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is !Loś’s theorem for ultrapowers giving the connection between what formulas are
satisfied in the ultrapower and in the original structure S. In this thesis we instead
start with the category of ultrafilters (denoted U). On this category we build the
topos Sh(U) of sheaves on U (the ultrasheaves), which we think of as generalized
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orem, first proved by Moerdijk for the topos Sh(F) of sheaves on filters. In the
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give a new proof of his result.
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PREFACE

This thesis consists of a summary and three papers. The papers are:

I. “Ultrapowers as sheaves on a category of ultrafilters”, accepted for publi-
cation in Arch. Math. Logic.

II. “Ultrasheaves and double negation” (joint with S. Awodey), accepted for
publication in Notre Dame J. Formal Logic.

III. “Ultrasheaves and ultrapowers”, in manuscript



ULTRASHEAVES

JONAS ELIASSON

The subject of this thesis is the topos of ultrasheaves, sheaves on the category
of ultrafilters. The study of ultrasheaves is a part of categorical logic, more specif-
ically they are sheaf models. The outline of the thesis is this. In Section 1 we give
some background to the results in the thesis. In Section 2 we give some prelim-
inary definitions and results. In the following three section we present the main
results from the Papers I, II, and III, respectively. Finally in Section 6 we give
some suggestions for future research.

1. Background

First in this section we give a background in categorical logic and general topos
theory. Then follows a background directly related to ultrasheaves.

1.1. Background in categorical logic. The study of sheaf theory was pioneered
by Grothendieck. He was motivated by examples of sheaves in algebraic geometry.
Sheaves had for instance appeared as families of Abelian groups Ax, parametrized
by points x ∈ X of a topological space X in a nice way respecting some locality
and integrality properties with respect to the topology on X.

Grothendieck gave a more general definition of sheaves by replacing the partially
ordered collection of open subsets of a topological space by objects in a category
C, in which some suitable families of maps Ui → X (for i ∈ I) form “covers” of
objects X in C. For such a “Grothendieck topology” a sheaf is a functor which
respects the topology on C in a appropriate manner. The sheaves on a category C
with a Grothendieck topology J (a “site”) form a “Grothendieck topos” Sh(C, J).

The interest for toposes in logic has as a starting point Lawvere’s thesis from
1963. In it he launched the grand project of a purely categorical foundation for
all of mathematics, starting with an appropriate axiomatization of the category of
sets, replacing membership by composition of functions. When Lawvere learned
of the Grothendieck toposes, he soon observed that such a topos admits the basic
operations of set theory, such as the formation of the exponential set Y X (of all
functions from X to Y ) and the power set P (X) (of all subsets of X).

At about the same time as Lawvere’s work, Tierney saw that Grothendieck’s
work could lead to an axiomatic study of sheaves. Working together, Lawvere
and Tierney discovered an axiomatization of categories of sheaves of sets (and,
in particular, of the category of sets) via an appropriate formulation of the set-
theoretic properties. This was the definition of an “elementary topos”, which
is defined without any set-theoretic assumptions. Any Grothendieck topos is an
elementary topos, but not conversely.

A second input into the use of toposes in logic was from the “forcing” method
used by Cohen to prove the independence of the continuum hypothesis (CH), and
other set-theoretic axioms, from the rest of Zermelo-Fraenkel set theory (ZF). The
method works by expanding a model of ZF to a new model by forcing some sets to
exist in the new model, in the case of CH a subset B ⊂ R such that the cardinality
of B is strictly between the cardinalities of N and R.
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6 JONAS ELIASSON

This forcing technique was later rephrased by Solovay and Scott in terms of
Boolean-valued models, where the truth-values are taken from an arbitrary Boolean
algebra. Shortly after this, Lawvere and Tierney discovered that Cohen forcing
could be performed in toposes: indeed, using Cohen’s construction one obtains a
topos with the desired properties.

As observed above objects in an elementary topos behave like sets. This means
that, just as for sets, we can interpret logic into a topos. In set theory we can
identify a formula with the set of elements for which the formula holds. Then
the logical operations “and”, “or” and “not” have their counterparts in the set
operations union, intersection and complement. Quantification can be interpreted
with the help of products of sets and projections.

The subsets of a set form a Boolean algebra. This means that if you take the
complement of the complement of a set, you get the set back. In logical language
this says that “not not A” is equivalent to A. This is not true in a general topos.
Instead of getting back the original set after taking the complement twice you only
get a subset of the set you started with. This means that the logic corresponding
to a general topos is not classical. It is intuitionistic. For more background on
categorical logic see Mac Lane and Moerdijk [13].

