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MARTIN-LÖF COMPLEXES

S. AWODEY, P. HOFSTRA, AND M. A. WARREN

Dedicated to Per Martin-Löf on the occasion of his retirement.

Abstract. In this paper we define Martin-Löf complexes to be algebras for
monads on the category of (reflexive) globular sets which freely add cells in
accordance with the rules of intensional Martin-Löf type theory. We then
study the resulting categories of algebras for several theories. Our principal
result is that there exists a cofibrantly generated Quillen model structure on

the category of 1-truncated Martin-Löf complexes and that this category is
Quillen equivalent to the category of groupoids. In particular, 1-truncated
Martin-Löf complexes are a model of homotopy 1-types. In order to establish
these facts we give a proof-theoretic analysis, using a modified version of Tait’s
logical predicates argument, of the propositional equality classes of terms of
identity type in the 1-truncated theory.
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1. Introduction

This paper pursues a surprising connection between Geometry, Algebra, and
Logic that has only recently come to light, in the form of an interpretation of
the constructive type theory of Martin-Löf into homotopy theory, resulting in new
examples of certain algebraic structures which are important in topology. This
fascinating connection is currently under investigation from several different per-
spectives ([1, 20, 6, 13, 3, 5]), and these preliminary results confirm the significance
of the link. Some of these results will be surveyed in this brief introduction in order
to position the present work in its context; especially for the reader coming from
one field or the other, a brief summary is given of the essential concepts from the
different subjects involved.

Martin-Löf type theory [14] is a formal system originally intended to provide
a rigorous framework in which to develop constructive mathematics. At heart,
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it is a calculus for reasoning about dependent types and terms, and equality be-
tween those. Under the Curry-Howard correspondence, one may identify types
with propositions, and terms with proofs. Viewed in this manner, the system
can be shown to be at least as strong as second-order logic, and it is also known
to interpret constructive set theory. Indeed, Martin-Löf type theory has been used
successfully to formalize parts of constructive mathematics, such as pointless topol-
ogy (constructive locale theory). Moreover, it has been employed as a framework
for the development of programming languages as well, a task for which it is espe-
cially well-suited in virtue of its combination of expressive strength and desirable
proof-theoretic properties. (See the textbook [15] for a discussion.)

The type theory has two variants: an intensional, and an extensional version.
The difference between them lies mainly in the treatment of equality. In the inten-
sional version (with which we are mainly concerned in the present work), one has
two different kinds of equality: the first kind is called definitional equality, and
behaves much like equality between terms in the simply-typed lambda-calculus, or
any other conventional equational theory. The second kind is a more subtle relation,
called propositional equality, which, under the Curry-Howard correspondence,
represents the equality formulas of first-order logic. Specifically, given two terms
a, b of the same type A, one may form a new type IdA(a, b), which we think of as
the proposition that a and b are equal; a term of this type thus represents a proof
of the proposition that a equals b (hence the name “propositional equality”).

When a and b are definitially equal, then (since they can be freely substituted for
each other) they are also propositionally equal, in the sense that the type IdA(a, b)
is inhabited by a term; but the converse is generally not true, at least in the
intensional version of the theory. In the extensional version, by contrast, the two
notions of equality are forced by an additional rule to coincide. As a consequence,
the extensional version of the theory is essentially a dependent type theory with a
standard, extensional equality relation. As is well-known, however, the price one
pays for this simplification is a loss of desirable proof-theoretic properties, such as
strong normalization and decidable equality of terms.

In the intensional version with which we shall be concerned here, it can be shown
that the identity types IdA(a, b) satisfy certain conditions which were observed by
Hofmann and Streicher in [8] to be analogous to the groupoid laws. Specifically, the
posited reflexivity of propositional equality produces identity proofs r(a) : IdA(a, a)
for any term a : A, playing the role of a unit arrow for a; and when f : IdA(a, b) is an
identity proof, then (corresponding to the symmetry of identity) there also exists a
proof f−1 : IdA(b, a), to be thought of as the inverse of f ; finally, when f : IdA(a, b)
and g : IdA(b, c) are identity proofs, then (corresponding to transitivity) there is
a new proof (g · f) : IdA(a, c), thought of as the composite of f and g. Moreover,
this structure on each type A can be shown to satisfy the usual groupoid laws, but
only up to propositional equality. We shall return to this point below.

1.1. Groupoid semantics. A good notion of a model for the extensional theory
is due to Seely [16], who showed that one can interpret type dependency in locally
cartesian closed categories in a very natural way. (There are certain coherence
issues related to this semantics, prompting a later refinement, but this need not
concern us here.) Of course, intensional type theory may also be interpreted this
way in lcccs, but then the interpretation of the identity types necessarily becomes
trivial.
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The first non-trivial semantics for intensional type theory were developed by
Hofmann and Streicher [8] using groupoids, which are categories in which every
arrow is an isomorphism. The category of groupoids is not locally cartesian closed,
and the model employs certain fibrations (equivalently, groupoid-valued functors)
to model type dependency. Intuitively, the identity type over a groupoid G is
interpreted as the groupoid of arrows G→ → G × G, so that an identity proof
f : IdA(a, b) becomes an arrow f : a → b in G. The interpretation no longer
validates extensionality, since there can be different elements a, b related by non-
identity arrows f : a→ b. Indeed, there may be many different such arrows f, g, · · · :
a → b ; however, unlike in the type theory, these cannot in turn be further related
by identity terms of higher type ϑ : IdIdA

(f, g), since a (conventional) groupoid has
no non-trivial higher-dimensional structure. Thus the groupoid semantics validates
a certain truncation principle, stating that all higher identity types are trivial—a
form of extensionality one dimension up. In particular, the groupoid laws for the
identity types are strictly satisfied in these models, rather than holding only up to
propositional equality.

This situation has led to the use of the higher-dimensional analogues of groupoids,
as formulated in category theory, in order to provide models admitting non-trivial
higher identity types. Such higher groupoids have been studied extensively in homo-
topy theory in recent years, since they occur naturally as the (higher) fundamental
groupoids of spaces (see below). In this direction, Warren [20] has generalized the
groupoid model of [8] to strict ω-groupoids, thereby showing that the type the-
ory truly possesses non-trivial higher-dimensional structure. Along similar lines,
Garner [6] has used a 2-dimensional notion of fibration to model intensional type
theory, and shown that when various truncation axioms are added the theory is
sound and complete with respect to this semantics.

1.2. Homotopy theory. In homotopy theory one is concerned with spaces and
continuous mappings up to homotopy; a homotopy between continuous maps f, g :
X → Y is a continuous map ϑ : X × [0, 1] → Y satisfying ϑ(x, 0) = f(x) and
ϑ(x, 1) = g(x). Such a homotopy ϑ can be thought of as a “continuous deforma-
tion” of f into g, determining a higher-dimensional arrow ϑ : f → g. As already
suggested, one also considers homotopies between homotopies, referred to as higher
homotopies. Algebraic invariants, such as homology or the fundamental group, are
homotopy-invariant, in that any two spaces which are homotopy-equivalent must
have the same invariants.

When we consider a space X , the paths in X , the homotopies between paths,
and all higher homotopies, we obtain a structure called the fundamental weak
ω-groupoid of X . We can truncate this structure by considering only paths up to
homotopy, and this yields the usual fundamental groupoid of the space. This trun-
cation is evidently analogous to adding to our type theory axioms of extensionality
above the first identity type. Indeed, this is more than a mere analogy: these con-
structions, including the basic assignment of fundamental groupoids to objects, are
special cases of a common, general construction that can be described abstractly
in axiomatic homotopy theory. The central concept is that of a Quillen model
category, which captures axiomatically some of the essential features of homo-
topy of topological spaces, enabling us to “do homotopy” in different mathematical
settings, and to express the fact that two categories carry the same homotopical
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information, even if they are not equivalent in the ordinary sense. The basic re-
sult of Awodey and Warren in [1] (see also [20]) is that it is possible to model the
type theory in any Quillen model category which is well-behaved in certain ways
(essentially using just the basic notion of a weak factorization system). In this
interpretation, one uses path objects to model identity types in a non-trivial way,
recovering the groupoid model as a special case. This suggests that intensional
type theories are a sort of internal language of (certain kinds of) model categories.
Indeed, in [5] it is shown that the type theory itself carries a natural such homotopy
structure (i.e. a weak factorization system), so that the theory is not only sound
but also complete with respect to such abstract homotopical semantics.

Thus we are justified in thinking of types in the intensional theory as spaces.
From this point of view, the terms of the type A are the points of the “space” A, the
identity type IdA(a, b) represents the collection of paths from a to b, and the higher
identities are homotopies between paths, homotopies between homotopies of paths,
et cetera. The fact that paths and homotopies do not form a groupoid, but only
a groupoid up to homotopy, is of course precisely the same observation as the fact
that the identity types only satisfy the groupoid laws up to propositional equality.
This parallel between type theory and homotopy theory, which was first pointed
out by Moerdijk a few years ago, has now been made precise by the recognition
that both cases are instances of one and the same abstract axiomatic theory.

In particular, it has been shown independently by Lumsdaine [13] and Van den
Berg and Garner [3] that the tower of identity types over any fixed base type A in
the intensional theory indeed gives rise to a certain infinite dimensional categori-
cal structure called a weak ω-groupoid. In fact, something apparently stronger is
shown, namely that at every type the type theory already hosts an internal model
of such a higher category. The next step in exploring the connection between type
theory and topology is to investigate the relationship between type theoretic “trun-
cation” (i.e. higher-dimensional extentionality principles) and topological “trunca-
tion” of the higher fundamental groups. Spaces for which the homotopy type is
already completely determined by the fundamental groupoid are called homotopy
1-types, or simply 1-types. More generally, one has n-types, which are thought
of as spaces which have no homotopical information above dimension n. One of
the goals of homotopy theory is to obtain good models of homotopy n-types. For
example, the category of groupoids is Quillen equivalent to the category of 1-types
and therefore the corresponding homotopy categories (obtained by inverting weak
equivalences) are equivalent; in this precise sense, groupoids are said to model ho-
motopy 1-types (for more on homotopy types see [2]).

1.3. Contributions of this paper. The current paper aims at further investiga-
tion of the relationship between type theory and homotopy theory, but in a way
that is somewhat different than the work already mentioned. First of all, our ob-
jective is not to give a new semantics, although it will become apparent that in fact
implicitly we do obtain a possibility of having one. Secondly, we are not mainly
interested in the possibility of obtaining higher-dimensional structures from type
theories. Rather, we are interested in understanding the limitations of this process.
Thirdly, we wish to make another connection between model categories and type
theory, namely by showing that a category of suitably truncated type theories gives
a model of the homotopy 1-types. It is our hope that this picture can then be
extended to higher dimensions.
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Our first goal is to show how every extension of type theory gives rise to a
monad on the category of globular sets. Intuitively, the monad associated to a
theory freely adds cells to a globular set in accordance with the rules of the type
theory. For example, the monad will formally add composites and inverses for all
cells of the globular set; however, even in dimension 0 it adds much more than just
these formal composites; it also produces a plethora of new cells which we here call
doppelgängers. For every such monad we may consider its category of algebras:
these we refer to as Martin-Löf complexes (or ML-complexes), and these are
the main objects of study of the paper.

The theories which we shall consider arise from basic intensional Martin-Löf type
theory having dependent sums and products as well as a natural numbers object.
(The latter plays no conceptual role in this paper but because of its importance in
virtually every application of the theory to mathematics and computer science we
thought it important to show that our results are not affected by its presence.) We
shall then consider extensions of this basic theory obtained by adding truncation
axioms, which effectively trivialize the higher identity types above a fixed dimension.
Using these theories we get a hierarchy of categories of Martin-Löf complexes, and
in this paper we shall investigate the first two dimensions in detail.

The 0-dimensional case is relatively straightforward — we shall prove here that
the monad on globular sets is idempotent and is in fact isomorphic to the con-
nected components functor, so that its category of algebras (the 0-dimensional
ML-complexes) is simply the category of sets.

Matters become more interesting in dimension 1. Towards an analysis of 1-
dimensional ML-complexes we first observe, using the Hofmann-Streicher groupoid
semantics, that every ML-complex has an underlying groupoid, and that there is
a canonical comparison functor between the underlying groupoid of a free ML-
complex and the free groupoid on the same globular set. This functor is not an
isomorphism of groupoids, because the free ML-complex is, intuitively speaking,
much larger due to all the doppelgängers produced by the theory. The main tech-
nical difficulty then is to prove that there is still an equivalence of groupoids between
the two. To this end, we employ a Tait-style computability predicate argument [19],
which allows us to prove that every term of the theory represents, up to proposi-
tional equality, an object or morphism of the free groupoid. This essentially shows
that even though the theory forces the existence of many more objects and arrows
than needed to form the free groupoid, it does not force anything which is undesir-
able from a homotopical point of view. The proof also relies on a careful analysis of
elimination terms for identity types, and in particular exploits the idea of identity
types acting on contexts.

Once this key result is in place, we turn to an analysis of the category of 1-
dimensional ML-complexes as a whole. To start, we set up an adjunction between
this category and the category of groupoids. This adjunction is not an equivalence:
a ML-complex structure on a globular set carries essentially more information than
a groupoid structure. We can, however, make use of the adjunction by transferring
along it the standard Quillen model structure on the category of groupoids [11],
turning the category of 1-dimensional ML-complexes into a cofibrantly generated
model category. Doing so requires a detailed analysis of colimits in the category
of ML-complexes, and to this end we adopt a more model-theoretic perspective,
viewing ML-complexes as “classifying complexes” for their own internal language.
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This allows us to regard instead the category of theories and compute colimits there,
which is technically easier.

Finally, we prove that the adjunction between groupoids and 1-dimensional ML-
complexes is in fact a Quillen equivalence. Because the categories of groupoids
and that of homotopy 1-types are Quillen equivalent, this makes precise in which
sense the 1-truncated version of the type theory models homotopy 1-types. It
also explains why the groupoid semantics is adequate from a homotopical point of
view, but is still incomplete because it lacks the possibility (which is present in
ML-complexes) of handling different interpretations for doppelgänger terms.

1.4. Plan of the paper. In Section 2 we recall the basics of Martin-Löf type
theory as well as several facts about globular sets which will be required later. We
also fix notation (some of which is non-standard). The reader who is familiar with
this material should feel free to skip ahead. Section 3 describes the construction of
monads on the category of reflexive globular sets coming from type theories. We
then define the categories MLCx and MLCxn of Martin-Löf complexes and n-
truncated Martin-Löf complexes as the Eilenberg-Moore categories of the monads
Tω and Tn, respectively, generated by suitable theories.

In Section 4 we study 0-truncated Martin-Löf complexes. In particular, we show
that the category MLCx0 is equivalent to the category of sets and, moreover, that
if X is a reflexive globular set, then T0(X) is the set of connected components of
X . Even the proofs of these eminently plausible results are a bit more subtle than
one might at first expect and their discussion in Section 4 serves as a reasonable
“warm-up” for the later sections. One of the principal difficulties one faces when
proving results about Martin-Löf complexes is that the type theory also adds, in
addition to composition and inverses, the doppelgänger terms mentioned earlier.
In our analysis of MLCx0 then it is necessary to develop techniques for proving
that such terms are essentially harmless. The principal technique, introduced in
Section 4, we employ is a modified version of the Tait-style [19] logical-predicates
argument. Section 5 begins with a proof that every 1-truncated Martin-Löf com-
plex can be equipped with the structure of a groupoid. We then explicitly introduce
the modified logical-predicates technique, called here the method of relevant types
and terms, and developing several of the technical results on it which are required
later. The basic idea behind this approach is that the relevant terms of identity
type should be representatives of elements of the free groupoid on the underlying
reflexive globular set and the principal result (Proposition 5.13) is that all terms of
appropriate type are propositionally equal to relevant terms. The proof of Propo-
sition 5.13 relies in particular on an analysis, up to propositional equality, of the
elimination “J-terms” for identity types via the action of maps {0, 1} → {0, 1}
on those contexts which depend on identity types. This analysis is given in Sec-
tions 5.4 and 5.7. An immediate consequence of Proposition 5.13 is that the free
groupoid F(G) on a reflexive globular set is equivalent to the induced groupoid
structure on T1(G). This is Theorem 5.14. Finally, in Section 6 we develop the
general categorical properties of the category MLCx1. In particular we prove as
Theorem 6.22 that MLCx1 is a bicomplete category with a Quillen closed model
structure. This model structure is obtained via an adjunction with the category
of groupoids via Crans’s Transfer Theorem [4]. Finally, we have, using our earlier
results on relevant terms, that the adjunction between MLCx1 and the category
of groupoids is a Quillen equivalence (Corollary 6.23).



8 S. AWODEY, P. HOFSTRA, AND M. A. WARREN

Acknowledgements. We thank Phil Scott for suggesting a simplification to the
logical predicates argument given in Section 5. We also thank Nicola Gambino,
Peter L. Lumsdaine and Thomas Streicher for useful discussions of some of the
ideas in this paper.

2. Background

The purpose of this section is to provide the reader with a brief introduction to
Martin-Löf type theory. We begin by giving a quick exposition of the main features
of the most basic version of the theory we shall be concerned with. In particular
we explain the different kinds of judgements of the system, dependent products
and sums, identity types and the notion of propositional equality. We also use this
as an opportunity to fix some notation and terminology, in particular concerning
identity types.

We assume that the reader is somewhat familiar with at least simple type theory.
For more background on (dependent) type theory we refer to the textbook [10]. The
reader who is more familiar with higher-dimensional category theory or homotopy
theory might also consult [1] for a “homotopical” view of type theory.

In the last subsection we introduce the basic categorical structures used in the
paper, namely globular sets. A more detailed exposition of globular sets may be
found in [17], or the textbook [12].

2.1. Type dependency, contexts and judgements. Type dependency means
that types may depend on variables of other types; for example one can has a type
T (x) depending on a variable x of type S. Such a type T (x) is often thought of as
being indexed by the type S. To illustrate this, suppose that we let S denote the
type of rings; then the type T (x) of modules depends on, or varies over, the type
of rings.

One may then substitute a term a of type S into the type T (x), as to obtain a
new type T (a). In the above example, T (a) would be the type of modules over the
ring a.

