects

We very briefly present the basic construction of the category Sub(A) and show

how to define ∧ and ∨ in Sub(A). This material is not intended to be complete. In

particular, we simply show the constructions here without bothering to verify that our

construction of ∧ (say) really does define a meet operation. For a proper introduction

in lattice theory, see [DP90], and for a discussion of the Heyting algebra Sub(A) in

a topos E , see [LM92].

Let C be a category and A ∈ C. We form the category, SubC(A) or just Sub(A), as

follows: Take the full subcategory of the slice category C/A consisting of the monos

P // //A .
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Then, take the quotient of that subcategory by the relation ∼= that holds if two objects

are isomorphic. In other words, we consider the skeleton of the category of monos

into A. We call the elements of Sub(A) the subobjects of A. It is easy to see that

Sub(A) is a poset.

We define the intersection of two subobjects P and Q as the pullback,

P ∧Q
��

��

// //
_� P

��

��
Q // // A

if it exists. More generally, the intersection
∧
Pi of a collection of subobjects Pi of A

is the generalized pullback of the Pi’s.

In a category with + and a factorization system 〈E , M〉, E a subclass of the

epis and M a subclass of the monos, the join (or union) of two subobjects as the

factorization of the induced map P +Q //A :

P +Q � ,2 ))P ∨Q // // A .

More generally, in a category with arbitrary coproducts, one can define an infinite

join,
∨
i Pi of subobjects Pi.

Definition A.3.1. A category C is well-powered if each object has set-many

subobjects. C is regularly well-powered if each object has set-many regular subobjects.

Dually, C is (regularly, resp.) co-well-powered if, for each object C, there are

set-many (regular, resp.) epis out of C, up to isomorphism.

In a well-powered category C with pullbacks, we have a contravariant functor

Sub :Cop //Poset.

We must describe the action of Sub on arrows f :A //B , which we write as

f ∗ :Sub(B) // Sub(A).

Take a subobject P // //B to the object making this square a pullback:

f ∗(P ) //

��

��

P
��

��
A // B
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If C has regular epi-mono factorizations, then f ∗ has a left adjoint, denoted ∃f
and defined by taking the factorization shown below.

P
� ,2

��

��

∃fP
��

��
A // B

See Section 4.1 for a discussion of a right adjoint to f ∗.

We complete our brief review of subobjects by showing that a regularly well-

powered category is also regularly co-well-powered, given kernel pairs.

Claim A.3.2. If C has kernel pairs and is regularly well-powered, then C is regu-

larly co-well-powered. Dually, a regularly co-well-powered category with cokernel pairs

is regularly well-powered.

Proof. Assume C is finitely complete and regularly well-powered and C ∈ C.

Then, we map quotients of C to regular subobjects of C × C by taking a regular

epimorphism q to its kernel pair. This mapping is injective. �

A.3.1. Regular subobjects. The categories of coalgebras in which we are in-

terested do not, in general, have regular epi-mono factorizations. Rather, they have

epi-regular mono factorizations. Consequently, the corresponding category of subob-

jects is not well-behaved: we cannot define the join of arbitrary subcoalgebras.

If C is a category with epi-regular mono factorizations, it is natural to consider

the regular subobjects of A as predicates over A. In the category RegSubC(A) of

regular subobjects, one can define meet, join, etc., as before and view the collection

of regular subobjects as the predicates over A.

A.4. Relations

We briefly introduce the basic definitions for relations on a category. Since we

are concerned with categories with finite products, for the most part, we simplify

this material by assuming finite products exist whenever convenient. See [Bor94,

Volume 2, Chapter 2] for a more complete discussion of this topic.

Definition A.4.1. A collection of maps {fi :A //Bi}i ∈ I are jointly monic if,

whenever g, h :C //A satisfy, for all i ∈ I,

fi ◦ g = fi ◦ h

then g = h.

If I = 1, then jointly monic is just monic.
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Definition A.4.2. Let C be a category, A and B objects of C. A (binary) relation

on A and B is a triple 〈R, r1, r2〉 such that

r1 :R //A,

r2 :R //B

and r1 and r2 are jointly monic. This definition generalizes in the obvious way to

n-ary (or I-ary) relations. A unary relation is a subobject.

If A = B, we say that 〈R, r1, r2〉 is a relation on A. Also, we often refer to a

relation 〈R, r1, r2〉 by just its carrier R, if no confusion will result.