1.2. Background to ultrasheaves. In 1993 Moerdijk [15] presented a new model
of nonstandard arithmetic. His model uses the Grothendieck topos of sheaves on
the category of filters, Sh(F). Later Palmgren [17, 18, 19, 20] extended this to a
model of nonstandard analysis. The models in particular make use of the sheaves
∗S, whose value ∗S(F) at any filter F is the reduced power of the set S over F .

The category of filters F was first studied in Koubek and Reiterman [12] and
later by Blass [3]. In this thesis we consider the full subcategory U of ultrafilters
in F. It inherits a topology from F and the ultrasheaves are the sheaves on U for
this topology. The sheaves ∗S are still sheaves when restricted to U and ∗S(U) is
now the ultrapower of S over an ultrafilter U . More on this in Paper I. In Paper
II we give another description of the relationship between Sh(F) and Sh(U).

Before Moerdijk, Ellerman [9] studied ultrapowers (or more generally ultraprod-
ucts) as sheaves on ultrafilters. The ultrafilters on a set I can be thought of as a
topological space, the Stone space of the Boolean algebra of the subsets of I. Eller-
man then considered ultraproducts as sheaves on this topological space. There is
a brief discussion of the relation between Ellerman’s work and Sh(F) in Section 6.

Other work on filter categories has been done by Makkai [14], Pitts [21, 22, 23]
and Butz [4]. Pitts uses the filter construction on coherent categories to prove
completeness and interpolation results. Makkai’s topos of types is related to the
prime filters in Pitts construction. The precise relation between the two toposes
is considered by Butz, who uses filters to construct generic saturated models of
intuitionistic first-order theories.

The existence and qualities of ultrafilters have long been studied in set theory.
The answers to many questions on ultrafilters depend on what set theoretic axioms
are used, for instance what choice principle you have or what size the power set
has. In this thesis we will always assume the axiom of choice which guarantees
the existence of ultrafilters.

A tool in the study of ultrafilters is the Rudin-Keisler ordering, introduced in-
dependently by Rudin, Keisler and Katetov (as a general reference see Comfort
and Negrepontis [6]). The Rudin-Keisler ordering is a partial order on the equiv-
alence classes of ultrafilters. It has been studied, under various assumptions, with



ULTRASHEAVES 7

respect to properties like the existence of minimal elements or what orderings can
be embedded into it.

The Rudin-Keisler ordering has a direct relevance for U. We have that an
ultrafilter V is greater than or equal to U in the ordering if and only if the set of
morphisms from U to V is non-empty. This is proved in Paper I. In his thesis [2],
Blass proved a model theoretic characterization of the Rudin-Keisler ordering. In
Paper I we also give a new proof of this.

Ultrapowers and ultraproducts is a standard tool in model theory (for more
on this see Chang and Keisler [5] or Hodges [10]). They give a way of finding
new models from old ones. Essential for the usefulness of ultraproducts is !Loś’s
theorem which relates truth in the ultraproduct to truth in the original model.
In Paper III we show that !Loś’s theorem is a consequence of Moerdijk’s theorem.
Ultrapowers are also used for giving non-standard models. In Paper I we show
that Sh(U) can be used to model a non-standard set theory.

One important result in model theory related to our work is the Isomorphism
theorem for ultrapowers (the Keisler-Shelah theorem) which says that for two
elementarily equivalent structures there is an ultrafilter such that the ultrapowers
are isomorphic. It is proved by constructing ultrapowers that are saturated. That
ultrasheaves are saturated is proved in paper III.

2. Preliminaries

In this section we will give some preliminary definitions and results. First we
provide some general preliminaries in categorical logic. Then we give the technical
background directly related to this thesis.

2.1. Preliminaries in categorical logic. We will assume knowledge of the basic
categorical devices such as pullbacks, functors etc. For a detailed presentation, see
Mac Lane and Moerdijk [13] or Johnstone [11].

Let C be a category. A sieve S on an object C in C is a family of morphisms in
C, all with codomain C, such that f ∈ S ⇒ f ◦ g ∈ S, whenever this composition
makes sense. If S is a sieve on C and h : D → C is any arrow to C, then
h∗(S) = {g | cod(g) = D, h ◦ g ∈ S} is a sieve on D.