The fact that types may depend on terms has two obvious consequences: first,
one can no longer, as in simple type theory, separate the formation of types and that
of terms into two inductive defitions; rather, types and terms are derived simulta-
neously. Second, the notion of a variable context also needs to take dependency
into account. Explicitly, this means that a variable context Γ is now an ordered
sequence of variable declarations Γ = (x1 : T1, . . . , xk : Tk), where each type Ti may
only depend on the variables declared earlier, i.e. on x1, . . . , xi−1. For example,

x : S, y : S, z : T (x), v : R(x, y, z)

is a legitimate variable context, but

x : S, y : s, v : R(x, y, z), z : T (x)

is not, because of the fact that R depends on z, which hasn’t been declared yet.
Throughout, we shall always assume that contexts are well-formed in this sense.

Thus the theory is concerned with types and terms in context, and with equal-
ities between such types and terms. Formally, statements about these are called
judgements, and these come in four kinds:

Γ ⊢ T : type
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This judgement states that T is a type, possibly depending on the variables declared
in the context Γ.

Γ ⊢ τ : T

This judgement states that τ is a term of type T , where both τ and the type T
may depend on the variables from Γ.

Γ ⊢ T = S : type

This judgement states that T and S are (definitionally) equal types.

Γ ⊢ τ = τ ′ : T

This judgement states that τ and τ ′ are (definitionally) equal terms of type T .
In the theory, such judgements are derived from axioms using inference rules.

These derivations (which may formally be regarded as finite trees suitably labelled
by judgements and inference rules) are the main objects of study. Below we shall
discuss several of the rules which may be used to derive new judgements from old;
the axioms typically include judgements stating the existence of certain basic types
and terms.

When the context plays no role in a judgement or rule of the theory, we shall
usually omit it altogether.

2.2. Definitional equality. The notion of equality here is the standard one, but
often the qualifier definitional is used to distinguish it from the different notion
of propositional equality, to be discussed below. The rules governing the behaviour
of definitional equality are as expected. Apart from the rules expressing that defi-
nitional equality is an equivalence relation, there are rules which force that it is a
congruence with respect to substitution into types and terms:

⊢ a = b : A x : A ⊢ B(x) : type

⊢ B(a) = B(b) : type

⊢ a = b : A x : A ⊢ f(x) : B(x)

⊢ f(a) = f(b) : B(a)

⊢ A = B : type ⊢ a : A

⊢ a : B

The first rule states that substituting equal terms into a type results in equal types;
the second states the same, but now for substitution into terms; the last rule states
that equal types are inhabited by the same terms. A complete set of rules for
definitional equality may be found in the appendix.

2.3. Dependent products and sums. There are several ways to construct new
types from old. For each new type one specifies three things: an introduction
rule which generates new terms of the type; an elimination rule which shows how
general terms of the new type may be used; and a conversion rule which governs
the interaction between the two.

We now discuss the formation of dependent products and sums. Given a type
B(x) depending on a variable x of type A, we may form the type

∏

x:AB(x), to be
thought of as the type of sections of B(x) over A. The rules are as follows:

x : A ⊢ B(x) : type ∏

formation
⊢

∏

x:AB(x) : type
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x : A ⊢ f(x) : B(x) ∏

introduction
⊢ λx:A.f(x) :

∏

x:AB(x)

⊢ f :
∏

x:AB(x) ⊢ a : A ∏

elimination
⊢ app(f, a) : B(a)

⊢ λx:A.f(x) :
∏

x:AB(x) ⊢ a : A ∏

conversion
⊢ app

(

λx:A.f(x), a
)

= f(a) : B(a)

Thus an introduction term of type
∏

x:AB(x) is a lambda expression, thought of
as an operation assigning to each x : A a value f(x) : B(x). A general term f of
type

∏

x:AB(x) may be applied to a term a of type A, as to return a term app(f, a)
of type B(a). Finally, the conversion rule, commonly known as beta-conversion,
allows us to reduce app(λx:A.f(x), a) to f(a). In the case where the type B(x) does
not depend on the variable x, we shall often write BA for the type

∏

x:AB(x).
Similarly, the theory admits formation of dependent sum types

∑

x:AB(x).
The rules are:

x : A ⊢ B(x) : type ∑

formation
⊢

∑

x:AB(x) : type

⊢ a : A ⊢ b : B(a) ∑

introduction
⊢ pair(a, b) :

∑

x:AB(x)

⊢ p :
∑

x:AB(x) x : A, y : B(x) ⊢ ψ(x, y) : C
(

pair(x, y)
)

∑

elimination
⊢ R

(

[x : A, y : B(x)]ψ(x, y), p
)

: C(p)

⊢ a : A ⊢ b : B(a) x : A, y : B(x) ⊢ ψ(x, y) : C
(

pair(x, y)
)

∑

conversion
⊢ R

(

[x : A, y : B(x)]ψ(x, y), pair(a, b)
)

= ψ(a, b) : C
(

pair(a, b)
)

The notation [x : A, y : B(x)] indicates that the variables x and y are formally
bound in the term. Using these rules, we may define projection terms by letting

π0(p) = R([x : A, y : B(x)]x, p), π1(p) = R([x : A, y : B(x)]y : B(p)

in

⊢ p :
∑

x:AB(x) x : A, y : B(x) ⊢ x : A ∑

elimination
⊢ π0(p) : A

⊢ p :
∑

x:AB(x) x : A, y : B(x) ⊢ y : B(x) ∑

elimination
⊢ π1(p) : B(π0(p))

The projection terms π0(p) and π1(p) then satisfy the conversion rules

πi(pair(a, b)) =

{

a if i = 0

b if i = 1.

We point out that we do not adopt the η-rule for sums
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⊢ p :
∑

x:AB(x)

⊢ p = pair(π0(p), π1(p)) :
∑

x:AB(x)

but that it can easily be proved that every term of type
∑

x:AB(x) is propositionally
equal to a pair term (see the discussion of identity types below for what this means).

In some treatments a different formulation of the rules for sum types is used,
taking the projection terms as primitive. In the presence of the η-rule both formu-
lations are equivalent, but without the η-rule this latter approach is strictly weaker
(see [7]).

2.4. Identity types. Let A be a type. For every pair of terms a, b of type A we
may form a new type A(a, b). This type is thought of as the type of proofs of
the fact that a and b are equal. A term τ : A(a, b) is sometimes referred to as
a propositional identity proof. It is important to note that the existence of
such a proof term does not necessarily imply that a = b in the definitional sense of
equality discussed above. From a more geometric perspective one may think of a
propositional equality as a homotopy between a and b (see [1]). This explains why
we sometimes use the notation a ≃ b to indicate the existence of a propositional
identity between a and b. We also point out that it is perhaps more common
to denote the identity type A(a, b) by IdA(a, b), but we have chosen to adopt a
notation more suggestive of hom-sets.

The formation rule for the identity types is thus as follows (omitting contexts
for simplicity)

⊢ a, b : A
Id formation

⊢ A(a, b) : type

where we write a, b : A as an abreviation for the two judgements a : A and b : A.
Then, there are the introduction and elimination rules:

⊢ a : A
Id introduction

r(a) : A(a, a)

x : A, y : A, z : A(x, y) ⊢ B(x, y, z) : type

x : A ⊢ ϕ(x) : B
(

x, x, r(x)
)

⊢ f : A(a, b)
Id elimination

⊢ J[x,y:A,z:A(x,y)]B(x,y,z)

(

[x : A]ϕ(x), a, b, f) : B(a, b, f)

The introduction term r(a) is called the reflexivity term; it witnesses the fact that
a ≃ a. The elimination rule is a bit more involved. What we start with is first of all
a type A (which is referred to as the type over which the elimination occurs),
and an identity proof f : A(a, b) (this is the term which is being eliminated). Next
we need a type B(x, y, z) (called the pattern type) and a term ϕ(x) of type
B(x, x, r(x)) which intuitively witnesses the fact that the pattern type is inhabited
in the trivial instance where we substitute a reflexivity term. Given all of this, we
may form a new term J([x : A]ϕ(x), a, b, f) of type B(a, b, f). One way to think
of this J-term is as the result of expanding the term φ(x) using the propositional
equality f : A(a, b). This viewpoint will be developed in more detail later on.

Note also that the variables x, y, z in the elimination rule need not necessarily
occur in the type B(x, y, z), and similarly that x need not occur in ϕ(x). Also,



12 S. AWODEY, P. HOFSTRA, AND M. A. WARREN

it may happen that the term f (and possibly also a, b) are themselves variable, in
which case the J-term depends on those variables.

Finally, there is a conversion rule:

⊢ a : A
Id conversion

⊢ J[x,y:A,z:A(x,y)]B(x,y,z)

(

[x : A]ϕ(x), a, a, r(a)
)

= ϕ(a) : B
(

a, a, r(a)
)

Thus, using a trivial identity proof r(a) to build a J-term does simply give back
ϕ(a).

To illustrate the use of the rules for derivations of judgements, we give an example
of a derivation which shows that the result of applying a term to two propositionally
equal terms results in propositionally equal terms.

Example 2.1. Let τ ≃ τ ′ :
∏

v:S T (v), and let σ : S be derivable. Then app(τ, σ) ≃
app(τ ′, σ) is also derivable. Indeed, consider the following derivation:

x, y :
∏

v:S T (v), z :
∏

v:S T (v)(x, y) ⊢ T (σ)(app(x, σ), app(y, σ)) : type

x :
∏

v:S T (v) ⊢ r(app(x, σ)) : T (σ)(app(x, σ), app(x, σ))

⊢ f :
∏

v:S T (v)(τ, τ ′)
Id elim.

⊢ J
(

[x :
∏

v:S T (v)]r(app(x, σ)), τ, τ ′, f) : T (σ)(app(τ, σ), app(τ ′, σ))

Here, f is a term witnessing the propositional identity τ ≃ τ ′. Of course, the two
other premises have to be derived as well, but this is straightforward.

Similarly we may derive from σ ≃ σ′ that app(τ, σ) ≃ app(τ, σ′).

2.5. Natural numbers. So far we have discussed only methods to construct new
types and terms from ones already present. It is common to introduce as a basic
type the type N of natural numbers, and to add axioms

N introduction (i)
0 : N

n : N
N introduction (ii)

S(n) : N

which allow us to construct the standard numerals. Since the type of natural
numbers will not play a central role in this paper we refer to the appendix for the
precise formulation of the elimination rule (expressing the possibility of defining
terms by recursion) and the conversion rules. We do point out however that aside
from the standard numerals the theory may prove the existence of other, non-
standard, numerals as well.

2.6. Theories and extensions. We shall denote by Tω the system having all of
the above constructors and rules, including those for the type of natural numbers
(for a complete description see the appendix). By a type theory we shall mean
any extension of the basic system Tω obtained by adding axioms and possibly also
inference rules. The axioms are judgements which may assert the existence of basic
types or terms, or may assert the equality between certain types or terms. Possible
additional inference rules include the so-called truncation- and reflection rules,
which express triviality of certain identity types. See Section 3 for a discussion of
these rules.
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Given two type theories T and T′, we say that T′ is an extension of T when
every judgement which is derivable in T is also derivable in T′. Notation: T ⊆ T′.
Thus by our definitions, Tω is the smallest type theory.

We will often be interested in extensions which are obtained by adding only
axioms of an equational nature. A set E of pairs of terms of some theory T is ad-
missible if it satisfies the condition that if 〈τ, τ ′〉 is in E, then there exists a context
(x1 : A1, . . . , xn : An(x1, . . . , xn−1)) together with terms a1, a

′
1, . . . , an−1, a

′
n−1 such

that ai is related to a′i in under the equivalence relation generated by E and in T

the judgements ⊢ τ : An(a1, . . . , an−1) and ⊢ τ ′ : An(a′1, . . . , a
′
n−1) are derivable.

An extension T′ of T is then equational if it is obtained by adding to T only
axioms

⊢ τ = τ ′ : T

for 〈τ, τ ′〉 in an admissible set of pairs of terms with τ : T in T. Note that we
only permit equational extensions where the equations are between closed terms.
However, it is possible to extend this notion of equational extension to include also
equations between open terms, but this direction is not pursued here.

2.7. Expressions. Because the types and terms of such theories are defined simul-
taneously, in order to formally specify the syntax of the theory it is convenient to
first define inductively a class of expressions — which need not satisfy any typing
conventions — from which the genuine syntactical data of the theory is then ex-
tracted via the rules given above (and stated in full in Appendix A). For example,
in order to formally define the theory Tω we first fix a countable set V of (untyped)
variables and then define the class of expressions of Tω, denoted Exp(Tω), by

• v is in Exp(Tω), for any v in V ;
• 0 and N are in Exp(Tω);
• S(p), app(p, q), pair(p, q), r(p), rec(p, q, r), R(p, q), J(p, q, r, s) and λp:q.r are

in Exp(Tω) when p, q, r and s are;
• p(q, r),

∏

p:q r and
∑

p:q r are in Exp(Tω) when p, q and r are.

Thus, the expressions are generated by applying all term- and type constructors
without regard for well-typedness. The derivation rules of the type theory may
then be regarded as carving out from this set of all expressions those which are
well-formed and well-typed. The syntax of other the theories extending Tω that
we consider later is similarly specified in this way with the evident modifications to
the definition of the expressions. Moreover, because the expressions are inductively
generated it follows that the sets of the form Exp(−) possess an obvious universal
property.

2.8. Context morphisms. Recall that if Γ and

∆ =
(

x1 : A1, . . . , xn : An(x1, . . . , xn−1)
)

are contexts, then a context morphism a : Γ → ∆ is a sequence of terms

Γ ⊢ a1 : A1,Γ ⊢ a2 : A2(a1), . . . ,Γ ⊢ an : An(a1, . . . , an−1).

There is a category of contexts with arrows the context morphisms (cf. [7]). We
will only be employing the terminology of context morphisms very briefly in Section
5.4.
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2.9. Globular sets. Globular sets are structures which form the basis for several
definitions of higher dimensional category. One way to think of a globular set is
as a higher dimensional graph: not only are there vertices and edges between the
vertices, but one has edges between edges, and so on. Formally, a globular set G is
a tuple (Gn, sn, tn)n∈N, where each Gn is a set, and where sn, tn : Gn+1 → Gn are
functions subject to the globular identities

dndn+1 = dnsn+1; snsn+1 = sndn+1 (1)

for d = s, t. Elements of Gn are referred to as n-cells, and are said to have dimen-
sion n. The maps sn and tn are called source and target maps, respectively.

If G is a globular set for which Gn = ∅ for all n > 1, then we may simply
regard G as a (directed) graph. If there exist elements of higher dimension, then
the globular identities ensure that the source sn(x) and target tn(x) for such an
n-dimensional edge are a parallel pair of edges of dimension n− 1.

Because it is often convenient, given a n-cell α of a globular set G, to be able to
refer to the result of iteratively taking the source or target of α we introduce the
notation αj

0, α
j
1 for these corresponding j-cells. Explicitly, for 0 ≤ j ≤ n− 1,

αj
i :=

{

sj ◦ · · · ◦ s(n−1)(α) if i = 0

tj ◦ · · · ◦ t(n−1)(α) if i = 1.

By the globular identities, αj
0 and αj

1 are the only elements of Gj which are obtain-
able from α by applying the source and target maps.

A globular set G is said to be reflexive if it comes equipped with a family of
maps in : Gn → Gn+1, such that

tnin = 1 = snin (2)

We think of in(x) as the identity edge from x to itself. In this paper we shall
be working with reflexive globular sets only. For readability we often omit the
dimension from the source, target and identity maps of a globular set.

A morphism of globular sets f : G → H is a family of functions fn : Gn →
Hn which commute with the source and target maps. Globular sets and their
morphisms form a category denoted GSet. For reflexive globular sets we also
require that the fn commute with the identity maps; this gives a category rGSet.

There is a functor ∆ : Set → rGSet which takes a set A to the constant globular
set with ∆(A)n = A. A globular set which is isomorphic to one of the form ∆(A)
will be called constant. The functor ∆ has a left adjoint π0 : rGSet → Set; this
functor assigns to a globular set G its set of connected components

π0(G) = G0/∼

where the equivalence relation on 0-dimensional elements is generated by

x ∼ y ⇔ ∃f ∈ G1.s(f) = x, t(f) = y.

We may express this as a (reflexive) coequalizer diagram:

G1

s //
t

// G0
// // π0(G).

The composite ∆π0 : rGSet → rGSet is an idempotent monad, to which we refer
as 0-truncation. Often it will be convenient to identify the essential image of this
functor (the constant globular sets) with the category of sets.
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We may also truncate a globular set at dimension 1: in this case we replace
the category of sets by the category rGraph of directed reflexive graphs. There
is a functor rGSet → rGraph which assigns to a globular set G the graph whose
vertex set is G0 and whose edge set is G1/ ∼, where two edges h, k satisfy h ∼ k if
there is an α ∈ G2 with s(α) = h, t(α) = k.

In the other direction, any directed reflexive graph G gives a globular set with
which is the same as G in dimensions 0 and 1, and is degenerate above dimension 1.
The composite functor rGSet → rGraph → rGSet will be called 1-truncation,
and a globular set in the essential image of this functor will be said to be 1-
truncated. We shall often identify the subcategory of 1-truncated globular sets
with the category of graphs.

3. The Martin-Löf complex monad

The goal of this section is to state the formal definition of Martin-Löf com-
plexes. Because Martin-Löf complexes are defined to be algebras for a monad on
the category of reflexive globular sets the principal matter addressed here is the
construction of the appropriate monad. The monad for the theory Tω obtained
by the construction below essentially corresponds to the monad obtained from the
operadic constructions due to van den Berg and Garner [3] and Lumsdaine [13],
who show that the algebras are weak omega-groupoids. It is worth emphasizing
that, because the converse seems not to hold, the problem of determining precisely
the higher-dimensional structure of the algebras for these monads remains open. It
is to the solution of this problem that the results of the present paper contribute.

Because we will be interested in algebras for the monad generated by theories,
such as the theories Tn described in Section 3.5 below, which extend Tω the de-
scription of the monad involved in the definition of Martin-Löf complexes will be
described for an arbitrary extension of Tω. As such, throughout this section T is
assumed to be an arbitrary theory extending Tω. Finally, observe that although
we choose to work with reflexive globular sets, the construction of the monad can
be modified to yield a corresponding monad for globular sets.