If C has finite products, then a relation 〈R, r1, r2〉 on A and B is just a subobject

〈R, 〈r1, r2〉〉 of A × B. Also, any pullback (and so, any kernel pair) is a relation.

In particular, ∆A = 〈A, idA, idA〉 is a relation on A (sometimes called the equality

relation or the diagonal) and, more generally, given a map f :A //B , then 〈A, idA, f〉

is a relation on A and B, called the graph of f (denoted graph(f)).

The category of relations on A and B forms a partial order, where 〈R, r1, r2〉 ≤

〈S, s1, s2〉 just in case there is an arrow f :R //S such that

r1 = s1 ◦ f, r2 = s2 ◦ f.

Given finite products, this ordering is just the same as the ordering on Sub(A× B),

of course.

In a category C with finite products and epi-regular mono factorizations, we can

define the composition of two relations easily. Namely, let 〈R, r1, r2〉 be a relation on

A and B and 〈S, s1, s2〉 a relation on B and C. Take the pullback shown in Figure 3.

In general, this will not be a relation, so take the regular epi-mono factorization of

P //A× C .

•
t1

~~}}
}}

}}
}} t2

  A
AA

AA
AA

A?�

R
r1

��~~
~~

~~
~

r2

��@
@@

@@
@@

S
s1

����
��

��
�

s2

��?
??

??
??

A B C

Figure 3. Composition of relations

If R is any relation on A, we say that R is reflexive if ∆ ≤ R.

Given any relation 〈R, r1, r2〉, the triple 〈R, r2, r1〉 is also a relation, called the

opposite relation of R and denoted R0. We say that R is symmetric if R0 ≤ R.
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Because −0 is monotone and (R0)0 = R, we have that a relation R is symmetric iff

R0 = R.

A relation R on A is said to be transitive if R ◦ R ≤ R. If R is reflexive, then

R ≤ R ◦R. Thus, if R is reflexive, then R is transitive iff R ◦R = R.

Definition A.4.3. A relation R on A is an equivalence relation if it is reflexive,

symmetric and transitive.

Notice that a kernel pair of an arrow is always an equivalence relation. We say

that an equivalence relation is effective if it is the kernel pair of its coequalizer.

∆A

33 **

id

))
id ))

R

r1vv

r2

vv

R0
33 **

r1

((r2 ((

R

r1vv

r2

vv

R ◦R
22 ++

r2◦t2

**
r1◦t1 **

R

r1vv

r2

vv
A A A

Figure 4. The defining conditions for equivalence relations.

The equality relation ∆ is an effective equivalence relation, and is obviously the

least equivalence relation. Also, in Set, for instance, every equivalence relation is

effective.

Definition A.4.4. A category C is regular if it satisfies the following:

• Every arrow has a kernel pair.

• Every kernel pair has a coequalizer.

• The pullback of a regular epi is a regular epi (regular epis are stable under

pullbacks.

A regular category in which all equivalence relations are effective is called exact.

A.5. Monads and comonads

This section is a brief reminder of the basic definition of monad and how a pair

of adjoint functors give rise to a monad. See any basic text on category theory for

more details. We take this material largely from [BW85, Bor94].

Definition A.5.1. A monad (also called a triple) is an ordered triple T =

〈T, η, µ〉 where

T :C //C

is an endofunctor,

η :1C +3T and

µ :T 2 +3T
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are natural transformations such that the following diagrams commute.

T 3
µT +3

Tµ

��

T 2

µ

��

T
ηT +3

@@
@@

@@
@@

@@
@@

@@
@@

T 2

µ

��

T
Tηks

~~
~~

~~
~~

~~
~~

~~
~~

T 2
µ

+3 T T

The first diagram is called the associativity condition and the second the unit condi-

tion.

Rather than give explicit examples of monads, let us show how any adjoint pair

gives rise to a monad. In Section 2.1, we state the Eilenberg-Moore theorem showing

that every monad arises from an adjoint pair. In fact, it arises from (at least) two

different pairs of adjoints, but we will not discuss the Kleisli construction. See any

of [Bor94, Lan71, BW85] for a more thorough development of this topic.