Definition 2.1. A Grothendieck topology on a category C is a function J which
assigns to each object C in C a collection J(C) of sieves on C in such a way that

(i) the maximal sieve tC = {f | cod(f) = C} is in J(C),
(ii) (stability) if S ∈ J(C), then h∗(S) ∈ J(D) for any arrow h : D → C,
(iii) (transitivity) if S ∈ J(C) and R is any sieve on C such that h∗(R) ∈ J(D)

for all h : D → C in S, then R ∈ J(C).

A site is a pair (C, J), with a category C and a Grothendieck topology J on it.
If S ∈ J(C) one says that S covers C (or that S is a covering sieve).

An example of a site is a topological space X with the usual notion of a cover.
The topology O(X) of X is partially ordered under inclusion. The set (O(X), ⊆)
can be viewed as a category, with objects the open sets U of X, and exactly one
morphism U → V if and only if U ⊆ V . A sieve S on U is now a family of open
subsets of U with the property that V ′ ⊆ V ∈ S implies V ′ ∈ S. A Grothendieck
topology on X is given by saying that S covers U if and only if U is contained in
the union of the sets in S.

Usually on a topological space one describes a cover of U as a family {Ui | i ∈ I}
of open subsets of U such that U =

⋃
Ui. Such a family is not necessarily a sieve,

but it can be used to generate a sieve - namely the collection of all open V ⊆ U
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such that V ⊆ Ui, for some i ∈ I. In a similar way for an arbitrary category C
it is often enough to consider a basis (for a Grothendieck topology) and then use
this basis to generate the covering sieves.

Now we turn our attention to sheaves. Let (C, J) be a site. A presheaf (of sets)
on C is a contravariant functor P : C → Sets, i.e. a functor P : Cop → Sets. If
P is a presheaf and the sieve S covers an object C in C, then a matching family
for S of elements of P is a function which assigns to each element f : D → C in
S an element xf ∈ P (D), in such a way that P (g)(xf) = xf◦g, for all g : E → D
in C. An amalgamation of such a matching family is an element x ∈ P (C) such
that P (f)(x) = xf , for all f ∈ S.

We can now give the definition of a sheaf:

Definition 2.2. A presheaf P on a site (C, J) is a sheaf if every matching family
for any cover of any object of C has a unique amalgamation.

An example of a sheaf on a topological space X (considered as a site as above) is
the functor taking any open subset U to the set of continuous real-valued functions
on U . This functor has the following properties

(i) If f : U → R is continuous and V ⊆ U , then f restricted to V , f |V : V →
R, is continuous.

(ii) If U is covered by open subsets Ui (with i ∈ I), and there are continuous
functions fi : Ui → R such that for every i, j ∈ I we have fi(x) = fj(x),
for x ∈ Ui ∩ Uj , then there is an unique function f : U → R such that
f |Ui = fi.

Property (i) shows that the functor is a presheaf, while (ii) is the sheaf-condition,
with Ui )→ fi as the matching family and f as the unique amalgamation. Property
(ii) above is a variation on the matching condition, for the case when the collection
of Ui is only a basis and not a sieve. All of the above is done only for sheaves
of sets. Other types of sheaves are achieved by replacing the category Sets with
some suitable category.

The category of sheaves on a site (C, J) with natural transformations as mor-
phisms is called a Grothendieck topos, Sh(C, J). A Grothendieck topos has some
very nice properties. Many of these are expressed by saying that it is an elementary
topos (we will often just say topos):

Definition 2.3. A category E is an elementary topos if:

(i) it has all finite limits,

and is equipped with

(ii) a special object Ω,
(iii) a function P , which assigns to each object B of E an object PB of E ,
(iv) for each object A of E two isomorphisms, each natural in A,

SubEA ∼= HomE(A,Ω), (1)

and
HomE(B × A,Ω) ∼= HomE(A, PB). (2)

To be natural in A means that the isomorphisms are functorial with respect to
A. SubEA in (1) is the collection of subobjects of A, i.e. monomorphisms into A.

In the definition the object Ω in (ii) is the subobject classifier and (1) shows
that the subobjects of an object A is internally represented as morphisms from A
to Ω. The function P in (iii) will serve as the power set operator, and from (2)
it follows that PB is the exponential ΩB. Every topos is Cartesian closed since
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the existence of arbitrary exponentials AB can be proved from the existence of the
exponentials on the form ΩB.

The perhaps simplest example of a topos is the category Sets. Here the subob-
ject classifier Ω is the set {0, 1}. Equation (1) says that every subset B of a set A
can be represented as a function from A to {0, 1} (χB(x) = 1, if x ∈ B). If you
put A = {∗} (the one-point set) in equation (2), then you get that functions from
B to {0, 1} (i.e. the subsets of B) can be identified with elements in PB, i.e. PB
is the power set of B.