3.1. Notation for iterated identity types and other conventions. In order
to most efficiently (and readably) state some of the additional principles for identity
types that we consider it is useful to introduce notation for iterated identity types.
Fixing a type A together with terms a, b : A in some ambient context, we introduce
the (at this stage superfluous) notation

A0 := A, and

A1(a, b) := A(a, b).

In general, assuming given terms

⊢ an+1, bn+1 : An(a1, b1; · · · ; an, bn),

we define

An+1(a1, b1; · · · ; an, bn; an+1, bn+1) := An(a1, b1; · · · ; an, bn)(an+1, bn+1).

In the sequel we will be dealing extensively with sets of terms from various theories
extending Tω. We adopt the convention that such terms are always assumed to be
identified modulo definitional equality and α-equivalence.
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As a notational convenience we adopt the convention of, given a reflexive globular
set G = (Gn)n≥0, writing G for the set

∑

n≥0Gn.

3.2. The reflexive globular set generated by a type. Fix a type A in T. It
is possible that A is a type in context, yet we will assume that A is a type in the
empty context. The case where the context is non-empty is obtained in essentially
the same way, and so this is a reasonable simplification. We will now construct
a reflexive globular set denoted by Γ(A)T and called the reflexive globular set
generated by A (in T). When the theory T is fixed we will omit the subscript
and write simply Γ(A). This construction will be carried out in such a way that
the following conditions are satisfied:

(1) Each element of Γ(A)n is a tuple of (2n + 1) elements of the set of terms
of T.

(2) If both (~α;β) and (~α;β′) are in Γ(A)n, then ⊢ An+1(~α;β, β′) : type is
derivable in T.

(3) The source and target maps s, t : Γ(A)n+1 → Γ(A)n must send a tuple
(α0, . . . , α2n) to (α0, . . . , α2n−2) and (α0, . . . , α2n−3, α2n−1), respectively.

We begin by defining

Γ(A)0 := {a | ⊢ a : A},

Γ(A)1 :=
{

(a0, a1; α) | a0, a1 ∈ Γ(A)0 and ⊢ α : A(a0, a1)
}

,

and the maps s, t : Γ(A)1 → Γ(A)0 are simply the projections π0, π1 sending
(a0, a1; α) to a0 and a1, respectively. Assuming Γ(A) has been constructed up to
stage n, we define Γ(A)n+1 to be the following set

{

(~α; β0, β1; γ) | (~α; βi) ∈ Γ(A)n for i = 0, 1, and ⊢ γ : An+1(~α; β0, β1)
}

.

The source and target maps s, t : Γ(A)n+1 → Γ(A)n are given by the projections

(~α; β0, β1; γ) (~α; βi),
� //

for i = 0 and i = 1, respectively.

Lemma 3.1. Given an extension T of Tω and a (closed) type A of T, the graded
set Γ(A) described above is a reflexive globular set.

Proof. The maps i : Γ(A)n → Γ(A)n+1 are obtained using reflexivity terms. The
equations for reflexive globular sets are then readily verified. �

3.3. The type theory associated to a reflexive globular set. Not only does
every type A give rise to a reflexive globular set, but also every reflexive globular
set G gives rise to a type theory T[G].

Definition 3.2. Given a reflexive globular set G, the type theory T[G] generated
by G (or T with G adjoined) is obtained by augmenting T with the following
additional symbols and rules:

• A basic type ⊢ pGq;
• Basic terms ⊢ pgq : pGq, for each vertex g ∈ G0;
• Basic terms ⊢ pfq : pGq(pgq, phq), for each element f ∈ G1 with s(f) = g

and t(f) = h;



MARTIN-LÖF COMPLEXES 17

• Basic terms

⊢ pαq : pGq
n
(

pα0
0q, pα

0
1q; pα1

0q, pα
1
1q; · · · ; pαn−1

0 q, pαn−1
1 q

)

(3)

where αj
i for i = 0, 1 and 0 ≤ j ≤ n − 1 are as defined in Section 2.9, for

each α ∈ Gn;
• New conversion rules:

pi(α)q = r
(

pαq
)

: pGq
n+1

(

. . . ; pαq, pαq
)

for every α ∈ Gn.

xs

Remark. As a matter of notation, we write Γ ⊢G J to indicate that the judgement
Γ ⊢ J is derivable in T[G]. Finally, we also write ExpG instead of the more
cumbersome Exp(T[G]). Also, when no confusion will result, we identify the symbol
pτq with τ itself. E.g., we write f : G(g, h) instead of the more cumbersome
pfq : pGq(pgq, phq).

In subsequent sections it will be convenient to have at our disposal techniques
for constructions maps between the sets of expressions of one type theory T[G] and
another T[H ], for G and H globular sets. Along these lines, we make the following
observation.

Lemma 3.3. Given globular sets G and H, any function

G ExpH

ϕ //

has a unique extension ϕ̂ : ExpG → ExpH , commuting with the operations from
which the expressions are formed, such that the following diagram of sets commutes:

ExpG ExpH

ϕ̂ //

G

ExpG

iG

__?????????

G

ExpH

ϕ

??���������

where iG is the map sending g ∈ Gn to pgq.

Note that the basic type pGq is sent by the extension ϕ̂ to pHq. Of course,
depending on the nature of ϕ the extension ϕ̂ may or may not preserve derivable
judgements. Such a ϕ̂ will, however, commute with substitution. I.e., if e(x) is an
expression of T[G] with x free, then, for any other expression f ,

ϕ̂(e)[ϕ̂(f)/x] = ϕ̂(e[f/x]). (4)

3.4. The induced monad on globular sets. We will now see that composing
the foregoing processes

G 7−→ T[G], and

A : type 7−→ Γ(A),

yields a monad T on the category rGSet of reflexive globular sets. Given a globular
set G,

T (G) := Γ(pGq). (5)
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Suppose given a map ϕ : G→ H of globular sets. To see that this assignment is in
fact functorial we begin by noting that, by Lemma 3.3, the map

g 7−→ pϕ(g)q

for g ∈ Gn, possesses a canonical extension ϕ∗ : ExpG → ExpH . I.e., in the notation
of Lemma 3.3,

ϕ∗ := îH ◦ ϕ.

In order to be able to use ϕ∗ to define the action of T on arrows we must first
verify that it preserves derivable judgements, where the action of ϕ∗ extends to
judgements in the obvious manner.

Lemma 3.4. Suppose J is a judgement derivable in T[G], then ϕ∗(J ) is derivable
in T[H ].

Proof. The proof is a straightforward induction on the structure of derivations
⊢G J . For example, suppose J is the conclusion Γ ⊢G λx:A.b(x) :

∏

x:A .B(x)
of the introduction rule for dependent products. Then we have by the induction
hypothesis that

ϕ∗(Γ), x : ϕ∗(A) ⊢H ϕ∗(b(x)) : ϕ∗(B(x)).

Applying the introduction rule in T[H ] yields the appropriate judgement since

ϕ∗

(

∏

x:A

.B(x)
)

=
∏

x:ϕ∗(A)

.ϕ∗(B)(x),

by definition of ϕ∗. The only case which merits special attention are those judge-
ments of the form (3) which occur as axioms of T[G]. Such judgements are preserved
by the fact that ϕ is a map of globular sets. �

Lemma 3.5. The assignment (5) is functorial T : rGSet → rGSet.

Proof. Let

T (ϕ)(α0, α1, · · · , α2n) :=
(

ϕ∗(α0), ϕ∗(α1), · · · , ϕ∗(α2n)
)

,

for ~α in T (G)n+1. That this definition makes sense follows from Lemma 3.4 and
the definition of ϕ∗. Trivially, T (1G) = 1T (G). To see that T is well behaved with
respect to composition it suffices to show that, when given ψ : H → I, we have

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

For this we observe that on the generators g ∈ Gn,

ψ∗

(

ϕ∗(pgq)
)

= ψ∗

(

pϕ(g)q
)

= pψ ◦ ϕ(g)q = (ψ ◦ ϕ)∗(pgq).

�

As a notational convenience we will often write elements ~α ∈ T (G) in terms
of their boundaries. I.e., we write ~α = (α0

0, α
0
1; . . . ;α

n−1
0 , αn−1

1 ;α) instead of
(α0, α1, . . . , α2n).

Proposition 3.6. T : rGSet → rGSet is the functor part of a monad.
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Proof. Given a globular set G, the unit ηG : G→ T (G) is the “insertion of genera-
tors” defined by setting

ηG(g) :=
(

pg0
0q, pg

0
1q, · · · , pgq

)

for g ∈ Gn. This is a globular map which is natural in G by definition.
For the multiplication µG : T 2G → TG we begin by defining τG : ExpTG →

ExpG to be the canonical extension, which exists by Lemma 3.3, of the assignment
π : TG→ ExpG given by

(α0
0, α

0
1; . . . ;α

n−1
0 , αn−1

1 ;α) 7−→ α,

where ~α is in (TG)n. That is, τG = π̂ is the canonical extension such that

ExpTG ExpG
τG //

TG

ExpTG

iT G

__?????????

TG

ExpG

π

??���������

commutes. As such, given ~α in (TG)n as above,

τG
(

p~αq
)

= α,

where this definition makes sense because α is itself a term of T[G]. We would like
to show that τG preserves derivable judgements. As in the proof of Lemma 3.4, the
non-trivial step is to verify that the axioms added in the formation of T[TG] are
preserved. That is, where ~α is as above, we need to show that

⊢TG p~αq : pTGq
n
(

p(~α)00q, . . . , p(~α)n−1
1 q

)

implies the corresponding judgement in T[G]. But, we have that

τG
(

p(~α)i
jq

)

= αi
j . (6)

Thus, we must show that

⊢G α : pGq
n(α0

0, . . . , α
n−1
1 ).

However, this is a trivial consequence of the fact that ~α is an element of (TG)n.
Therefore τG preserves derivable judgements and we may define

µG(β0
0 , . . . , β

n−1
1 , β) :=

(

τG(β0
0), . . . , τG(βn−1

1 ), τG(β)
)

,

for ~β in (T 2G)n. Since τG preserves valid judgements this gives a globular map
which is natural in G.

To see that the first unit law for monads is satisfied, let ~α in (TG)n be given as
above. Then

µG ◦ ηTG(~α) = µG

(

p(~α)00q, . . . , p(~α)n−1
1 q, p~αq

)

=

(

τG
(

p(~α)00q
)

, . . . , τG
(

p(~α)n−1
1 q

)

, τG
(

p~αq
)

)

= ~α,
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where the final equation is by (6). For the other unit law, observe that the following
diagram commutes:

G

ExpG

iG

__?????????

G TGηG

//

ExpG ExpTG

(ηG)∗ //

TG

ExpTG

iT G

__?????????

ExpTG ExpG
τG //

TG

ExpG

π

??���������

Thus, τG ◦ (ηG)∗ ◦ iG = iG and, by Lemma 3.3, µG ◦ T (ηG) = 1TG.
Next, to see that the multiplication law is satisfied it suffices to prove that

τG ◦ τTG = τG ◦ (µG)∗. (7)

Given ~β = (β0
0 , β

0
1 ; . . . ;βn−1

0 , βn−1
1 ;β) in (T 2G)n we have

τG ◦ τTG

(

p~βq
)

= τG(β)

= τG

(

p
(

τG(β0
0), τG(β0

1), . . . , τG(β)
)

q

)

= τG
(

pµG(~β)q
)

= τG ◦ (µG)∗
(

p~βq
)

.

Thus, by Lemma 3.3, (7) holds. �

Example 3.7. Suppose g is a vertex of G, then p(pgq)q is likewise a vertex of T 2G.
The multiplication µG acts on such a vertex by removing the outermost p−q. I.e.,

µG

(

p(pgq)q
)

= pgq.

Similarly, if f is in Gn, then

µG

(

p(pf0
0q, pf0

1q, . . . , pfn−1
1 q, pfq)q

)

= (pf0
0q, . . . , pfq).

The action of µG on composite terms (constructed out of the basic terms of T[TG]
using the rules of T) is then to go through the term recursively removing occurrences
of p−q. Thus, the unit acts by adding p−q and the multiplication acts by removing
it.

3.5. Martin-Löf complexes and other categories of algebras. It is possible
to extend Proposition 3.6 by allowing the extension T of Tω employed in the con-
struction to vary. We denote by Ext(Tω) the category of all extensions of Tω.
I.e., the objects of Ext(Tω) are dependent type theories extending Tω (where we
only allow those extensions obtained by the addition of set-many new symbols and
rules). A morphism T → T′ in Ext(Tω) is an inclusion of theories (i.e., such a
morphism exists whenever T′ extends T). We also denote by Mon(rGSet) the
category of monads on rGSet (regarded as monoids in [rGSet, rGSet]).

Lemma 3.8. The construction of a monad on rGSet from an extension of Tω

from Section 3.4 gives the action on objects of a functor

T : Ext(Tω) −→ Mon(rGSet).

Proof. Assume given theories T and T′ in Ext(Tω) such that T′ is an extension of
T. We will now describe the induced natural transformation ξ : T → T ′, where
we write T and T ′ as abbreviations for T (T) and T (T′), respectively. Given a
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reflexive globular set G and an element ~α = (α0
0, . . . , α

n−1
1 , α) of T (G)n, we note

that since T′ extends T it follows that each component of the list ~α is also a
term of T′[G]. Moreover, all of these terms necessarily possess the appropriate
boundaries so that ~α is also an element of T ′(G)n. As such, we may simply define
(ξG)n : T (G)n → T ′(G)n to be the map which sends any ~α as above to itself
(now regarded as a list of terms from T′[G]). This clearly describes a map of
reflexive globular sets which is clearly ξ is natural and that it commutes with the
multiplication and unit maps for T and T ′. Finally, it is trivial to see that, with
this definition T is functorial. �

The specific extensions of Tω to which we would like to apply Lemma 3.8 are
obtained by augmenting Tω by axioms that force the identity types to be trivial
once they have been iterated sufficiently many times. To begin with, recall that
the reflection rule for identity types is the principle which states that all identity
types are trivial in the sense that

⊢ a, b : A ⊢ p : A(a, b)
Reflection

⊢ a = b : A

Higher-dimensional generalizations of this rule are then given by “truncating” the
identity types only after they have been iterated a certain number of times. Ex-
plicitly, the n-truncation rule is stated as follows:

⊢ an+1, bn+1 : An(a1, b1; · · · ; an, bn) ⊢ p : An+1(a1, b1; · · · ; an+1, bn+1)
TRn

⊢ an+1 = bn+1 : An(a1, b1; · · · ; an, bn)

With these rules at our disposal we are able to describe the type theories extending
Tω with which we will be concerned. Explicitly, for n ≥ 0, the theory Tn is defined
to be the result of adding to Tω the (instances of the) principle TRn. These theories
then arrange themselves according to the following hierarchy of theories:

Tω ⊆ · · · ⊆ Tn+1 ⊆ Tn ⊆ · · · ⊆ T1 ⊆ T0, (8)

since TRm clearly implies TRn, when m < n. The theory T0 is also known as
extensional type theory as contrasted with the intensional type theory Tω.

Definition 3.9. Denote by Tω the monad T (Tω). A reflexive globular set G is
a Martin-Löf complex (or ML-complex) if it is an algebra for Tω. We write
MLCx for the Eilenberg-Moore category consisting of Tω-algebras and homomor-
phisms thereof. Similarly, we denote by MLCxn the category of Tn-algebras for
n = 0, 1, 2, . . ., where Tn denotes the monad T (Tn).

Corresponding to the hierarchy of theories (8) we obtain, by Lemma 3.8, the
following sequence of inclusions of categories:

MLCx0 −→ · · · −→ MLCxn −→ MLCxn+1 −→ · · · −→ MLCxω

and it is our goal to understand how these categories relate to the hierarchy of
categories of homotopy types discussed in Section 1.

3.6. Connection between truncation and other rules. The truncation prin-
ciples TRn are related to several other type theoretic principles which we employ
occasionally in the sequel. For example consider the following n-dimensional gen-
eralization of the principle of (definitional) uniqueness of identity proofs:
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⊢ an+1, bn+1 : An(a1, b1; · · · ; an, bn)
UIPn

⊢ an+1 = bn+1 : An(a1, b1; · · · ; an, bn)

The question whether UIP1 — or the variant where the definitional equality occur-
ring in the conclusion is replaced by a propositional equality — is derivable in Tω

was one of the motivations for the original groupoid model due to Hofmann and
Streicher [8]. In particular, the groupoid model shows that neither UIP1 nor the
propositional version are derivable in Tω .

Another related principle is the n-dimensional ordinary unit principle

⊢ an+1 : An(a1, b1; · · · ; an, bn) ⊢ p : An+1(a1, b1; · · · ; an+1, an+1)
OUPn

⊢ p = r(an+1) : An+1(a1, b1; · · · ; an+1, an+1)

Whereas the uniqueness of identity proofs principles can be thought of as requiring
that the identity types are preorders above a given dimension, the ordinary unit
rules indicate that all loops (above certain dimensions) are necessarily identities.

The truncation and ordinary unit principles have been considered previously by
Garner in [6] and by Warren in [20]. The relation between the truncation, unique-
ness of identity proofs and ordinary unit principles are clarified in the following
lemma (the idea for the proof of which comes essentially from results, which are
not “stratified” in the way considered here, from [18]).

Lemma 3.10. Assuming the rules of Tω and the usual rules for identity types, the
following implications hold:

(1) TRn implies OUPn.
(2) TRn implies UIPn+1.
(3) UIPn implies TRn.

for n ≥ 0.

Proof. For (1), let a term an+1 of type An(a1, b1; · · · ; an, bn) and a “loop” p of type
An+1(a1, b1; · · · ; an+1, an+1) be given. Then, by TRn it suffices to show that

⊢ p ≃ r(an+1) : An+1(a1, b1; · · · ; an+1, an+1).

To this end, define the type

D(x, y) := An+2
(

y, r(x)
)

in the context
(

x : An(a1, b1; · · · ; an, bn), y : An+1(a1, b1; · · · ; an, bn;x, x)
)

. Clearly,

x : An(a1, b1; · · · ; an, bn) ⊢ r
(

r(x)
)

: D
(

x, r(x)
)

,

and therefore the elimination rule yields the required term of type

D(an+1, p) = An+2(p, r(an+1)).