Let L :C //D and R :D //C be given, with L a R. Let η : idC
+3RL and ε :LR +3 idD

be the unit and counit of the adjunction, respectively. It is easy to show that

〈RL, η, RεL〉

is a monad on C. The associativity condition

RLRLRL
RεLRL +3

RLRεL

��

RLRL

RεL

��
RLRL

RεL

+3 RL

holds just by the naturality of ε. The unit condition

RL
ηRL +3

IIII
IIII

I

III
III

III
RLRL

RεL

��

RL
RLηks

uu
uuu

uuu
u

uuuu
uuu

uu

RL

holds just because of the identities

ηR ◦Rε = idC and

Lη ◦ εL = idD .

A comonad in C is a monad in Cop. We state the definition explicitly, nonetheless,

since comonads play such an important role for categories of coalgebras.

Definition A.5.2. A comonad (also called a cotriple) is a triple G = 〈G, ε, δ〉

where G :C //C is a functor and

ε :G +3 idC and

δ :G +3G2
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are natural transformations such that the following diagrams commute.

G3 G2
δGks G

AA
AA

AA
AA

AA
AA

AA
AA

G2
εGks Gε +3 G2

||
||

||
||

||
||

||
||

G2

Gδ

KS

G
δ

ks

δ

KS

G

δ

KS

One sees, by duality, that an adjoint pair also gives rise to a comonad. Explicitly,

let L a R, with unit η and counit ε. Then one easily shows that

〈LR, ε, LηR〉

is a comonad.

Example A.5.3. Consider the adjoint pair

U :Grp //Set and

F :Set //Grp,

where U takes a group to its underlying set and F takes a set to the free group on

that set. We have that F a U . This yields a familiar monad on Set, 〈UF, η, µ〉. The

unit of the monad,

η : idSet
+3UF ,

is the insertion of generators X //UFX . The multiplication is a natural trans-

formation

µ :UFUF +3UF .

It can be described componentwise as follows: Given a set X, UFX is the set of group

terms over X, which we can regard as finite strings over X. The set UFUFX, then,

is the collection of group terms taking elements of UFX as variables. Thus, UFUFX

is the collection of finite strings over the “alphabet” UFX. The multiplication µX
takes such a string and concatenates its elements, yielding a string over X.

The comonad 〈FU, ε, δ〉 over Grp can be easily described too, although it may

seem less familiar. The functor part of the comonad takes a group G to the free

group over UG. The counit

εG :FUG //G

takes a term over G and multiplies it using the multiplication of G. The comultipli-

cation

δG :FUG //FUFUG

is given by FηUG, where η is the insertion of generators described above. Thus, it is

the group homomorphism extending this insertion to all of FUG.
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[AR94] Jǐŕı Adámek and Jǐŕı Rosický, Locally presentable and accessible categories, London
Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, 1994.

[Bar92] Michael Barr, Algebraically compact functors, Journal for Pure and Applied Algebra 82

(1992), 211–231.
[Bar93] M. Barr, Terminal coalgebras in well-founded set theory, Theoretical Comp. Sci. 114

(1993), 299–315.
[Bec67] J.M. Beck, Triples, algebras, and cohomology, Ph.D. thesis, Columbia University, 1967.
[BH76] B. Banaschewski and H. Herrlich, Subcategories defined by implications, Houston Journal

of Mathematics 2 (1976), no. 2.
[Bir35] G. Birkhoff, On the structure of abstract algebras, Proceedings of the Cambridge Philo-

sophical Society 31 (1935), 433–454.

219



220 BIBLIOGRAPHY

[Bir44] G. Birkhoff, Subdirect unions in universal algebra, Bulletin of the American Mathemat-
ical Society 50 (1944), 764 – 768.

[BM96] Jon Barwise and Lawrence Moss, Vicious circles, CSLI Lecture Notes, vol. 60, Stanford
University, 1996.

[Bor94] F. Borceux, Handbook of categorical algebra I-III, Cambridge University Press, 1994.
[But98] Carsten Butz, Regular categories and regular logic, BRICS LS-98-2, October 1998, Course

notes, 35 pp.
[BW82] Stephen Bloom and Jesse B. Wright, Finitary quasi-varieties, Journal of Pure and Ap-

plied Algebra 25 (1982), 121–154.
[BW85] Michael Barr and Charles Wells, Toposes, triples and theories, Grundlehren der maath-

ematischen Wisenschaften, vol. 278, Springer-Verlag New York, 1985.
[Che80] Brian F. Chellas, Modal logic: An introduction, Cambridge University Press, 1980.
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