We now use toposes for mathematical logic. Assume that we have a many-sorted
language L and that we want to interpret the theories over L in a topos E . First
we associate to each sort in the language an object in E . Formulas are interpreted
as subobjects of the product of the objects of the sorts of the free variables of the
formula. As an example, assume that Θ(x, y) is a formula with x of sort X and y
of sort Y as its only free variables. Assume that X is interpreted in E by S and
Y by T . Then Θ(x, y) is interpreted as a subobject, Mx,y(Θ(x, y)) of S × T , i.e. a
monomorphism m : Mx,y(Θ(x, y)) → S × T . This is called the Mitchell-Bénabou
language for E . It is based on the observation that a topos behaves like a “universe
of sets”.

The truth values for a formula are given internally by the subobject classifier,
which in general is not a Boolean but a Heyting algebra. This means that we do
not get the same object back after double negation, and thus the internal logic
in a topos is, in general, intuitionistic. This semantic is called the “Kripke-Joyal
semantics” for a topos, and it is a generalization of the semantics for intuitionistic
logic presented by Kripke.

We will give the semantics for a Grothendieck topos Sh(C,J) (the sheaf seman-
tics). The semantics is expressed in terms of a forcing relation C ! Θ(α), where C
is an object in C, Θ a formula interpreted in the topos, α is an element in X(C)
and X is the sort of the free variable of Θ. We read C ! Θ(α) as “Θ is true for
α at C”. For simplicity of notation, we only consider the case when Θ has one
free variable (we will do this throughout the thesis). Given a sheaf X, an object
C, α ∈ X(C) and a morphism f : D → C we will use α · f as an abbreviation for
X(f)(α).

The sheaf semantics is a simplification of the semantics in a general topos.

Theorem 2.4. For a Grothendieck topology J on C, let X be a sheaf on C and
let Θ(x) and Ψ(x) be formulas in the language of the topos Sh(C, J) where x is a
free variable of sort X. Let C be an object in C and let α ∈ X(C).
Then

(i) C ! Θ(α) ∧ Ψ(α) if and only if C ! Θ(α) and C ! Ψ(α),
(ii) C ! Θ(α) ∨Ψ(α) if and only if there is a covering {fi : Ci → C} such that

for each index i, either Ci ! Θ(α · fi) or Ci ! Ψ(α · fi),
(iii) C ! Θ(α) → Ψ(α) if and only if for all f : D → C, D ! Θ(α · f) implies

D ! Ψ(α · f),
(iv) C ! ¬Θ(α) if and only if for all f : D → C, if D ! Θ(α · f) then the

empty family is a cover of D.

Moreover, if Θ(x, y) is a formula with free variables x and y of sorts X and Y ,
then for α ∈ X(C),

(v) C ! ∃yΘ(α, y) if and only if there are a covering {fi : Ci → C} and
elements {βi ∈ Y (Ci)} such that Ci ! Θ(α · fi, βi) for each index i,
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(vi) C ! ∀yΘ(α, y) if and only if for all f : D → C and all β ∈ Y (D) one has
D ! Θ(α · f, β).

The forcing relation “!” has two additional properties:

(i) (Monotonicity) If C ! Θ(α) and f : D → C then D ! Θ(α · f).
(ii) (Local character) If {fi : Ci → C} is a cover in J such that Ci ! Θ(α · fi)

for all i, then C ! Θ(α).

2.2. Filters and reduced powers. A filter F on a set A is a non-empty col-
lection of subsets of A which is closed under intersections and supersets. We say
that a filter is proper if it does not contain all subsets of A (equivalently if it does
not contain the empty set). A maximal proper filter is called an ultrafilter. These
filters U are distinguished by the property that for any subset B of A, either B
or the complement of B is in U . Assuming the axiom of choice we can prove that
any proper filter can be extended to an ultrafilter.

Given a filter (I,F) and a family of sets {Si | i ∈ I} we can form the reduced
product of the Si over F , ∏

i∈I

Si/F ,

which is the product of the Si quoted out by the equivalence relation

a ∼ b ⇐⇒ {i ∈ I | a(i) = b(i)} ∈ F
for a, b ∈

∏
i∈I Si. If for every i ∈ I we have Si = S then we call the reduced

product for the reduced power of S over F and we will denote it ∗S(F). For an
ultrafilter U we say the ultraproduct and ultrapower over U , respectively.