Note that the particular form of the eliminaton rule used here, which is essentially
Streicher’s K elimination rule, applies in this case because we are assuming TRn

and whenever we are given z : An+1(a1, b1; · · · ;x, y) it therefore follows that x and
y are definitionally equal (for more on the K rules we refer the reader to [18]).

Suppose, for the proof of (2), that we are given terms an+2 and bn+2 of type
An+1(a1, b1; · · · an+1, bn+1). Then, by TRn, an+1 = bn+1. By (1) it follows that
OUPn holds and therefore we obtain

an+2 = r(an+1) = bn+2,

as required.
Finally, (3) holds trivially. �
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4. Doppelgängers and T0-algebras

Our purpose in this section is to characterize the category MLCx0 of algebras
for the monad T0 by proving that it is equivalent to the category of sets. This
result will in fact be a consequence of the work done in the next section, but the
0-dimensional case is already instructive and provides us with an opportunity to
introduce some ideas and concepts which will be put to work in a more complicated
setting in the 1-dimensional case.

We begin by discussing the reason why the results are nontrivial by explaining the
various ways in which the type theory T0[G] proves the existence of infinitely many
duplicates of all of the vertices, edges, and higher edges of the globular set G. These
duplicates (here called doppelgängers) must all be shown to be propositionally equal
to an element in the original globular set G.

Next, we establish the characterization of the T0-algebras in a number of steps,
making use of the set-theoretic interpretation of extensional type theories and a
form of the technique of logical predicates due originally to Tait [19]. We will con-
centrate on stating the main concepts and theorems and omit some of the detailed
proofs, allowing the reader to follow the line of argument.

4.1. Doppelgängers. Fix a globular set G and consider the type theory Tω[G]
(or any extension of it). It is clear from the definition of the theory Tω[G] that
every vertex a ∈ G0 is represented as a term in Tω[G], namely a : G. (We shall, as
before, not distinguish between an actual element in G and its “name” in the type
theory.) Similarly, every 1-dimensional edge f ∈ G1 is represented by f : G(a, b),
where s(f) = a, t(f) = b, and so on in higher dimensions. One might, at first sight,
conjecture that these are the only judgements of this form, i.e. that whenever Tω[G]
derives τ : G for a closed term τ , then τ must be an element of G already, and
whenever Tω [G] derives σ : G(a, b) then σ ∈ G1 already. However, things are more
complicated than that, due to the elimination rule for identity types.

Suppose, for example, that we have a, b, c ∈ G0 and a non-reflexivity term
f : a→ b in G1. Now we can consider the following derivation:

x : G, y : G, z : G(x, y) ⊢ G : type

x : G ⊢ c : G

⊢ f : G(a, b)
Id elimination

⊢ J
(

[x : G]c, a, b, f) : G

This creates a new term of type G which we denote by c〈f〉; we call it the dop-
pelgänger of c (at f). This term is not definitionally equal to any of a, b, c.
However, it is propositionally equal to c: this we can see from the derivation

x : G, y : G, z : G(x, y) ⊢ G(c, J
(

[v : G]c, x, y, z)) : type

x : G ⊢ r(c) : G(c, J
(

[v : G]c, x, x, r(x))

⊢ f : G(a, b)
Id elimination

⊢ J
(

[x : G]c, a, b, f) : G(c, J
(

[v : G]c, a, b, f))

showing that there is a term witnessing c ≃ c〈f〉 (note that by the conversion rule
the second premise reduces to x : G ⊢ r(c) : G(c, c) so that the trivial term is
well-defined).
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Of course, this idea works in general: given any term τ : T and any (non-
reflexivity) identity proof f : A(a, b) we may form

τ〈f〉 := J([x : A]τ, a, b, f) : T

and then show that τ ≃ τ〈f〉.
There are other ways to create doppelgängers: consider again f : a → b ∈ G1

and form

f ♯ := J[x,y:G,z:G(x,y)]G([x : G]x, a, b, f) : G.

This term is a new vertex which is homotopic to both a and b (again this is proved
by defining a suitable witness using the J-rule).

Yet another possibility is to construct

f ♭ := J[x,y:G,z:G(x,y)]G(x,y)([x : G]r(x), a, b, f) : G(a, b),

which turns out to be homotopic to f .
While in the above examples of doppelgängers it is easy to show that each of

the newly created terms is, up to homotopy, equal to a basic term coming from the
original globular set, it is not clear why this would always be the case, i.e. why for
every term derivable in Tω[G] there is a suitable homotopy. Moreover, it will be
seen in the next section that the elimination rule for identity types does in certain
instances give genuinely new terms which are not homotopic to any basic term
(namely, the formal composites which are used to give the Martin-Löf complexes
their categorical structure).

4.2. T0-Algebras. We now study the category of algebras MLCx0 for the monad
T0. We fix a reflexive globular set G, and consider T0(G), the free algebra on G.

Lemma 4.1. The reflexive globular set T0(G) is constant.

Proof. Since the theory T0[G] satisfies the reflection rule, it follows that any term
τ : Gn(a, b) is definitionally equal to a reflexivity term (see Subsection 3.6 above).
Hence for n > 0, the elements of T0(G)n are all degenerate, and the globular set
T0(G) is completely determined by its vertices. �

Thus in order to characterize the globular set T0(G), it suffices to understand
the set T0(G)0 of its vertices. Recall from the construction of the monad T0 that
the elements of T0(G)0 are equivalence classes of closed terms τ : G, where two
of these are identified if the theory proves that they are definitionally equal. We
begin by noting that there is a canonical map from π0(G) to T0(G)0, induced by
the coequalizer

G1

s //
t

// G0
e // //

η0 ##FF
FF

FF
FF

F
π0(G)

p

���
�

�

T0(G)0

(9)

Here, the map η0 is the component of the unit η : G → T0(G) at dimension 0.
For every f ∈ G1 with s(f) = a, t(f) = b there is an axiom f : G(a, b) in T0[G]; by
truncation this forces a = b in the theory, and hence a and b are identified as well
in T0(G); hence η0s = η0t.
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We would like to show that p is a bijection; this would prove that T0 is isomorphic
to the (idempotent) monad ∆π0 on rGSet, and in particular it would follow that
the category of T0-algebras is just the category of sets.

The first step in proving this is to exploit the fact that extensional ML type
theories may be modelled in locally cartesian closed categories (see the original
work of Seely [16], or the expository texts [10, 7]). In particular, these theories may
be soundly interpreted in the category of sets. More concretely, the theory T0[G]
has the following set-theoretic model: interpret the basic type G by the set π0(G),
and interpret the basic terms a : G by the element [a], the connected component of
a in G.

Lemma 4.2. The above interpretation extends to a model of T0[G] in the category
of sets.

Proof. We need only verify the new axioms and the new conversion rule of the
theory; if these are valid under the interpretation then the result follows by sound-
ness. By construction, the judgements a : G for a ∈ G are valid. The identity
types G(a, b) will be interpreted in a degenerate way, namely as the emptyset when
[a] 6= [b] and as the one element set when [a] = [b]. Thus if we have an element
f ∈ G1 with s(f) = a and t(f) = b, then the interpretation of f may be taken
to be [a] = [b], since the reflection rule allows us to derive a = b from the axiom
f : G(a, b). Similar reasoning works to show that the term judgements associ-
ated to higher cells of G are soundly interpreted. Finally, the new conversion rule
i(a) = r(a) holds under the interpretation since both sides of the equation will be
interpreted as [a]. �

The soundness of this interpretation guarantees that the map p is injective:
indeed, given two connected components [a] and [b] of G, suppose that p[a] = p[b].
Then T0[G] proves that a = b. But then this equation should hold in the model
π0(G), i.e. [a] = [b] as elements of π0(G).

4.3. Relevant types and terms. More involved is the proof that the comparison
map p : π0(G) → T0(G)0 is also surjective. For this, we need to show that for any
judgement ⊢ τ : G in T0[G] there is a vertex a ∈ G0 for which τ ≃ a. Therefore
we need to understand which closed terms of type G can be derived in the theory.
As discussed in the previous section, we have to worry about doppelgängers, and in
particular we have to prove that all doppelgängers are homotopic to a basic vertex.

In order to establish these facts, we use an appropriate form of the logical pred-
icates argument to prove a more general statement about a much wider class of
terms.

Definition 4.3. The collection of relevant types of the theory T0[G] is induc-
tively defined as follows:

• the basic type G is relevant;
•

∏

x:A T (x) is relevant if x : A ⊢ T (x) : type is;
•

∑

x:A T (x) is relevant if at least one of A and T (x) is relevant.

If a type is not relevant then it will be called irrelevant.

Next, we define a class of terms called relevant terms.

Definition 4.4. First, let τ be a term of type T in the empty context. Then τ is
quasi-relevant whenever one of the following holds:



26 S. AWODEY, P. HOFSTRA, AND M. A. WARREN

• T is irrelevant;
• T = G and τ is propositionally equal to a basic term;
• T =

∏

x:A S(x) is relevant, and τ is propositionally equal to a term τ ′ for
which app(τ ′, σ) is quasi-relevant for each quasi-relevant closed term σ : A;

• T =
∑

x:A S(x) is relevant and τ is propositionally equal to a term σ for
which both terms π0(σ) and π1(σ) are quasi-relevant.

Quasi-relevant terms of relevant type will be called relevant.
Next, a (possibly open) term Γ ⊢ τ : T in context Γ, where T is relevant, is

said to be relevant whenever the result of substituting closed quasi-relevant terms
for all variables of the context yields a quasi-relevant closed term.

A few features of this definition are worth pointing out. To begin with, it follows
from the definition that the class of relevant terms is closed under propositional
equality. Next, the definition follows the pattern of Tait’s computability predicates,
but with two differences: the closure under propositional equality is added at each
type, and for open terms we test on all relevant substitution instances instead
on just a canonical one. Indeed, types need not be inhabited, and therefore no
canonical term may exist.

The key result is now:

Proposition 4.5. Every term of relevant type is relevant.

We will not prove this result here since it will follow from a more general state-
ment in the next section. Essentially the result can be obtained from an induction
on derivations, but some of the steps are not straightforward and require a finer
analysis of the interplay between the rules for identity types and the other types.
See the next section for details. By definition of closed relevant terms, the above
proposition implies the following corollary:

Corollary 4.6. If τ : G is a closed term derivable in T0[G] then τ ≃ a for some
basic term a.

The statement in the corollary immediately gives that the comparison map p :
π0(G) → T0(G)0 is surjective.

We summarize the situation in the following theorem:

Theorem 4.7. The monad T0 on the category of reflexive globular sets is naturally
isomorphic to the monad ∆π0 (the composite of the connected components functor
and the constant objects functor). Hence, the category MLCx0 of algebras for the
monad is equivalent to the category of sets.

Proof. Only the issue of naturality has not yet been addressed explicitly. It is easily
seen that the comparison map p : π0(G) → T0(G)0 is natural in G. Now extend
this in the obvious way to higher dimensions to obtain a map ∆π0(G) → T0(G) of
globular sets. Clearly this map is again an isomorphism since all higher dimensions
are degenerate. For the same reason, this map is also natural in G. �

5. T1-algebras

The aim of this section is to generalize the results described in Section 4 to the
case of T1-algebras and the category MLCx1. Contrary to what one might expect
this category is not equivalent to the category of groupoids. However, there is an
adjunction
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MLCx1 Gpd66MLCx1 Gpd
vv

⊥ (10)

analogous to the adjunction between topological spaces or, better yet, homotopy
1-types, and groupoids.

Most of this section is devoted to proving that the free T1-algebra on a globular
set G is a groupoid which is equivalent (but not isomorphic) to the free groupoid
on G.

The outline of the proof is roughly analogous to that sketched in Section 4.
However, doppelgänger terms become more of a significant problem in this case
and a substantial part of the proof is devoted to showing, again using the logical
predicates technique, that such terms are ultimately harmless. We emphasize here
that all results of Sections 5.3, 5.4, 5.5, 5.6, and 5.7 are valid for arbitrary extensions
of Tω .

5.1. All T1-algebras are groupoids. We begin with the straightforward proof
that all T1-algebras are in fact groupoids (regarding groupoids themselves as reflex-
ive globular sets in which all n-cells are degenerate for n ≥ 2). This result follows
immediately from the construction of composition and inverse operations — as well
as the corresponding propositional equalities witnessing the associativity, unit and
inverse laws — by Hofmann and Streicher [8]. However, we will later require some
of the details of the proof and we therefore describe the construction explicitly.
First, recall that, given any type A together with terms a, b : A and f : A(a, b), the
inverse f−1 : A(b, a) of f is defined to be the following elimination term:

f−1 := J[x,y:A,z:A(x,y)]A(y,x)

(

[x : A]r(x), a, b, f
)

.

Moreover, when there exists a further propositional equality g : A(b, c), the com-
posite (g · f) of g with f is defined to be the term app

(

J(λv.v, b, c, g), f
)

, where
the J-term here is written in full as

J[x,y:A,z:A(x,y)]A(a,y)A(a,x)

(

[x : A]λv:A(a,x).v, b, c, g
)

: A(a, c)A(a,b).

We will use these operations on terms of identity type to define the composition
and inverses for T1-algebras. To this end, let an object G of MLCx1 be given with
action γ : T1(G) → G. Of course, we will regard G as a groupoid with objects the
vertices of G and arrows the edges of G. Identities are given by the edges of the
form i(a) for a a vertex. In order to define composition in G let a composable pair
of edges f, g in G be given with

a b
f // b c.

g //

By definition, both of these edges (and their endpoints) are represented by cor-
responding terms f : G(a, b) and g : G(b, c) in the theory T1[G]. As such, the
composite (g · f) : G(a, c), as defined above, exists and we define the result of com-
posing f with g in G to be the edge obtained by appling the action of G to (g · f).
I.e.,

(g ◦ f) := γ
(

paq, pcq; (pgq · pfq)
)

.
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This edge possesses the appropriate source and target since γ is an arrow in rGSet.
Likewise, the inverse f−1 of f is defined by setting

f−1 := γ(pbq, paq; pfq
−1),

where f−1 on the right-hand side is the inverse of the term pfq, as defined above.
With these definitions, the groupoid laws are a consequence of their up-to propo-

sitional equality counterparts (for which see [8]) together with the 1-truncation
rule. In this way the unit law is an immediate consequence of the fact that
r(paq) = pi(a)q. For the associativity law, suppose we are given f and g as
above together with a further edge h : c → d in G. To prove the associative
law h ◦ (g ◦ f) = (h ◦ g) ◦ f) holds it suffices to show that

γ

(

phq · pγ
(

pgq · pfq
)

q

)

= γ

(

pγ
(

phq · pgq
)

q · pfq

)

, (11)

where we have omitted all but the final entries of lists of terms as the missing
entries are evident in this case. To see that this is indeed the case observe that the
left-hand side of (11) is equal to

γ
(

γ∗(pphqq) · γ∗(p(pgq · pfq)q)
)

= γ ◦ T1(γ)(pphqq · p(pgq · pfq)q)

= γ ◦ µG(pphqq · p(pgq · pfq)q)

= γ
(

phq · (pgq · pfq)
)

where the penultimate equality is by the multiplication law for actions. By the
remarks above, phq · (pgq · pfq) is definitionally equal to (phq · (pgq · pfq). A dual
calculation reveals that the right-hand side of (11) is equal to γ((phq · pgq) · pfq).
Lastly, that f−1 is the inverse of f is straightforward using similar reasoning.

It then follows, in particular, that the free T1-algebra T1(G) on G is a groupoid
and therefore the unit ηG : G → T1(G) extends canonically along the unit η′G for
F to a morphism of groupoids

F(G) T1(G)
ΦG //

G

F(G)

η′

G

__????????

G

T1(G)

ηG

??��������

Recall that F(G) has the same vertices as G, and arrows a → b in F(G) are a
zig-zag paths

a

a1

��

�����

a1

a2

��?
??

??

a2

��

������
an−1

��?
??

??
?

an−1

an

��

�����

an

b
��?

??
??

· · ·

· · ·

of edges in G modulo the evident relations forcing the groupoid laws to hold. The
action of the induced functor ΦG is then to send an equivalence class of such “formal
composites” from F(G) to the term representing the result of taking inverses and
composites of its edges. Corresponding to this notion of formal composite or arrow
in the free groupoid we have type theoretic formal composites as well.

Definition 5.1. A term τ of type G(a, b) in the theory Tω [G] (or any of its exten-
sions) is a formal composite if

• τ is a basic term (including reflexivity terms);
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• τ is of the form γ−1, for γ a formal composite; or
• τ is of the form (δ · γ), for formal composites γ and δ.

Thus, the action of ΦG on arrows is always a formal composite.
We would like to show that ΦG is in fact an equivalence of categories and the

remainder of Section 5 is devoted to the proof of the following theorem:

Theorem 5.2. Given a reflexive globular set G, ΦG : F(G) → T1(G) is an equiv-
alence of categories.

The first step to proving this theorem is to show that there exists a retraction
ΨG : T1(G) → F(G) and this is what we will now prove in Section 5.2.

5.2. Interpretation of T1[G] using the free groupoid on G. Let F(G) denote
the free groupoid (regarding the free groupoid monad as a monad on reflexive
globular sets) on G. Then T1[G] is soundly modelled using groupoids by extending
the interpretation from [8] by the following additional clauses:

• The new type pGq is interpreted as the free groupoid on G:

[[pGq]] := F(G).

• The new terms basic paq of type pGq are interpreted by the objects of F(G)
which they represent:

[[paq]] := a.

• The new basic terms pfq of identity type pGq(paq, pbq) are likewise inter-
preted as the arrows they represent

[[pfq]] := f.

• If pαq is a new basic term of type pGqn(pα0
0q, . . . , pα

n−1
1 q), for n > 1, then

[[pαq]] := α1
0.

With these definitions, the axioms of T1[G] are clearly satisfied. We now remind the
reader how the particular kinds of terms we are interested in are interpreted in this
model. To begin with recall that the identity type x, y : pGq ⊢ pGq(x, y) : type
is interpreted as the functor IG : F(G) × F(G) → Gpd which sends a pair of
objects (a, b) of F(G) to the discrete groupoid F(G)(a, b) and which sends an
arrow (α, β) : (a, b) → (a′, b′) to the functor F(G)(a, b) → F(G)(a′, b′) with action
f 7→ (β ◦ f ◦α−1). The extended context (x, y : pGq, z : pGq(x, y)) is interpreted as
the result of applying the Grothendieck construction

∫

IG to IG. In this instance,
∫

IG coincides with the arrow category F(G)→. As such, the elimination data
x : pGq ⊢ ϕ(x) : B(x, x, r(x)) is interpreted by a functor [[B]] : F(G)→ → Gpd
together with a functor [[ϕ]] : F(G) →

∫

[[B]] such that

F(G)
∫

[[B]]
ϕ //

∫

[[B]]

F(G)→

π

��

F(G)

F(G)→
r ((

commutes. I.e., for an object a of F(G), ϕ(a) is a tuple composed of 1a : a → a
together with an object, which we denote by aϕ, of the groupoid [[B]](1a : a → a).
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For an arrow α : a→ a′ of F(G), ϕ(α) is then a tuple composed of α itself together
with an arrow

[[B]]









a a
1a //

a′ a′
1a′

//

a

a′

α
��

a

a′

α
��









(aϕ) a′ϕ
αϕ //

in the groupoid [[B]](1a′ : a′ → a′).
The resulting elimination term x, y : pGq, z : pGq(x, y) ⊢ J(ϕ, x, y, z) :

B(x, y, z) is interpreted as the section J of the projection
∫

[[B]] → F(G)→ which
sends an object f : a→ b of F(G)→ to the pair consisting of f and the object

[[B]]









a a
1a //

a b
f

//

a

a

1a

��

a

b

f
��









(

aϕ

)

of [[B]](a, b, f). Similarly, the action of J on an arrow

a b
f //

a′ b′g
//

a

a′

α
��

b

b′

β
��

(12)

from f : a → b to g : a′ → b′ in F(G)→ is the pair consisting of the arrow itself
together with

[[B]]









a′ a′
1a′ //

a′ b′g
//

a′

a′

1a′

��

a′

b′

g
��









(

αϕ

)

: [[B]]









a a
1a //

a′ b′g
//

a

a′

α
��

a

b′

β◦f
��









aϕ // [[B]]









a′ a′
1a′ //

a′ b′g
//

a′

a′

1a ��

a′

b′

g
��









(

a′ϕ
)

So, for example, given a term h : pGq(g, g′) in T1[G], consider h−1. The pattern
type B(x, y, z) in this instance is G(y, x) and [[B]] is the functor sending f : a → b
to the discrete groupoid G(b, a) and which sends an arrow (12) in F(G)→ to the
functor λv.α ◦ v ◦ β−1 : G(b, a) → G(b′, a′). As such, it is straightforward to verify
with the description of the interpretation given above that [[h−1]] is equal to the
inverse [[h]]−1 in F(G). Similarly, given f : pGq(a, b) and g : pGq(b, c) in T1[G], it
is straightforward to verify that the interpretation commutes with composition in
the sense that [[pgq · pfq]] is equal to [[g]] ◦ [[f ]] in F(G). These observations yield
the following:

Lemma 5.3. The assignment ΨG : T1(G) → F(G) which sends an n-cell ~α =
(α0

0, . . . , α
n−1
1 , α) of T1(G) to [[α]] is functorial.

Proof. By the results of Section 5.1 it follows that T1(G) is a groupoid in with the
result of composing 1-cells (a, b; f) and (b, c; g) is (a, c; g · f). Thus, because the
interpretation function commutes with composition it follows that ΨG is functorial
(that ΨG preserves identities is also straightforward). �
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5.3. Relevant types and terms. In this section we introduce the first ingredient
for the proof: the relevant types and terms. The second ingredient will be the
actions on contexts by endomorphisms of the two-element set introduced in Section
5.4 below. We note that in this section, as well as in Sections 5.4 and 5.7 we make
no use of the hypothesis that we are working in T1[G] and, in particular, the results
of these sections apply to arbitrary extensions of Tω[G] (although the definition of
relevant types and terms given below are useful mainly in the 0- and 1-dimensional
cases, as will be evident from the definition). While in the 0-dimensional case we
considered the class of terms generated (in the sense of logical predicates) by the
basic terms a : G, we now have to add the basic terms g : G(a, b), as well as the
formal composites of such basic terms. This results in:

Definition 5.4. The collection of relevant types of the theory T1[G] is inductively
defined as follows:

• the basic type G is relevant;
• the type G(p, q) is relevant provided p and q are either variables or basic

terms;
•

∏

x:A T (x) is relevant if x : A ⊢ T (x) : type is;
•

∑

x:A T (x) is relevant if at least one of A and T (x) is relevant.

If a type is not relevant then it will be called irrelevant.

Next, we define a class of terms called relevant terms.

Definition 5.5. First, let τ be a closed term of type T . Then τ is quasi-relevant
whenever one of the following holds:

• T is irrelevant.
• T = G and τ is propositionally equal to a basic term.
• T = G(a, b) and τ is propositionally equal to a formal composite.
• T =

∏

x:A S(x) is relevant, and τ is propositionally equal to a term τ ′ which
has the property that app(τ ′, σ) is quasi-relevant for each quasi-relevant
closed term σ : A.

• T =
∑

x:A S(x) is relevant and τ is propositionally equal to a term σ for
which both terms π0(σ) and π1(σ) are quasi-relevant.

Quasi-relevant terms of relevant type will be called relevant.
Next, consider a term-in-context Γ ⊢ τ : T , where T is relevant. Then Γ ⊢ τ : T

is said to be relevant (or briefly: τ is relevant if Γ is understood) whenever the re-
sult of substituting closed quasi-relevant terms for all variables mentioned in the
context yields a relevant closed term.

Thus a term is quasi-relevant if either it is relevant, or it is of irrelevant type.
The main interest is in the relevant terms, but the quasi-relevant terms facilitate
some of the definitions and proofs because they allow us to avoid unwieldy case
distinctions.

We note that the clause for terms of dependent product type is equivalent
to: τ is quasi-relevant when app(τ, σ) is quasi-relevant for each quasi-relevant
σ. Indeed, when τ ≃ τ ′ and τ ′ has this property, then for every σ we have
app(τ, σ) ≃ app(τ ′, σ), showing that τ has the property as well.

The following closure properties of relevant terms are virtually immediate from
the definition:
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Lemma 5.6. If x : A ⊢ τ(x) : T is relevant and σ : A is quasi-relevant then
τ [σ/x] is (quasi-)relevant.

Proof. This is immediate from the fact that relevance of open terms is defined in
terms of substitution. �

Lemma 5.7. The class of relevant terms (in context) is closed under propositional
equality, i.e. if τ is relevant and τ ≃ τ ′ then τ ′ is relevant as well.

Proof. We first show that it suffices to prove that the class of closed relevant terms
is closed under propositional equality. Suppose that Γ ⊢ τ ≃ τ ′ : T , where T is
relevant, and suppose that Γ ⊢ τ : T is relevant. We must show that Γ ⊢ τ ′ : T
is also relevant. To that end, consider a closed substitution instance τ ′[~a/~x] of τ ′

where all of the ~a are quasi-relevant. Since τ [~a/~x] ≃ τ ′[~a/~x] we have reduced the
problem to the case of closed terms.

However, this is an easy induction on the structure of relevant types and terms,
as closure under propositional equality is built into the definition of closed relevant
terms. �

5.4. Action of identity types on contexts. One elementary consequence of the
elimination rule for identity types is the ability to “substitute” one term τ of type
T (a) along a propositional identity f : A(a, b) to obtain a new term τ ′ of type T (b).
Explicitly, such a result of substituting b for a in τ along the propositional equality
f is defined as in the following derivation:

x, y : A, z : A(x, y) ⊢ T (y)T (x) : type

x : A ⊢ λv:T (x).v : T (x)T (x)

⊢ f : A(a, b)

⊢ J(λv.v, a, b, f) : T (b)T (a) ⊢ τ : T (a)

⊢ app
(

J(λv.v, a, b, f), τ
)

: T (b)

Indeed, we have already encountered such a term since the composition of (g · f)
of propositional equalities defined in Section 5.1 is of this form. Of course, there
is no reason to restrict ourselves to types of T (x) which depend only on a single
variable from the type A. Indeed, in order to understand the propositional equality
classes of J-terms of relevant type we will require a more general version of this
construction where the type T may contain variables of type x, y : A and z : A(x, y),
as well as further parameter variables which themselves depend on x, y and z.

Remark (Notation). In the following construction we will be dealing extensively
with lists of terms and we adopt the convention of employing “vector” notation ~v
for such lists. We also will employ notation such as Θ(~v), when Θ is some given
operation on terms, for the list Θ(v1),Θ(v2), . . . ,Θ(vn), where lengths of lists are
always clear from the context. We will write, given a term

τ :
∏

x1:A1

∏

x2:A2(x1)

· · ·
∏

xn:An(~x)

.T (~x)

and terms a1 : A1, . . . , an : An(a1, . . . , an−1),

app(τ, a1, . . . , an)
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for the result of iteratively forming application terms. I.e.,

app(τ, a1, . . . , an) = app
(

app(· · · app(τ, a1), a2) · · · ), an

)

.

Assume given a context ∆ of the form

∆ :=
(

x0, x1 : A, z : A(x0, x1), v1 : B1(x0, x1, z), . . . , vn : Bn(x0, x1, z, ~v)
)

. (13)

In fact, we might even have some other Γ to the left of the declaration (x0 : A)
here, but we prefer to avoid having to write Γ everywhere since it will not enter
into the subsequent construction. Now, given a function χ : {0, 1} → {0, 1} there
is an action of χ on the context ∆ which yields a new context ∆χ defined to be

(

x0, x1 : A, z : A(x0, x1), w1 : B1(xχ0, xχ1, zχ), . . . , wn : Bn(xχ0, xχ1, zχ, ~w)
)

where

zχ :=



















z if χ = λx∈{0,1}.x

z−1 if χ = λx∈{0,1}.|1 − x|

r(x0) if χ = λx∈{0,1}.0 and

r(x1) if χ = λx∈{0,1}.1

From the “semantic” perspective, the context ∆χ is the pullback

∆χ ∆//

(x0, x1 : A, z : A(x0, x1)) (x0, x1 : A, z : A(x0, x1))//

∆χ

(x0, x1 : A, z : A(x0, x1))
��

∆

(x0, x1 : A, z : A(x0, x1))

π

��

obtained by pulling back the projection π : ∆ → (x0, x1 : A, z : A(x0, x1)) along
the horizontal map (x0, x1 : A, z : A(x0, x1)) → (x0, x1 : A, z : A(x0, x1)) which is:

• the identity when χ is the identity map {0, 1} → {0, 1};
• the context morphism given by

(x0, x1 : A, z : A(x0, x1)) ⊢ xi : A

(x0, x1 : A, z : A(x0, x1)) ⊢ xi : A

(x0, x1 : A, z : A(x0, x1)) ⊢ r(xi) : A(xi, xi)

when χ is the constant i-valued function {0, 1} → {0, 1}; and
• the context morphism given by

(x0, x1 : A, z : A(x0, x1)) ⊢ x1 : A

(x0, x1 : A, z : A(x0, x1)) ⊢ x0 : A

(x0, x1 : A, z : A(x0, x1)) ⊢ z−1 : A(x1, x0)

when χ is the non-identity permutation of {0, 1}.
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5.5. Context morphisms induced by the action of identity types. Where
∆ and χ are as above, we now describe induced context morphisms

∆ ∆χ

∆ ⊳χ

''
∆χ∆

∆ ⊲χ

ff

with the properties that on the first three components x0, x1 : A and z : A(x0, x1)
of these contexts they are the identity and

∆ ⊳χ
[x/x0, x/x1, r(x)/z] = 1∆[x/x0,x/x1,r(x)/z] = ∆ ⊲χ

[x/x0, x/x1, r(x)/z].

First, we construct ∆ ⊳χ
by induction on n ≥ 1. The first three components

of ∆ ⊳χ
are just x0, x1 and z. We indicate the additional components using the

following notation

∆ ⊢ z ⊳χ v1 : B1(xχ0, xχ1, zχ),

∆ ⊢ z ⊳χ (v1, v2) : B2(xχ0, xχ1, zχ, z ⊳χ v1),

et cetera. When n = 1, z ⊳χ v1 is constructed as follows. First, we form the term

J[x0,x1:A,z:A(x0,x1)]B1(xχ0,xχ1,zχ)B1(x0,x1,z)(λv.v, x0, x1, z) : B1(xχ0, xχ1, zχ)B1(x0,x1,z)

in context (x0, x1 : A, z : A(x0, x1)). Then, we define z ⊳χ v1 to be the term

∆ ⊢ app
(

J(λv.v, x0, x1, z), v1
)

: B1(xχ0, xχ1, zχ).

Clearly r(x) ⊳χ v1 = v1 in context ∆[x/x0, x/x1, r(x)/z]. For the induction
step, suppose we have defined operations z ⊳χ (v1, . . . , vi), i = 1, . . . , n, with the
property that in each case

∆[x/x0, x/x1, r(x)/z] ⊢ r(x) ⊳χ (v1, . . . , vi) = vi : Bi(x, x, r(x), . . .).

Then to define z ⊳χ (v1, . . . , vn+1) we first form the term

x0, x1 : A, z : A(x0, x1) ⊢ J
(

λv1 · · ·λvn
.λv.v, x0, x1, z

)

: C(x0, x1, z)

where C(x0, x1, z) is the type
∏

v1

· · ·
∏

vn

Bn+1

(

xχ0, xχ1, zχ, z ⊳χ v1, . . . , z ⊳χ (v1, . . . , vn)
)Bn+1(x0,x1,z,~v)

where vi : Bi(x0, x1, z, v1, . . . , vn−1). Then, z ⊳χ (v1, . . . , vn+1) is the term

app

(

J
(

λv1 · · ·λvn
.λv.v, x0, x1, z

)

, v1, . . . , vn+1

)

,

which trivially has the property that

∆[x/x0, x/x1, r(x)/z] ⊢ r(x) ⊳χ (v1, . . . , vn+1) = vn+1.

Thus, we have completed the construction of ∆ ⊳χ
.

The construction of ∆ ⊲χ
is essentially the same. For example, it is the identity

in the first three compoments. In the case where n = 1 we define the term

x0, x1 : A, z : A(x0, x1), w1 : B1(xχ0, xχ1, zχ) ⊢ z ⊲χ w1 : B1(x0, x1, z)

by setting

z ⊲χ w1 := app
(

J[x0,x1:A,z:A(x0,x1)]B1(x0,x1,z)B1(xχ0,xχ1,zχ)(λw .w, x0, x1, z), y1
)

.
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In the induction step we first form the type J(λw1 · · ·λwn
.λw.w, x0, x1, z) of type

D(x0, x1, z) where this type is defined to be
∏

w1

· · · .
∏

wn

Bn+1

(

x0, x1, z, z ⊲χ w1, . . . , z ⊲χ (w1, . . . , wn)
)Bn+1(xχ0,xχ1,zχ, ~w)

and wi : Bi(xχ0, xχ1, zχ, w1, . . . , wi−1). Then

z ⊲χ (w1, . . . , wn+1) := app

(

J
(

λw1 · · ·λwn
.λw.w, x0, x1, z

)

, w1, . . . , wn+1

)

.

Thus, we have also constructed ∆ ⊲χ
.

Remark (Notation). In general, when dealing with terms that are either of the form
z ⊳χ (v1, . . . , vn) or z ⊲χ (w1, . . . , wn) such that the map χ and the sequences of
variables (or terms) (v1, . . . , vn) or (w1, . . . , wn) are understood, we will omit χ and
all but the last element of these sequences. That is, we denote z ⊳χ (v1, . . . , vn)
and z ⊲χ (w1, . . . , wn) by z ⊳ vn and z ⊲ wn when no confusion will result.
Also, it is worth emphasizing here that the notation should also include the context
∆ to which the entire procedure is applied, but this is not in general necessary.
Nonetheless, when we do wish to emphazize the context we write [∆]z ⊳ vn or
[∆]z ⊲ wn.

In Section 5.7 below we will restrict our attention exclusively to the case where
χ is a constant and accordingly we write z ⊳i vn or z ⊲i vn for i ∈ {0, 1}.

Remark. Although it is convenient to construct the maps ∆ ⊳χ
and ∆ ⊲χ

at the
level of contexts, we will almost exclusively be concerned with substitution instances
of these context morphisms. Accordingly, we employ the same notation for these
substitution instances. E.g., given a, b : A, f : A(a, b) and c : B1(a, b, f), we will
write f ⊳0 c : B1(a, a, r(a)) and f ⊳1 c : B1(b, b, r(b)) for the results of
substituting into the corresponding context morphisms, for a context ∆ as above.

5.6. Associated transition terms. Given ∆ and χ as above, we would now like
to show that there exist, in addition to the context morphisms ∆ ⊳χ

and ∆ ⊲χ

described above, associated “2-cells”

∆ ∆χ

∆ ⊳χ // ∆χ

∆

∆ ⊲χ

��

∆

∆

1∆

-- ∆ ∆χ
∆ ⊳χ

//

∆χ

∆χ

1∆χ

��

κ
��

KS
ν

which are, in a suitable sense, weakly invertible. Note though that this is meant
principally by way of motivation for we will not here define a general notion of
2-cell or of weakly invertible map; these are the only ones with which we are here
concerned. Suppose we are given terms a0, a1 : A,f : A(a0, a1) together with

b1 : B1(a0, a1, f), . . . , bn : Bn(a0, a1, f,~b ), and

d1 : B1(aχ0, aχ1, fχ), . . . , dn : Bn(aχ0, aχ1, fχ, ~d ).

Observe that given such terms we obtain

f ⊲ (f ⊳ bn) : Bn

(

a0, a1, f, f ⊲ (f ⊳ ~b )
)

.



36 S. AWODEY, P. HOFSTRA, AND M. A. WARREN

and

f ⊳ (f ⊲ dn) : Bn

(

aχ0, aχ1, fχ, f ⊳ (f ⊲ ~d )
)

.