Let L be a first order language and assume that the sets {Si | i ∈ I} are, in fact,
L-structures. Then we can define an interpretation of L in the reduced product
of the Si. We will denote the interpretation of the constant, relation and function
symbols from L in the reduced product with superscript S. The corresponding
interpretations in Si will be denoted in the same way.

• Constant c: cS = [a], where a(i) = cSi.
• Relation R: RS defined by

[a] ∈ RS ⇐⇒ {i ∈ I | a(i) ∈ RSi} ∈ F .

• Function f : fS([a]) = [b], where b(i) = fSi(a(i)).

Here is the fundamental !Loś’s theorem.

Theorem 2.5. Let (I,U) be an ultrafilter, ϕ(x) an L-formula, {Si | i ∈ I} a family
of L-structures and α ∈

∏
i∈I Si/U . Then

∏

i∈I

Si/U |= ϕS(α) if and only if {i ∈ I |Si |= ϕSi(α(i))} ∈U .

Here is the precise definition of the Rudin-Keisler ordering.

Definition 2.6. If (A,U) and (B,V) are ultrafilters then

U ≤ V ⇐⇒ ∃f : B → A such that U = {X ⊆ A | f−1(X) ∈ V}.

The Rudin-Keisler ordering is a partial ordering on the equivalence classes of
ultrafilters. The ordering is very rich. For instance, assuming the generalized
continuum hypothesis it can be shown that there are 22κ

non-equivalent ultrafilters
greater than or equal to any given ultrafilter U on an infinite set A with |A| = κ
(for a proof see Comfort and Negrepontis [6, Chapter 9]).
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In his thesis [2], Blass proved the following model theoretic characterization of
the Rudin-Keisler ordering.

Theorem 2.7. If U and V are ultrafilters then U ≤ V if and only if for every
L-structure S there is an elementary embedding ∗S(U) ≺ ∗S(V).

2.3. The category F. In his paper [3], Blass gives the following definition of the
category of filters:

Definition 2.8. The category F has as objects pairs (A,F), where A is a set and
F a filter on A. The morphisms α : (A,F) → (B,G) are equivalence classes of
partial functions α : A → B such that

(i) α is defined on some F ∈ F ,
(ii) α−1(G) ∈ F , for all G ∈ G.

Two such partial functions α : F → B and α′ : F ′ → B are equivalent if there is
E ⊆ F ∩ F ′ in F such that α|E = α′|E.

Koubek and Reiterman’s category has the same objects but the morphisms are
equivalence classes of total functions. The proposition below is from Koubek and
Reiterman [12].

Proposition 2.9. For any morphism α : F → G we have:

(i) α is mono if and only if there is an F ∈ F such that α is injective on F ,
(ii) α is epi if and only if α(F ) ∈ G, for all F ∈ F .

We also note that the definition of F gives that the reduced power of a set S
over a filter F is equal to the set of morphisms from F to the trivial filter (S, {S}),
i.e.

∗S(F) = HomF(F , (S, {S})).

2.4. The topos Sh(F). Moerdijk [15] defined a Grothendieck topology J on F
as follows:

Definition 2.10. A finite family {αi : Gi → F}n
i=1 is a J-covering if the induced

map

G1 + . . . + Gn → F
is an epimorphism.

Moerdijk only considered filters on the natural numbers. When Palmgren later
extended the model to nonstandard analysis he introduced a universe of sets into
set theory, e.g. Vκ, where κ is an inaccessible cardinal, and then considered filters
on the small sets in Vκ.

Over the resulting site Moerdijk studied, in particular, the representable sheaves
of the form ∗S = HomF(−, (S, {S})). From the observation above we see that this
notation is justified, since, for any filterF , HomF(F , (S, {S})) is the reduced power
of S over F .

We now turn our interest to the internal logic of the topos Sh(F). Let L be a
first order language and S an L-structure. Let ∗S, the ∗( )-transform of S, be the
L-structure in Sh(F) defined as follows:

• Set S: ∗S is the sheaf previously defined.
• Constant c: ∗c is given at F by the constant function

λx.cS ∈ ∗S(F).
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• Relation R ⊆ S: ∗R is the subsheaf of ∗S given at F by

α ∈ ∗R(F) ⇐⇒ (∃F ∈ F)(∀x ∈ F )α(x) ∈ RS.

• Function f : T → S: ∗f is the natural transformation from ∗T to ∗S given
at F by

∗fF(α) = λx.fS(α(x)).

We also define the predicate St (for standard element) on ∗S for an α ∈ ∗S(F):

• St(α) if and only if there is a cover {βi : Gi → F}n
i=1 such that for each i,

α ◦ βi is constant on some G ∈ Gi.