In the general case, where n > 1, we define terms

κ(f) := J
(

λv1 · · ·λvn
.vn, a0, a1, f) : C(a0, a1, f)

where the type C(x0, x1, z) is defined to be
∏

v1

· · ·
∏

vn−1

Bn(x0, x1, z, ~v )Bn(x0,x1,z,z ⊲ (z ⊳ ~v ))

In the same way,

ν(f) := J
(

λw1 · · ·λwn
.wn, a0, a1, f) : C′(a0, a1, f)

where the type C′(x0, x1, z) is defined to be
∏

w1

· · ·
∏

wn−1

Bn(xχ0, xχ1, zχ, ~w )Bn(xχ0,xχ1,zχ,z ⊳ (z ⊲ ~w ))

We refer to the terms κ(f) and ν(f) as transition terms. We note that, to be as
precise as possible, the notation for these transition terms should also include the
context ∆ and the map χ. However, these will be evident from the context in each
of the cases that we consider.

5.7. The action preserves relevance. The following lemma shows that, up to
propositional equality, all J-terms are expressible in the form f ⊲i τ , for i = 0, 1.
We recall that, for i = 0, 1, we write f ⊳i τ and f ⊳i τ as abbreviations for
the terms f ⊳χ τ and f ⊲χ τ , respectively, where χ is the constant function
λx∈{0,1}.i

Lemma 5.8. Given a J-term J(ϕ, a, b, f) : B(a, b, f), there exist propositional
identities:

f ⊲0 ϕ(a) ≃ J(ϕ, a, b, f) ≃ f ⊲1 ϕ(b).

Proof. The required term witnessing the propositional equality f ⊲0 ϕ(a) ≃
J(ϕ, a, b, f) is constructed as follows:

x, y : A, z : A(x, y) ⊢ B(x, y, z)
(

z ⊲0 ϕ(x), J(ϕ, x, y, z)
)

: type

x : A ⊢ r(ϕ(x)) : B(x, x, r(x))
(

r(x) ⊲0 ϕ(x), J(ϕ, x, x, r(x))
)

⊢ f : A(a, b)
Id elimination

⊢ J
(

r(ϕ(x)), a, b, f
)

: B(a, b, f)
(

f ⊲0 ϕ(a), J(ϕ, a, b, f)
)

where the term r(ϕ(x)) has the correct type since both r(x) ⊲0 ϕ(x) and
J(ϕ, x, x, r(x)) are definitionally equal to ϕ(x). The construction of the other
propositional equality J(ϕ, a, b, f) ≃ f ⊲1 ϕ(b) is essentially the same. �

Intuitively, the term f ⊲0 ϕ(a) should be thought of as a representation of the
groupoid interpretation of J(ϕ, a, b, f), as described in Section 5.2. As such, the fact
that these terms are propositionally equal should come as no surprise. Nonetheless,
we emphasize that f ⊲0 ϕ(a) is constructed using also the dependent products in
an essential way.

With this elementary (but useful) observation at our disposal we will be able to
prove that all terms of relevant type are relevant in Section 5.8 below. First though
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it is necessary to show that the relevant terms are closed under the formation of
elimination terms for identity types.

Lemma 5.9. Let quasi-relevant terms a0, a1 : A and f : A(a0, a1) be given together
with a type x0, x1 : A ⊢ T (x0, x1) which is both basic and relevant. If τ : T (a0, a1)
is relevant, then so is f ⊳i τ , for i = 0, 1. Similarly, if τ ′ : T (ai, ai) is relevant,
then so is f ⊲i τ ′ for i = 0, 1.

Proof. First observe that when neither variable x0 nor x1 occurs in T (x0, x1), we
have that f ⊳i τ ≃ τ . Since τ may itself depend on a0, a1 or f it is necessary to
exercise some care. I.e., we must observe that

x0, x1 : A, z : A(x0, x1) ⊢
∏

v:T T (v, z ⊳i v) : type

x : A ⊢ λv:T .r(v) :
∏

v:T T (v, r(x) ⊳i v)

⊢ f : A(a0, a1)
Id elimination

⊢ J(λv:T .r(v), a0, a1, f) :
∏

v:T T (v, f ⊳i v) ⊢ τ : T

⊢ app
(

J(λv:T .r(v), a0, a1, f), τ
)

: T (τ, f ⊳i τ)

in order to obtain the required homotopy. A similar construction shows that in this
case τ ′ ≃ f ⊲i τ ′. Thus, it remains to consider only those cases, to which we now
turn, where at least one of x0 or x1 occurs in the type.

Case T (x0, x1) = G(x0, x1): If i = 0, then f ⊳i τ ≃ (f−1 ·τ) and is therefore
relevant. Similarly, if i = 1, then f ⊳i τ ≃ (τ · f−1).

We will not go through each of these individual cases in detail as they
are all essentially the same. However, in order to give some indication of
the construction of these propositional identities we consider the case where
i = 1 in full (it is slightly more complicated than i = 0). In this case, we
first define the type

C(x0, x1, z) :=
∏

v:G(x0,x1)

G(x1, x1)
(

v · z−1, z ⊳1 v
)

.

Then, x : G ⊢ λv:G(x,x).ρv : C(x, x, r(x)) where ρv is the propositional
equality witnessing the fact that reflexivity terms are (weak) units on the
right for composition. I.e., ρα : α · r(a) ≃ α where a is the domain of an
identity proof α. Thus,

app
(

J([x : G]λv:G(x,x).ρv, a0, a1, f), τ
)

: G(a1, a1)(τ · f
−1, f ⊳1 τ),

as required.
On the other hand, f ⊲0 τ ′ ≃ (f · τ ′) and f ⊲1 τ ′ ≃ (τ ′ · f).

Case T (x0, x1) = G(x0, v) for v basic or a variable: In this case:

f ⊳i τ ≃

{

τ if i = 0 and

(τ · f−1) if i = 1.

In this case and each subsequent case it is easily seen that f ⊲i τ ′ is
expressible up to propositional equality as the term obtained by replacing
τ with τ ′, f with f−1, and f−1 with f in the expression of f ⊳i τ as
a relevant term for that case. As such, we omit the explicit statement of
these expressions.
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Case T (x0, x1) = G(v, x0) for v relevant: In this case:

f ⊳i τ ≃

{

τ if i = 0 and

(f · τ) if i = 1.

Case T (x0, x1) = G(x1, v) for v relevant: In this case:

f ⊳i τ ≃

{

(τ · f) if i = 0 and

τ if i = 1.

Case T (x0, x1) = G(v, x1) for v relevant: In this case:

f ⊳i τ ≃

{

(f−1 · τ) if i = 0 and

τ if i = 1.

Case T (x0, x1) = G(x1, x0): In the other case, f ⊳i τ ≃ (f ·τ). In this case:

f ⊳i τ ≃

{

(τ · f) if i = 0 and

(f · τ) if i = 1.

�

Lemma 5.10. Given a context ∆ as in (13) together with a fixed i = 0, 1. If the
type Bn(x0, . . . , vn−1) is basic, then all of the terms

∆ ⊢ z ⊳ vn,

∆χ ⊢ z ⊲ wn,

x0, x1 : A, z : A(x0, x1) ⊢ κ(z), and

x0, x1 : A, z : A(x0, x1) ⊢ ν(z)

are quasi-relevant.

Proof. We consider the two possible cases for the type Bn(x0, x1, z, ~v ). In the first
case, it is equal to G and, as is easily verified, we have that z ⊳i vn ≃ vn. As
such, z ⊳i vn is relevant and similarly κ(z) is relevant since it is propositionally
equal to λv1 · · ·λvn

.vn.
Next, the case where Bn(x0, x1, z, ~v ) is G(u, v) can be split into separate cases,

as in the proof of Lemma 5.9, depending on what u and v are. First, if neither
u nor v occurs in ∆, then this case is identical to the one just considered. Next,
note that, since the type of z ⊳i vn is assumed to be relevant, it follows that
A = G and if u or v occurs in ∆, then it is either x0 or x1. Thus, the remaining
cases correspond to those from the proof of Lemma 5.9. Indeed, z ⊳i vn in these
cases is seen to be propositionally equal to the result of λ-abstracting the terms
constructed there. For example, when Bn(x0, x1, z, ~v ) = G(u, x1), for u not in ∆,
we have that z ⊳i vn = app(α,~v ) where α is the auxiliary term

J(λv1 · · ·λvn
.vn, x0, x1, z) :

∏

v1

· · ·
∏

vn−1

G(u, xi)
G(u,x1).

Now, when i = 0, α ≃ λv1 · · ·λvn
.(z−1 ·vn) so that z ⊳0 vn ≃ (z−1 ·vn). Similarly,

when i = 1, α ≃ λv1 · · ·λvn
.vn and z ⊳0 vn ≃ vn. The other cases are likewise

obtained by abstraction from the terms constructed in the proof of Lemma 5.9. For
the transition term κ(z), note that here

κ(z) = J[x0,x1:G,z]C(x0,x1,z)(λv1 · · ·λvn
.vn, x0, x1, z) : C(x0, x1, z)
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where

C(x0, x1, z) =
∏

v1

· · ·
∏

vn−1

G(u, x1)
G(u,x1).

As such, κ(z) ≃ λv1 · · ·λvn
.vn. The same fact, indeed, holds in all of the remaining

cases.
An essentially “dual” argument can be given for z ⊲ wn and ν(z). �

Proposition 5.11. Given a context ∆ as in (13), all of the terms

∆ ⊢ z ⊳ vn,

∆χ ⊢ z ⊲ wn,

x0, x1 : A, z : A(x0, x1) ⊢ κ(z), and

x0, x1 : A, z : A(x0, x1) ⊢ ν(z)

are quasi-relevant, for i = 0, 1.

Proof. We prove simultaneously all of the claims by induction on the structure of
Bn(x0, x1, z, ~v ) as a relevant type. When this type is basic, it is by Lemma 5.10.

Assume given a sequence of quasi-relevant terms a0, a1, f, b1, . . . , bn−1, bn of the
appropriate types and consider the case where Bn(x0, x1, z, ~v ) is a dependent prod-
uct type,

Bn(x0, x1, z, ~v ) =
∏

y:S(...)

T (x0, x1, z, ~v, y),

for T (. . .) a relevant type. Given a quasi-relevant term s of type S(ai, ai, r(ai), f ⊳

~b ), it suffices to show that app(f ⊳ bn, s) is quasi-relevant. By induction hypoth-
esis,

f ⊲ s : S(a0, a1, f, f ⊲ (f ⊳ ~b ))

is quasi-relevant, where we emphasize that this term is obtained via the action
f ⊲i s for the context

(

x0, x1 : A, z : A(x0, x1), . . . , vn−1 : Bn−1(. . .), y : S(x0, x1, z, ~v )
)

. (14)

Thus, also by induction hypothesis, the term

ξ := app(κ′(f), b1, . . . , bn−1, f ⊲ s) : S(a0, a1, f,~b )

is quasi-relevant, where we write κ′(f) for the transition term defined with respect
to the context (14).

As such, since bn is relevant it follows that

app(bn, ξ) : T (a0, a1, f,~b, ξ)

is quasi-relevant and thus, by induction hypothesis, so is

f ⊳ app(bn, ξ) : T (ai, ai, r(ai), f ⊳ ~b, f ⊳ ξ),

where this is now the action for the extended context
(

x0, x1 : A, z : A(x0, x1), . . . , vn−1 : Bn−1(. . .), y : S(. . .), y′ : T (x0, x1, . . . , y)
)

.

Observe that there exists a propositional equality f ⊳ ξ ≃ s defined by

ϑ := app(J(λv1 · · ·λvn−1 .λy′ .r(y′), a0, a1, f),~b, s)
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Moreover, since f ⊳ ξ is neither a variable nor a basic term, the type of ϑ is not
relevant. Thus, we may conclude that the result

ϑ ⊳1 app(bn, ξ) : T (ai, ai, r(ai), . . . , s)

of substituting along ϑ is quasi-relevant by the induction hypothesis (where the
operation ⊳1 here is given with respect to the obvious context). Finally, this term
is propositionally equal to app(f ⊳ bn, s) and the latter is therefore quasi-relevant.

To see that κ(f) is quasi-relevant it suffices to prove that

app(κ(f),~b, α, s′) : T (a0, a1, f,~b, s
′)

is quasi-relevant when

α :
∏

y:S(a0,a1,f,f ⊲ (f ⊳ ~b ))

T (a0, a1, f, f ⊲ (f ⊳ ~b ), y)

and s′ : S(a0, a1, f,~b ) are. Well, using the induction hypothesis, both

app(α, f ⊲ (f ⊳ s′)) : T (a0, a1, f, f ⊲ (f ⊳ ~b ), f ⊲ (f ⊳ s′))

and

app
(

κ(f),~b, app(α, f ⊲ (f ⊳ s′))
)

: T (a0, a1, f,~b, s
′)

are quasi-relevant. Moreover, this is easily seen to be propositionally equal to
app(κ(f), α, s′).

Next, when Bn(. . .) is a dependent sum type
∑

y:S(x0,x1,z,~v )

T (x0, x1, z, ~v, y),

we have by definition that bn is propositionally equal to a term τ with π0(τ) and
π1(τ) quasi-relevant. Since it follows that f ⊳ bn ≃ f ⊳ τ it therefore suffices
to show that π0(f ⊳ τ) and π1(f ⊳ τ) are quasi-relevant. First, note that there
exists a propositional equality π0(f ⊳ τ) ≃ f ⊳ π0(τ) given by

ζ := app
(

J([x : A]λv1 · · ·λvn−1 .λu:
P

y:S(...) T (...).r(π0(u)), a0, a1, f),~b, τ
)

.

By induction hypothesis, f ⊳ π0(τ) is quasi-relevant and therefore so is π0(f ⊳

τ). On the other hand, the induction hypothesis implies that

f ⊳ π1(τ) : T (ai, ai, r(ai), f ⊳ ~b, f ⊳ π0(τ))

is quasi-relevant. But then, because ζ is of irrelevant type,

ζ ⊳0 (f ⊳ τ) : T (ai, ai, r(ai), f ⊳ ~b, π0(f ⊳ τ))

is quasi-relevant, where this action ζ ⊳0 . . . is simply the result of substitution
along the propositional equality ζ and is defined with respect to the obvious context.
It is easy to see though that this term is propositionally equal to π1(f ⊳ pair(s, τ))
and therefore the latter is quasi-relevant, as required.

In this case, to see that κ(f) is relevant, let a quasi-relevant term α of type

Bn(a0, a1, f, f ⊲ (f ⊳ ~b )) be given. As such, there exists a propositionally equal
term τ ′ with π0(τ

′) and π1(τ
′) quasi-relevant. Since

app
(

κ(f),~b, α
)

≃ app
(

κ(f),~b, τ ′
)

,
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it then suffices to show that the term on the right-hand side is quasi-relevant. By in-

duction hypothesis, app(κ′(f),~b, π0(τ
′)) is quasi relevant, where κ′(f) is the transi-

tion term defined with respect to the appropriate context. Thus, π0(app(κ(f), . . . , τ ′))
is also quasi-relevant since

π0(app(κ(f), . . . , τ ′)) ≃ app(κ′(f),~b, π0(τ
′)). (15)

Likewise, we have by definition that

π1(τ
′) : T (a0, a1, f, f ⊲ (f ⊳ ~b ), π0(τ

′))

is relevant. Moreover, there exists a propositional equality

f ⊲
(

f ⊳ app(κ′(f),~b, π0(τ
′))

)

≃ π0(τ)

which we denote by ζ′, where this κ′(f) is the transition term defined with respect
to the evident context. By the induction hypothesis, and the fact that ζ′ is quasi-
relevant, the term

ζ′ ⊳0 π1(τ
′) : T

(

a0, a1, f, f ⊲ (f ⊳ ~b ), f ⊲ (f ⊳ app(κ′(f),~b, π0(τ
′)))

)

,

obtained by substituting along the propositional equality ζ′, is quasi-relevant. Thus,
again by induction hypothesis, the term

app
(

κ′′(f),~b, app(κ′(f),~b, π0(τ
′)), ζ′ ⊳0 π1(τ

′)
)

of type T (a0, a1, f,~b, app(κ
′(f),~b, π0(τ

′))) is quasi-relevant, where this κ′′(f) is the
transition with respect to the obvious extended context ending with a variable
declaration of type T (. . .). Finally, substituting along the propositional equality ϑ′

from (15) gives a quasi-relevant term

ϑ′ ⊳0 app
(

κ′′(f),~b, app(κ′(f),~b, π0(τ
′)), ζ′ ⊳0 π1(τ

′)
)

which is propositionally equal to π1(app(κ(f),~b, τ ′)).
The proofs, in each of the cases considered above, that the terms f ⊲ dn and

ν(f) are quasi-relevant are essentially dual to those given for f ⊳ bn and κ(f). �

Corollary 5.12. Assume given a relevant term x : A ⊢ ϕ(x) : B(x, x, r(x))
together with terms a, b : A and f : A(a, b) assumed to be relevant if they are of
relevant type, then J[x,y:A,z]B(x,y,z)([x : A]ϕ(x), a, b, f) : B(a, b, f) is relevant when
B(a, b, f) is.

Proof. By Lemma 5.8 it suffices to prove that f ⊲0 ϕ(a) is relevant. The claim is
then immediate by Proposition 5.11. �

5.8. Proof that T1(G) is the free groupoid on G. We are finally in a position
to prove the central technical result of the paper:

Proposition 5.13. Every term of relevant type is relevant.

Proof. Given a term τ of relevant type T , we prove that τ is relevant by induction
on the derivation of τ .

When τ is a lambda abstraction λx:A.τ
′(x) and T =

∏

x:A S(x) the induction
hypothesis implies that x : A ⊢ τ ′(x) : S(x) is relevant. Thus, given a quasi-
relevant term a : A, app(τ, a) = τ ′(a) is also relevant.

If τ is the result app(τ ′, a) of applying the elimination rule for dependent prod-
ucts, then, by induction hypothesis, τ ′ is relevant. We may assume that τ ′ is itself
a closed term, for otherwise in order to determine whether τ is relevant we would



42 S. AWODEY, P. HOFSTRA, AND M. A. WARREN

first substitute quasi-relevant terms for the free variables. Thus, by the clause in
the definition of relevant terms governing terms of dependent product type, τ is
relevant.

The case where τ is an elimination term J(ϕ, a, b, f) is by the induction hypoth-
esis together with Corollary 5.12.

When τ is a recursion term rec(m, c, γ) : T (m) it follows from Corollary B.4 from
Appendix B that m is propositionally equal, via a propositional equality ϑ : N(m, n),
to a canonical numeral n = Sn(0). Now, the recursion term

rec(n, c, γ) = γ
(

n− 1, γ(n− 2, · · ·γ(0, c) · · · )
)

is relevant since, by induction hypothesis, γ(x, y) is. Moreover, the result

ϑ ⊳0 rec(n, c, γ) : T (m)

is therefore also relevant, since ϑ is of irrelevant type. As such, τ is relevant since
τ ≃ ϑ ⊳0 rec(n, c, γ). To see that there exists such a propositional equality, define
the term

J
(

[x : N]λv.λw.r(rec(x, v, [x
′, y′]app(w, x′, y′)),m, n, ϑ) : B(m, n, ϑ)

with pattern type x, y : N, z : N(x, y) ⊢ B(x, y, z) : type given by
∏

v:T (0)

∏

w:
Q

u:N

Q

u′:T(u) T (S(u))

T (x)
(

rec(x, v, [x′, y′]ŵ), z ⊳0 rec(y, v, [x′, y′]ŵ)
)

,

where ŵ denotes the term app(w, x′, y′). Then the required propositional equality
is app(J(λv.λw.r(rec(x, v, w)),m, n, ϑ), c, λu.λu′ .γ(u, u′)).

Assume τ is a pair term pair(a, s) for a : A and s : S(a). Since T =
∑

x:A S(x)
it follows from the induction hypothesis that both a and s are quasi-relevant. Thus,
τ is trivially relevant by definition.

When τ is an elimination term R(ψ, τ ′) for dependent sums it follows from the
induction hypothesis, and the fact that x : A, y : S(x) ⊢ T (pair(x, y)) is a
relevant type since T (τ ′) is, that x : A, y : S(x) ⊢ ψ(x, y) : T (pair(x, y)) is
relevant. Moreover, the induction hypothesis also implies that τ ′ is quasi-relevant
and we consider the two cases where τ ′ is relevant and where it is of irrelevant type
separately. In the first case, it follows that there exists a propositional equality
ϑ : τ ′ ≃ α such that π0(α) and π1(α) are quasi-relevant. As such, ψ

(

π0(α), π1(α)
)

is a quasi-relevant term of type T
(

pair(π0(α), π1(α))
)

. There is a propositional
equality pair(π0(α), π1(α)) ≃ α given by the elimination term

R
(

[x : A, y : S(x)]r(pair(x, y)), α
)

:
∑

x:A

S(x)
(

pair(π0(α), π1(α)), α
)

,

which we denote by ζ. Thus, the term ζ ⊳1 ψ(π0(α), π1(α)) of type T (α) is quasi-
relevant by Proposition 5.11. Finally, passing along the propositional equality ϑ
gives that

ϑ ⊳0

(

ζ ⊳1 ψ(π0(α), π1(α))
)

: T (τ ′)

is quasi-relevant and it is easily seen that this term is propositionally equal to τ . �

Remark. It is important to note at this point to which specific theories Proposition
5.13 applies. Clearly it applies to Tω[G] as well as to any theory of the form Tn[G]
for n ≥ 0. Finally, it also applies to any equational extension T, in the sense of
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Section 2.6, of either Tω[G] or Tn[G] for n ≥ 0. We will use this fact in Section 6
below.

The main consequence is the following:

Theorem 5.14. Let G be a globular set. Then the comparison functor ΦG :
F(G) → T1(G) from the free groupoid on the underlying graph of G to the free
T1-algebra on G is an equivalence of groupoids. This equivalence is natural in G.

Proof. In section 5.1 it has been shown that ΦG has a retraction; as such, it is
faithful. Since the closed relevant terms of type G are, up to propositional equality,
exactly the basic terms a for a ∈ G0 this proves that the comparison functor
ΦG : F(G) → T1(G) is essentially surjective. Since the closed relevant terms of
type G(a, b) are, up to propositional and hence up to definitional equality, exactly
the formal composites of basic edges h ∈ G1, this proves that ΦG is full on arrows
as well. Naturality is straightforward and is left to the reader. �

Remark. It is also readily seen that Φ− constitutes a morphism of monads F(−) →
T1(−) in Mon(rGSet).

6. The Quillen model structure on MLCx1

In this section we study the general categorical properties of the category MLCx1

of 1-truncated Martin-Löf complexes. Specifically, we establish (Theorem 6.22) the
existence of a cofibrantly generated Quillen model structure on the category of
such complexes which gives a Quillen equivalence with the category of groupoids.
Since groupoids are a model of homotopy 1-types it then follows that 1-truncated
Martin-Löf complexes are also a model. The model structure on MLCx1 is ob-
tained by transferring, using a theorem due to Crans [4], the model structure on
the category of groupoids along the adjunction (10). In order to transfer the model
structure it is first necessary to understand the behavior of colimits in MLCx1.
In order to show that one of the hypotheses of the transfer theorem is satisfied it
will be necessary to understand in particular the filtered colimits in MLCx1 and
in Section 6.1 we prove that MLCx1 has all filtered colimits and that these are
created by the forgetful functor MLCx1 → rGSet. For general colimits — which
must also be properly understood in order to apply the transfer theorem — it is
convenient to use, instead of MLCx1, an equivalent category Th1, which has as
objects certain 1-truncated type theories. This category is introduced and proved
to be equivalent to MLCx1 in Section 6.2. We then explain the construction of
general colimits in the category Th1 in Section 6.3. The adjunction between Th1

and Gpd, as well as other issues related to the connection between groupoids and
Martin-Löf complexes, is then described in Section 6.4. Finally, in Section 6.5 we
complete the proof of Theorem 6.22 and its corollaries.

6.1. Filtered colimits in MLCx1. The aim of this section is to show that MLCx1

has all filtered colimits and that these are created by the forgetful functor MLCx1 →
rGSet. In order to establish this fact we will show that the functor T1 : rGSet →
rGSet preserves filtered colimits (i.e., T1 is a finitary monad). That MLCx1 has
all filtered colimits which are created by the forgetful functor then follows from the
fact that the forgetful functor creates any colimits that are preserved by T1. We
will use this result in Section 6.5 in order to establish the existence of a Quillen
model structure on MLCx1.



44 S. AWODEY, P. HOFSTRA, AND M. A. WARREN

Assume given a filtered category I and a functor A : I → rGSet. Denote by
A∞ the colimit of this functor. By definition, an n-cell of A∞ is an equivalence class
[a] of n-cells of the coproduct

∐

iA(i), where a ∈ A(i) is equivalent to a′ ∈ A(j) if
and only if there exist arrows ϕ : i→ k and ϕ′ : j → k in I such that

A(ϕ)(a) = A(ϕ′)(a′).

We would like to prove that

T1(A
∞) ∼= lim

−→
i

T1

(

A(i)
)

. (16)

This will require an analysis of the valid derivations of the theory T1[A
∞]. To

begin with, note that T1[A
∞] is obtained by augmenting T1 with the new basic

type pA∞q as well as with basic terms p[a]q of the appropriate types as described
in Section 3.

We would like to introduce some operations for manipulating the syntax of this
theory. In particular, fixing any object i of I, if τ is an expression of the theory
T1[A

∞] containing exactly the basic term expressions p[a1]q, . . . , p[an]q, where it is
possible that n = 0, then, given any expressions e1, . . . , en of T1[A(i)], we define a
new expression

τ
{

e1/p[a1]q, . . . , en/p[an]q
}

∈ ExpA(i)

to be the result of formally substituting em for each occurrence of p[am]q in τ and
similarly replacing each occurrence of pA∞q with pA(i)q. The following lemma
says that it is always possible, given a sequence of terms of identity type in T1[A

∞]
to find an index i and replacement terms in T1[A(i)] which have the same source
and target relations as the original terms. In particular, any formal composite in
T1[A

∞] already exists at some stage T1[A(k)].

Lemma 6.1. Given a list [f1], . . . , [fn] of 1-cells of A∞, there exists an object k
of I and 1-cells f ′

1, . . . , f
′
n of A(k) such that f ′

m ∈ [fm], for m = 1, . . . , n, and
t(f ′

m) = s(f ′
k) when t(fm) = s(fk), for any m, k.

Proof. A straightforward proof by induction on n using the fact that I is filtered.
�

Lemma 6.2. Assume D is a derivation in T1[A
∞] in which exactly the basic term

expressions p[a1]q, . . . , p[an]q occur. Then there exists an object k of I together
with cells b1, . . . , bn of A(k) such that bm ∈ [am] for m = 1, . . . , n and

D′ := D
{

pb1q/p[a1]q, . . . , pbnq/p[an]q
}

is a derivation in T1[A(k)].

Proof. Use Lemma 6.1, regarding vertices as edges via their identity maps, to choose
k together with the required terms b1, . . . , bn in such a way that these terms satisfy
the appropriate source and target relations.

The proof that D{pb1q/p[a1]q, . . . , pbnq/p[an]q} is a derivation in T1[A(k)] is an
induction on D. The non-trivial case of the axioms of T1[A

∞] follows from the
fact that b1, . . . , bn have been chosen in a way compatible with source and target
maps. Thus, when p[f ]q : pA∞

q(p[a]q, p[b]q) is an axiom, it follows that the chosen
representatives f ′ ∈ [f ], a′ ∈ [a] and b′ ∈ [b] at stage A(k) are such that f ′ : a′ → b′,
and therefore the corresponding judgement is an axiom of T1[A(k)]. �



MARTIN-LÖF COMPLEXES 45

Lemma 6.3. Given a filtered category I together with a functor A : I → rGSet,
there is an isomorphism (16) of reflexive globular sets.

Proof. Assume given a reflexive globular setX together with a cocone xi : T1A(i) →
X . We now describe the induced map ξ : T1A

∞ → X . A vertex of T1A
∞ is just a

term τ of T1[A
∞] and by Lemma 6.2 there exists some object k of I together with

elements b1, . . . , bn of A(k) such that

τ ′ := τ{pb1q/p[a1]q, . . . , pbnq/p[an]q}

is a vertex of T1A(k), where p[a1]q, . . . , p[an]q is a complete list of the basic terms
occurring in τ . Thus, we define:

ξ(τ) := xk(τ ′).

This definition is independent of the choice of k and b1, . . . , bn since given any other
choice of k′, b′1, . . . , b

′
n and corresponding term τ ′′, it follows from the fact that I

is filtered that there exists a further object l and maps ϕ : k → l and ϕ′ : k′ → l
such that A(ϕ)(bm) = A(ϕ′)(b′m) for m = 1, . . . , n. Then

T1A(k) T1A(l)
T1A(ϕ) // T1A(k′)T1A(l)

T1A(ϕ′)ooT1A(k)

X
xk //

T1A(k′)

X
xk′oo

T1A(l)

X

xl

��

commutes. Moreover, it is easily seen, using the description of the action of T1 on
arrows from Section 3, that

T1A(ϕ)(τ ′) = T1A(ϕ′)(τ ′′).

This definition extends to give an action of ξ on 1-cells of T1A
∞. That ξ is a map

of reflexive globular sets then follows from the same argument showing that it is
well-defined.

It is straightforward to verify that each xi can be recovered by precomposing ξ
with the map T1A(i) → T1A

∞. Finally, for uniqueness of ξ, observe that implicit
the construction of ξ above we have proved that for each cell τ of T1A

∞ there exists
some k such that τ is in the image of the map T1A(k) → T1A

∞. �

We then have as an immediate consequence of Lemma 6.3 that the forgetful
functor MLCx1 → rGSet creates filtered colimits and a fortiori MLCx1 has all
filtered colimits.

6.2. Equivalence with the category of theories. It is sometimes more con-
venient, when studying Martin-Löf complexes, to deal with theories instead of
T1-algebras. In order to facilitate this approach it is useful to introduce a category
of 1-truncated theories which is equilavent to MLCx1. Then constructions can be
carried out directly in terms of theories which are often simpler to understand than
the corresponding algebras.

Definition 6.4. The category Th1 of T1-theories has as objects theories T′ such
that there exists a reflexive globular set G and T′ is an equational extension (in
the sense of Section 2.6) of T1[G] such that the added equations are only between
terms of types of the form pGq

n(. . .) for n ≥ 0. The morphisms in Th1 are theory
morphisms, where a theory morphism F : T′ → T′′ is required to be a map
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Exp(T′) → Exp(T′′) of expressions (i.e., it must commute with type and term
forming operations and, in particular, it must send the “base-type” pGq of T′ to
the corresponding “base-type” of T′′) which preserves valid judgements.

Remark. We will often write objects of Th1 in the form T1[G|E] where E is the
set of equations defining the theory as an extension of T1[G].

There is a functor B(−) : Th1 → MLCx1 which sends a theory T′ = T1[G|E]
to the reflexive globular set Γ(G)T′ . For such a theory, the associated action
γ : T1(B(T′)) → B(T′) is defined first on the level of theories as the canonical ex-
tension Exp

B(T′) → Exp(T′) of the map τ 7→ τ . I.e., γ scans a term of T1[B(T′)]
for subterms of the form pτq and when it finds one it removes the brackets to give
τ .

Example 6.5. Given terms β : pGq, τ : pGq(paq, pbq) and τ ′ : pGq(paq, β) of
T′, we may form the “twisted composite” term in T1[B(T′)] by first forming the
elimination term

x, y : pB(T′)q, z : pB(T′)q(x, y) ⊢ pB(T′)q(y, pβq)pB(T′)q(x,pβq) : type

x : pB(T′)q ⊢ λv.v : pB(T′)q(ppbqq, x)pB(T′)q(ppbqq,x)

⊢ pτq : pB(T′)q(ppaqq, ppbqq)

⊢ J(λv.v, ppbqq, pβq, pτ ′q) : pB(T′)q(ppbqq, pβq)pB(T′)q(ppaqq,pβq)

and then applying this to pτ ′q to obtain

⊢ app(J(λv.v, ppaqq, ppbqq, pτq), pτ ′q) : pB(T′)q(ppbqq, pβq).

The result of applying γ to this term is then

app(J(λv .v, paq, pbq, τ), τ
′).

The map γ is seen, by induction on derivations, to preserve valid judgements
and therefore gives a map of reflexive globular sets. With this definition, γ clearly
satisfies the unit law for an action and the multiplication law is easily seen to be
satisfied by observing that γ and µ do essentially the same thing. E.g., given a
term of the form

θ(pφ1(pτ
1
1 q, . . . , pτ1

n1
q)q, . . . , pφm(pτm

1 q, . . . , pτmnm q)q),

where we are regarding θ(−) and φi(−) as “contexts” (in the sense of “terms with
holes in them” and not variable contexts) and explicitly exhibiting all basic terms
occuring in the term (and the basic terms occuring one level down in its basic terms
themselves). Then the action of γ ◦ T1(γ) is to first erase “inner” brackets to give

θ(pφ1(τ
1
1 , . . . , τ

1
n1

)q, . . . , pφm(τm
1 , . . . , τ

mnm )q),

and then to erase the remaining “outer” brackets, leaving

θ(φ1(τ
1
1 , . . . , τ

1
n1

), . . . , φm(τm
1 , . . . , τ

mnm )).

On the other hand, γ ◦ µ first erases the “outer” brackets and then the remaining
“inner” brackets, which clearly gives the same result. Functoriality of B(−) is by
definition of the algebra actions.

There is also a functor T(−) : MLCx1 → Th1 which sends a T1-algebra (A,α :
T1(A) → A) to the theory T1[A|α] extending T1[A] by equations of the form

pα(τ)q = τ : pAq
n(τ0

0 , τ
0
1 , . . . , τ

n−1
1 )
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for each n-cell τ of T1(A), with n ≥ 0. An algebra homomorphism f : A → B
induces a corresponding morphism of theories as the extension to expressions of the
map A → Exp(T1[B|β]) given by a 7→ f(a). This preserves derivable judgements
in virtue of the fact that f is a homomorphism.

When (A,α) is an algebra, there exists an induced map of theories π : T1[A] → T(A)
which sends a term τ of T1[A] to the corresponding term τ of T(A). We will now
prove two technical lemmata (6.6 and 6.7) which will be used to establish the
equivalence of MLCx1 and Th1 below.

Lemma 6.6. If (A,α) is an object of MLCx1, then π : T1[A] → T(A) is surjective
in the sense that if a judgement ⊢ τ : T is derivable in T(A), then there is a
judgement ⊢ τ ′ : T ′ derivable in T1[A] such that ⊢ τ = τ ′ : T in T(A).

Proof. It will suffice to prove the following claims:

(1) If T is a type of T(A), then there exists a type T ′ of T1[A] such that T = T ′

in T(A).
(2) If τ : T is derivable in T(A) and T ′ is any type in T1[A] for which T ′ = T

in T(A), then there exists a term τ ′ : T ′ in T1[A] such that τ = τ ′ in T(A).

We prove both (1) and (2) simultaneously by induction on derivations. The non-
trivial step is to verify that condition (2) is satisfied when τ : T is obtained as one
of the axioms of T(A). When T = pAq this is trivial, but when T = pAq(paq, pbq)
and τ = pfq we must verify that, for any choice of type pAq(τ, τ ′) with τ = paq
and τ ′ = pbq in T(A), there exists a term of this type which is sent to pfq.
Here we prove by induction on the derivation of τ = paq in T(A) that there

exists a term f̂ : pAq(τ, τ ′) with π(f̂) = pfq. When the equation is obtained by
transitivity using τ = υ and υ = paq, then, by induction hypothesis, there exist
lifts ρ : pAq(τ, υ) of r(paq) and ρ′ : pAq(υ, τ ′) of pfq. Thus, the composite ρ′ · ρ is
the required lift of pfq. In the case where the equation is by an axiom of the form
τ = pα(τ)q, we first observe that by Proposition 5.13, there exists a basic term
pcq and a propositional equality χ : τ → pcq in T1[A]. Applying α gives an edge
α(χ) : α(τ) → c and therefore a term pα(χ)q : pAq(pα(τ)q, pcq). We claim that
the composite pα(χ)q−1 · χ : τ → pα(τ)q is sent to the identity r(τ) in T(A). To
see this, note that by the new axioms of T(A), χ = pα(χ)q and so

pα(χ)q−1 · χ = T1(α)
(

pχq
−1 · pχq

)

= T1(α)(r(pτq)) = r(pα(τ)q)

which is equal to r(τ). Now, the induction hypothesis gives a term ρ : pAq(pα(τ)q, τ ′)
which is equal in T(A) to pfq. As such, ρ · pα(χ)q−1 · χ : pAq(τ, τ ′) is equal in
T(A) to pfq, as required. The remaining cases are straightforward. As such, we
have completed the proof for step (2) in the case where the term is an axiom.