Thus every L-structure S (in Sets) gives rise to an L ∪ {St}-structure ∗S in
Sh(F). Given an L-formula ϕ we will denote the interpretation of ϕ in ∗S by ∗ϕ

∗S.
When not necessary the superscript will be omitted.

The fundamental result for Sh(F) is Moerdijk’s theorem.

Theorem 2.11. Let F be a filter, ϕ an L-formula and α ∈ ∗S(F). Then

F ! ∗ϕ(α) if and only if (∃F ∈ F)(∀x ∈ F )ϕ(α(x)).

3. Results in Paper I

In this paper we introduce and investigate the topos of sheaves on the category
of ultrafilters, the ultrasheaves. We denote the full subcategory of ultrafilters in F
by U.

First we note that the category U is not a very nice category, for instance it
does not have products. In general, the product filter (in F) of two ultrafilters
is not an ultrafilter. Since U has a terminal object this also means that it is not
closed under pullbacks either.

We get some help in studying U from its close relation to the Rudin-Keisler
ordering. We show that:

Proposition 3.1. For any two ultrafilters U and V we have that:

U ≤ V ⇐⇒ there is a morphism α : V → U in U.

We will consider U with the Grothendieck topology induced on U from (F, J).
We show that any morphism in U is epi. So any morphism in U is a J-covering.
Thus the topology induced on U is the atomic topology where any set of morphisms
with codomain U is a covering of U . We can now prove that all representable
sheaves on F are still sheaves when restricted to U. Thus the ∗S are ultrasheaves.

For any first order language L we introduce an interpretation of L in Sh(U) via
the ∗( )-transform just as we did for Sh(F). Thus, as before, every L-structure
S (in Sets) gives rise to an L ∪ {St}-structure ∗S in Sh(U). We have the usual
interpretation of the logical symbols in the Grothendieck topos. Below we give
the sheaf semantics for Sh(U).

Theorem 3.2. Let U be an ultrafilter, Θ and Ψ arbitrary formulas and α ∈ ∗T (U).
Then

(i) U ! Θ(α) ∧ Ψ(α) if and only if U ! Θ(α) and U ! Ψ(α),
(ii) U ! Θ(α) ∨ Ψ(α) if and only if U ! Θ(α) or U ! Ψ(α),
(iii) U ! Θ(α) → Ψ(α) if and only if U ! Θ(α) implies U ! Ψ(α),
(iv) U ! ¬Θ(α) if and only if U 6! Θ(α),
(v) U ! (∃x ∈ ∗S)Θ(α, x) if and only if for some β : V → U and δ ∈ ∗S(V)

V ! Θ(α ◦ β, δ),
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(vi) U ! (∀x ∈ ∗S)Θ(α, y) if and only if for all β : V → U and δ ∈ ∗S(V)

V ! Θ(α ◦ β, δ).

As is evident in the theorem above, the internal logic in Sh(U) is classical, i.e.
the topos is Boolean.

The fundamental theorem for ultrasheaves is Moerdijk’s theorem which also
holds in Sh(U).

Theorem 3.3. Let U be an ultrafilter, ϕ an L-formula and α ∈ ∗S(U). Then

U ! ∗ϕ(α) if and only if (∃U ∈ U)(∀x ∈ U)ϕ(α(x)).

From this we obtain the nice corollary:

Corollary 3.4. ∗S(U) |= ∗ϕ(α) ⇐⇒ U ! ∗ϕ
∗S(α).

From this corollary, the model theoretic characterization of the Rudin-Keisler
ordering and the monotonicity and local character of the forcing relation we get a
new proof of Blass’ theorem. We also show that the corollary can not be strength-
ened to hold for formulas containing the standard predicate.

In general, one says that a topos E satisfies the axiom of choice if every object
P in E is projective, i.e. for any epimorphism η : X → P there is a morphism
σ : P → X such that η ◦ σ = 1.

Theorem 3.5. The topos theoretic axiom of choice does not hold in Sh(U).

The paper concludes by showing that Sh(U) contains a model of Nelson’s inter-
nal set theory (IST) [16]. IST consists of Zermelo-Fraenkel set theory expanded
with a predicate St(x) and three additional axioms: transfer (T), idealization (I)
and standardization (S). Let V be a set-theoretic universe and consider only for-
mulas in the language consisting of ∗∈, ∗= and St

∗V . Below we give the formulation
of the axioms for IST in ∗V .

We will use the usual abbreviation (∀stx ∈ ∗S) . . . for (∀x ∈ ∗S) St(x) → . . ..

Theorem 3.6 (Transfer). Let ϕ(x, y) be an L-formula with x, y as its only free
variables. Then the following is true in the internal logic of Sh(U):

(∀stx1 ∈ ∗T1) . . . (∀stxn ∈ ∗Tn)[(∀sty ∈ ∗S)∗ϕ(x, y) → (∀y ∈ ∗S)∗ϕ(x, y)].

Theorem 3.7 (Idealization). Let ϕ(x, y, z) be an L-formula and ∗R a sheaf in
Sh(U). Then the following is true for any U ∈ U: if, for all finite sets S =
{s1, . . . , sn} ⊆ R we have

U ! (∃x ∈ ∗T )(
n∧

i=1

∗ϕ(x, ∗si,α))

then
U ! (∃x ∈ ∗T )(∀sty ∈ ∗R) ∗ϕ(x, y,α).

This idealization principle is proved by Palmgren [18] for Sh(F).

Theorem 3.8 (Standardization). Let ϕ(x, y) be an L-formula and ∗S a sheaf in
Sh(U). Then there exists a subsheaf ∗T of ∗S such that at any ultrafilter U

U ! ∀stz (z ∈ ∗T ↔ z ∈ ∗S ∧ ϕ(z,α)).

Standardization is a restricted version of a separation axiom. It is not full sep-
aration since the condition on the elements in ∗T only holds true for the standard
elements in ∗T .
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4. Results in Paper II

In this paper we give an exact characterization of the relation between Sh(F)
and Sh(U). Following Moerdijk’s suggestion we prove that Sh(U) is the double
negation subtopos of Sh(F).

Given an (intuitionistic) logic one can force it to become classical by adding
the law of excluded middle to the assumptions. For a topos of sheaves there is a
corresponding transformation, namely by adding the double negation topology to
the underlying site. Not all of the original sheaves will be sheaves with respect to
the new topology, but the internal logic in the resulting topos of sheaves will be
classical.

The main theorem of the paper is

Theorem 4.1. Sh(U) is equivalent to the double negation subtopos of Sh(F).

In order to prove the theorem we introduce the topos Sh(F, J∞) by defining a
new topology J∞ on F.

Definition 4.2. A basis for the J∞-topology are small families {αi : Fi → F}i∈I

(for any set I) such that the induced morphism
∐

i∈I

Fi → F

is epic.

From Blass [3] we know that the category F has all coproducts. Now we can
prove:

Theorem 4.3. Sh(U) ∼= Sh(F, J∞).

The second step in the proof of the main theorem is:

Theorem 4.4. A presheaf F is in Sh¬¬(F, J) if and only if it is in Sh(F, J∞).

We close the paper by showing how the main theorem can be used to transfer
the truth of formulas between the toposes Sh(U) of ultrasheaves and Sh(F) of
sheaves on filters.

Theorem 4.5. Let Θ(α) be a first order formula with a free variable of a sort
interpreted as an ultrasheaf F . Then, if Θ(α) is true in Sh(U), its double negation
translation Θ′(α) is true in Sh(F).

Theorem 4.6. Let Θ(α) be a first order formula with a free variable of a sort
interpreted as an ultrasheaf F . Assume, moreover, that Θ(α) is without universal
quantifiers and has double negation stable predicates. If Θ(α) is true in Sh(F) then
Θ(α) is also true in Sh(U).

5. Results in Paper III

This paper contains some results on the relation between ultrasheaves and the
corresponding ultrapowers. There are also some results on model theoretic aspects
of ultrasheaves.

Two L-structures S and T give rise to two interpretations of the language L
in the topos Sh(U), the sheaves ∗S and ∗T . In the paper we show that the ∗( )–
transform preserves elementary equivalence with respect to L, L-homomorphisms,
L-embeddings and L-isomorphisms.
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We show that !Loś’s theorem can be derived from Moerdijk’s theorem. We do
it by showing, without using !Loś’s theorem, that the left- and righthand sides of
the two theorems are equivalent.

In Paper I we gave an example that the equivalence
∗S(U) |= ∗ϕ(α) ⇐⇒ U ! ∗ϕ

∗S(α)

does not hold at the trivial ultrafilter 1 for all L ∪ {St}-formulas Θ(α). In this
paper we show that for any non-trivial ultrafilter there is a L∪{St}-formula Θ(x)
such that the equivalence fails for Θ(x).

In general the collection of elements of the form α ∈ ∗S(U) (that is the coproduct∐
U∈U

∗S(U)) is not a small set. However, if you restrict yourself to distinct free
variables of the sort ∗S in Sh(U) they do form a small set.

Definition 5.1. Given an ultrasheaf ∗S, define an equivalence relation on the
coproduct

∐
U∈U

∗S(U) by saying that two elements α ∈ ∗S(U) and β ∈ ∗S(V) are
equivalent (we write α ∼ β) if there are γ : W → U and δ : W → V such that the
following diagram commutes

W
δ ! V

U

γ

"

α
! S

β

"

The relation to distinct free variables of the sort ∗S is this: for any formula Θ(x)
with a free variable of sort ∗S, and any ultrafilter U we have for α, β ∈ ∗S(U) that,
if α ∼ β then

U ! Θ(α) ↔ Θ(β).

Then we prove:

Theorem 5.2. ∗S/∼ is a small set.

The last result in the paper is that every ultrasheaf ∗S is saturated, i.e. that
any set of formulas with a small set of free variables that is finitely satisfiable in
∗S, is satisfiable in ∗S.

Theorem 5.3. Let {ϕi(x, y) | i ∈ I} be a set of L-formulas such that the set of
free variables is small.

Then the following is true for any U ∈ U: if, for every finite subset I0 ⊆ I and
any α ∈ ∗S(U)

U ! (∃x ∈ ∗S)
∧

i∈I0

∗ϕi(x,α)

then there is a cover β : V → U and an element δ ∈ ∗S(V) such that for every
i ∈ I

V ! ∗ϕi(δ,α ◦ β).

6. Future research

Here we give some examples of different ways in which the study of the ultra-
sheaves could progress.

From the saturation of the ultrasheaves proved in Paper III one should study
the possibility to prove something like the Isomorphism theorem for ultrapowers.
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Because of the saturation it should also be profitable to study types of models S
and their realizations in Sh(U).

The set of distinct free variables introduced in Paper III is in fact the colimit
of the ultrasheaf ∗S over U. This construction could be further explored, perhaps
proving that a formula is satisfied in the colimit if and only if it is forced (in the
topos) at some ultrafilter.

Looking at slices of Sh(F) over trivial filters (I, {I}), one can define reduced
product-sheaves for families Si, i ∈ I, and attempt to extend Moerdijk’s theorem
to this situation. One should then show that the reduced product-sheaf for a
constant family of Si is equal to a sheaf in Sh(F). One motivation for looking
at this is to compare it with Ellerman’s sheaves on Stone spaces. It seems that
the exact relationship to Ellerman’s work is that there is a connected covering of
Ellerman’s topos by the topos of reduced product-sheaves.

Another way of continuing the research would be to look for more new proofs of
classic results on ultrapowers. In the thesis we have the new proofs of !Loś’s and
Blass’ theorems, in Paper III and I respectively, as examples. The interest in this
would lie in showing that viewing ultrapowers as sheaves is “natural” and that
definitions and results fit naturally into the sheaf-theoretic language. Perhaps one
could also hope to prove some new model-theoretic results this way.

As proved in Paper I, we know that Sh(U) models IST. But could we describe
the theory of Sh(U) in more detail, perhaps even finding axioms for it? One of
the problems of working in Sh(F) is that you do not have a “standard part”-map.
Could such a map be found internally in Sh(U)?

In my work so far, I have always started out in set theory (a set theory strong
enough to prove the existence of ultrafilters). Perhaps this is not necessary. You
could start working with filters over some more general category. Some related
work has been done by Butz [4] based on the filter construction of Pitts [21].

In his original article, Moerdijk remarks that Sh(F) by Deligne’s theorem has
“enough” points, and asks for an explicit description of these. Perhaps this ques-
tion could be answered more easily with the help of the double negation subtopos
Sh(U)?

Acknowledgements

I would like to thank my different supervisors Viggo Stoltenberg-Hansen, Steve
Awodey and Erik Palmgren for the time and energy they have invested in my
work.

I would like to thank everyone at the Department of Mathematics in Uppsala
and in the Stockholm-Uppsala Logic seminar. I would like to thank all former and
current Ph.D. students in Uppsala.

I would like to thank everyone at CMU for making my stay there so successful
and pleasant. Jeremy Avigad and James W Cummings for interesting discussions,
Jackie, Jan and Renee for helping me get adjusted so easily, and Henrik, Giacomo,
Dirk and the rest of the grad. students for making me feel so welcome.

Jag vill tacka alla mina vänner i Uppsala, Olov, Frida, Magnus, Marcus, Ullis,
Richard, Elisabet, Maria och alla andra, för att ni hjälpt till att göra min tid i
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