In each possible remaining cases the proof is essentially the same. As such, we
state here only the case for the elimination rule for identity types. In this case, we
are given that a judgement J(ϕ, a, b, f) : B(a, b, f) is derivable in T(A). By the
induction hypothesis for (1) there exists a type x, y : A′, z : A′(x, y) ⊢ B′(x, y, z) :
type in T1[A] which is sent by π to B(x, y, z). By the induction hypothesis for (2),
there exist terms ϕ′(x) : B′(x, x, r(x)) and f ′ : A′(a′, b′) which are sent to ϕ(x) and
f , respectively. Thus, in T1[A] we may form the term J(ϕ′, a′, b′, f ′) : B′(a′, b′, f ′)
and this term is sent to J(ϕ, a, b, f), as required. �
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Remark. Note that most of the work to prove Lemma 6.6 is devoted to verifying
step (2), stated in the proof, for axioms. This is the step which will in general fail
for other extensions of T1[A].

Lemma 6.7. If τ and τ ′ are terms in T1(A) such that τ = τ ′ in T(A), then
γ(τ) = γ(τ ′).

Proof. In order to be able to prove the claim by induction on the derivation of τ = τ ′

it is necessary to reformulate the claim a bit. Namely, we prove by induction on
derivations that if τ(x1, . . . , xn) and τ ′(x1, . . . , xn) are terms in context Γ of a type
of the form pAq

n(. . .), for n ≥ 0, such that τ(x1, . . . , xn) = τ ′(x1, . . . , xn), then,
for any terms a1, . . . , an) such that τ(a1, . . . , an) is in T1(A), γ(τ(a1, . . . , an)) =
γ(τ ′(a1, . . . , an)). Formulated in this way, all of the basic cases are trivial. The
only case which remains is where the equation is one of the new axioms of T1[A|α].
In this case, we have that τ ′ is of the form pγ(τ)q. Thus, γ(τ ′) = γ(pγ(τ)q) which
is, since γ is an action, equal to γ(τ). �

Proposition 6.8. The functors B(−) and T(−) give an equivalence of categories
MLCx1 ≃ Th1.

Proof. The natural isomorphism εA : B(T(A)) → A, for (A,α) a T1-algebra, is
defined as follows. Given a term τ in B(T(A)), there exists, by Lemma 6.6, a
corresponding term τ ′ in T1[A] such that τ = τ ′ in the theory T(A). Then ε(τ)
is defined to be α(τ ′). That this definition is independent of the choice of repre-
sentative τ ′ is by Lemma 6.7. The inverse of εA is the obvious map which sends
a cell a of A to paq. Clearly, εA ◦ ε−1

A is the identity. On the other hand, given

τ in B(T(A)), ε−1
A ◦ εA(τ) is the term pγ(τ ′)q, where τ ′ is as above. But, by the

axioms of T(A), this is equal to τ ′ which is equal, since we are now in T(A), to
τ . These maps are natural since given an algebra homomorphism f : A → B and
ε−1

B ◦ f sends an element a of A to pf(a)q which is the same as B(T(f))(paq) by
definition.

Likewise, given a theory T′ = T1[G|E], the map ηT′ : T′ → T(B(T′)) is obtained
as the extension to expressions of the assignment g 7→ ppgqq. That ηT′ preserves
valid judgements is proved by induction on derivations. The case of axioms of the
form pgq : pGq are trivial. To see that equations in E are preserved, first observe
that, by definition of the action γ : T1(B(T′)) → B(T′), it follows that any term in
T(B(T′)) of the form

θ(pφ1(pg
1
1q, . . . , pg

1
n1

q)q, . . . , pφm(pgm
1 q, . . . , pgm

nm
q)q), (17)

where again the θ and φi are “contexts” as above, is equal in T(B(T′)) to the term

pθ(φ1(pg
1
1q, . . . , pg

1
n1

q), . . . , φm(pgm
1 q, . . . , pgmnm q))q

obtained by removing all of the outer brackets and replacing them with a single
bracket around the entire term. Thus, given an equation χ = χ′ in E with

χ = τ(pg1q, . . . , pgnq), and

χ′ = τ ′(pg′1q, . . . , pg
′
mq),
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we have that ηT′(χ) is the term

τ(ppg1qq, . . . , ppgnqq) = pτ(pg1q, . . . , pgnq)q

= pτ ′(pg′1q, . . . , pg
′
mq)q

= τ ′(ppg′1qq, . . . , ppg′mqq)

which is ηT′(χ′). On the other hand, the inverse η−1
T′ is defined as the extension

to expressions of the assignment τ 7→ τ . Again, the proof that this preserves
valid judgements is by induction on derivations. The new equations of T(B(T′))
are trivially preserved though in virtue of the definition of η−1

T′ . It is a trivial

consequence of the definition that η−1
T′ ◦ ηT′ is the identity. On the other hand,

given a term (17) the result of applying ηT′ ◦ η−1
T′ is

θ(φ1(ppg1
1qq, . . . , ppg1

n1
qq), . . . , φm(ppgm

1 qq, . . . , ppgm
nm

qq))

which is equal to (17) in virtue of the defining axioms of T(B(T′)). Naturality of
these isomorphisms is straightforward. �

Finally, we relate a useful fact about the objects of Th1 that will be employed
in the sequel.

Lemma 6.9. If T1[G|E] is an object of Th1, then there exists a model [[−]]E,0 of
T1[G|E] such that, for any terms τ, τ ′ : pGq, if [[τ ]]E,0 is equal to [[τ ′]]E,0, then
τ ≃ τ ′ is derivable in T1[G|E].

Proof. Let ≡E be the equivalence relation on the setG0 of vertices ofG generated by
identifying elements which are either in the same path component or identified by an
equation in E. Then we interpret [[pGq]]E,0 as the set G0/ ≡E of equivalence classes.
Basic terms of type pGq are interpreted as their equivalence classes and basic terms
of the higher-dimensional identity types are interpreted as the equivalence classes of
their 0-dimensional endpoints as in Section 4.2. The other operations of the theory
are also interpreted as usual in a Set based model as described in Section 4.2. Now,
assume given terms τ and τ ′ of type pGq which are interpreted in the same way.
By Proposition 5.13 it follows that each of these terms are propositionally equal
to basic terms paq and pbq, respectively. By definition of the interpretation, it
follows that these basic terms are also interpreted in the same way. In particular,
a ≡E b. Finally, by definition of the equivalence relation it is clear that a term
φ : pGq(paq, pbq) exists. Thus, τ ≃ τ ′, as required. �

6.3. Construction of colimits. Next we would like to construct coequalizers in
Th1. To this end assume given a parallel pair of arrows

T1[H |F ] T1[G|E]
f //

T1[H |F ] T1[G|E]
g

// (18)

in Th1. We then define a theory T1[G|E, f = g] by extending T1[G|E] with axioms
of the form

⊢ f(τ) = g(τ) : pGq
n(f(τ)00, . . . , f(τ)n−1

1 )

for τ any term of T1[H |F ] of type pHq
n(τ0

0 , . . . , τ
n−1
1 ) for n ≥ 0. There exists an

induced quotient map q : T1[G|E] → T1[G|E, f = g] which sends a term τ to itself.

Lemma 6.10. Given a parallel pair of arrows (18) in Th1, the coequalizer of f
and g is T1[G|E, f = g].
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Proof. Suppose given a theory T′ = T1[K|I] together with a map k : T1[G|E] → T′

such that k ◦ f = k ◦ g. Define a map k̂ : T1[G|E, f = g] → T′ first on the level
of expressions as the extension of the map a 7→ k(paq). This extension has the

property that k̂ ◦ q = k in virtue of the fact that, as a map of theories, k commutes
with the expression forming operations as well and they are equal on basic terms

of T1[G|E]. We now verify that k̂ preserves valid judgements. The proof is by
induction on derivations and the only cases which do not follow from the fact that
k is a morphism of theories are those axioms of the form pf(τ)q = pg(τ)q for
τ a term of T1[H |F ]. Since all of the maps under consideration commute with
the expression forming operations it suffices to note that if paq is a basic term of

T1[H |F ], then k̂(pf(a)q) is just k◦f(paq) which is equal to k̂(pg(a)q) by hypothesis.

Finally, to see that k̂ is the canonical map T1[G|E, f = g] → T′ with k̂ ◦ q = k we
observe that any other map h with this property necessarily sends a basic term paq

of T1[G|E, f = g] to k(paq) which is equal to k̂(paq). �

Coproducts are constructed using a similar approach. Namely, given an I-
indexed family of theories Ti = T1[Gi|Ei], where we assume for the sake of no-
tational simplicity that the globular sets Gi are pairwise disjoint, we define a new
type theory T1[

∐

iGi|(Ei)i] extending T1[
∐

i Gi], where this is the coproduct of
reflexive globular sets, by adding all of the equations from the sets of equations Ei.
I.e., if an equaton τ = τ ′ is in Ei for some index i, then we add the corresponding
axioms τ = τ ′, which makes sense because any judgement derivable in Ti is also
derivable in the new theory. The proof of the following lemma is entirely analogous
to that of Lemma 6.10 above and is therefore left to the reader:

Lemma 6.11. Given an I-indexed family of theories Ti = T1[Gi|Ei] in Th1, the
coproduct

∐

i Ti exists and is the theory T1[
∐

i Gi|(Ei)i].

We mention here several useful facts about the theory
∐

i Ti.

Lemma 6.12. Given an I-indexed family of theories Ti, the following hold:

(1) If paq and pbq are basic terms of
∐

i Ti such that paq = pbq is derivable
in

∐

i Ti, then there exists a unique index i such that both paq and pbq are
basic terms of Ti and paq = pbq is derivable in Ti.

(2) If pfq : p
∐

i Giq(paq, pbq) in
∐

i Ti, then there exists a unique index i such

that pfq : pGiq(paq, pbq) in T1[Gi|Ei].

Proof. For (1), we note that, using the interpretation [[−]](Ei)i,1 of
∐

i Ti described
in Lemma 6.16 we have by definition of the interpretation that the equivalence class
[[paq]](Ei)i,0 interpreting a term of basic type necessarily consists solely of elements
of the same summand Gi. Thus, that both terms are from the same summand is by
Soundness. That paq = pbq is derivable in Ti follows from Lemma 6.16 and the fact
that, for basic terms from the same summand Gi, if a ≡(Ei)i,1 b, then a ≡Ei,1 b,
by definition of these equivalence relations. (2) is then by similar reasoning since
[[pfq]](Ei)i,1 is necessarily from the same summand as its domain and codomain. �

Proposition 6.13. The category MLCx1 is bicomplete and the forgetful functor
U : MLCx1 → rGSet preserves filtered colimits.

Proof. Since MLCx1 is monadic over rGSet it follows that it is complete. By
Lemmata 6.10 and 6.11 it follows that MLCx1 is cocomplete. The forgetful functor
preserves filtered colimits by Lemma 6.3. �
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6.4. Connection with groupoids. Theorem 5.14 shows that free T1-algebras are,
up to equivalence, free groupoids. This might lead one to conjecture that the
category of T1-algebras is equivalent to the category of groupoids. However, that
is not the case. Let us first consider the comparison functor

MLCx1
Φ // Gpd.

We recall from Section 5.1 that this functor regards a T1-algebra as a groupoid.
I.e., in particular it sends a T1-algebra (G, γ : T1(G) → G) to

F(G)
ΦG // T1(G)

γ // G

which is then an algebra structure for the free groupoid monad (we do not distin-
guish notationally between groupoids and 1-truncated globular sets whose under-
lying graphs are groupoids).

Thus every T1-algebra G has an underlying groupoid Φ(G) - we might call it the
fundamental groupoid of G. However, the following example makes clear that
different algebras may have the same underlying groupoid.

Example 6.14. Consider the following groupoid G: it has two objects a and b,
exactly one arrow f : a → b and its inverse g : b → a. We may define a T1-algebra
structure γ : T1(G) → G on G as follows: on objects, γ is defined by

γ(v) =

{

a if ⊢ v = paq : G is derivable
b otherwise

Thus, all doppelgängers of vertices are sent to b. On 1-cells we define:

γ(w) =















f if γ(s(w)) = a, γ(t(w)) = b
g if γ(s(w)) = b, γ(t(w)) = a
1a if γ(s(w)) = a = γ(t(w))
1b if γ(s(w)) = b = γ(t(w))

It is readily seen that this is a map of globular sets. To see that it is a T1-algebra,
we remark that the unit law is trivially satisfied because the algebra map sends any
generator pvq of T1(G) to v. For the associativity law, consider an element τ of
T 2

1 (G)0; this is a term of the theory T1[T1(G)], which is generated by basic terms
of the form pσq, where σ is a term of the theory T1[G]. Note that on the one hand

(γ ◦ T1γ)(τ) = a⇔ T1γ(τ) = paq ⇔ τ = ppaqq,

while on the other hand

(γ ◦ µ)(τ) = a⇔ µ(τ) = paq ⇔ τ = ppaqq,

showing that both maps agree in dimension 0. To show that they agree in dimension
1 as well, one reasons in a similar fashion.

But clearly by symmetry there is another algebra structure on G, call it δ,
defined by sending all doppelgängers to a instead of b. The identity map G → G
is, however, not a map of T1-algebras. Indeed, any map of T1-algebras commutes
with the formation of doppelgängers; for example, if k is a map of algebras then
T1(k) must send the doppelgänger a〈f〉 to k(a)〈k(f)〉, and hence we must have
kγ(a〈f〉) = δk(a)〈k(f)〉, which is impossible if k is the identity. For the same reason
the only other possible map of groupoids, which interchanges a and b, cannot be a
map of T1-algebras.
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Thus T1-algebras carry more information than their underlying groupoid, and
this information tells us how the formal composites and doppelgängers are inter-
preted. The fact that non-isomorphic algebras may have the same fundamental
groupoid is of course the analogue of the fact that non-homeomorphic topological
spaces may have the same fundamental groupoid.

In addition, the above example shows that Φ is not a full functor. (However, it
is easily seen to be faithful. )

Proposition 6.15. The functor Φ : MLCx1 → Gpd has a left adjoint.

Proof. It is convenient to work with the category Th1 of theories in place of
MLCx1. In this case, Φ : Th1 → Gpd sends a theory T′ = T1[G|E] to the
resulting groupoid structure on Γ(G)T′ with composition of arrows φ : τ → τ ′ and
ψ : τ ′ → τ ′′ given by

ψ ◦ φ := ψ · φ.

On the other hand, every groupoid G determines a theory Ψ(G) = T1[G|◦] which
extends T1[G] by adding axioms of the form

⊢ pg ◦ fq = pgq · pfq : pGq(paq, pcq)

for arrows f : a→ b and g : b→ c in G. The left-adjoint Ψ : Gpd → Th1 then has
the obvious action on arrows.

The unit of the adjunction is given at a groupoid G by the map ηG : G→ ΦΨ(G)
which sends an object a of G to the object paq of ΦΨ(G) and an arrow f to pfq.
It is functorial in virtue of the additional axioms of T1[G|◦].

Likewise, given a theory T′ = T1[G|E], the counit εT′ : ΨΦ(T′) → T′ is defined
as the extension to expressions of the assignment τ 7→ τ . That this gives a map
which preserves valid judgements is by an induction on derivations. In particular,
we must verify that if φ : τ → τ ′ and ψ : τ ′ → τ ′′ are arrows in Φ(T′), then the
judgement ⊢ pψ ◦ φq = pψq · pφq of ΨΦ(T′) is preserved by εT′ . This is the case
since εT′(pψ◦φq) is equal to ψ ·φ which is also the result of applying εT′ to pψq ·pφq.
With these definitions it is easily verified that η and ε are natural transformations
which satisfy the equations for an adjunction. �

As we mentioned above, Φ is not full and therefore this adjunction is not an
equivalence of categories. We see below that it is however a Quillen equivalence.
First we collect a useful 1-dimensional analogue of Lemma 6.9.

Lemma 6.16. If T1[G|E] is an object of Th1, then there exists a model [[−]]E,1 of
T1[G|E] such that:

(1) Given basic terms paq and pbq of type pGq, if [[paq]]E,1 is equal to [[pbq]]E,1,
then paq = pbq is derivable in T1[G|E].

(2) Given basic terms paq, pbq : pGq and terms τ, τ ′ : pGq(paq, pbq), if [[τ ]]E,1

is equal to [[τ ′]]E,1, then τ = τ ′ is derivable in T1[G|E].

Proof. Let ≡E,1 be the congruence on the groupoid Φ(T1[G|E]) generated by the
equations in E and interpret pGq as the groupoid Φ(T1[G|E])/ ≡E,1 with terms
interpreted as their equivalence classes and the other operations interpreted as in
the Hofmann-Streicher [8] model summarized in Section 5.2. This is clearly a model
of the theory. For (1) we note that if paq and pbq are given the same interpretation,
then a ≡E,1 b. But, by definition of ≡E,1, this implies that a = b is derivable. For
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(2), given τ and τ ′ as in the statement, it follows from Proposition 5.13 that they
are both formal composites. Moreover, formal composites are interpreted by [[−]]E,1

as the equivalence classes of their corresponding composites in the groupoid and
therefore, regarded as genuine composites in the groupoid Φ(T1[G|E]), τ ≡E,1 τ

′.
By definition of ≡E,1 it then follows that τ = τ ′. �

The following lemma sheds some more light on the functor Φ, but will not be
used further.

Lemma 6.17. If (A,α) is a T1-algebra, then

Φ(T 2
1A, µT1A) Φ(T1A, µA)

µA //
Φ(T 2

1A, µT1A) Φ(T1A, µA)
T1(α)

// Φ(T1A, µA) Φ(A,α)
α //

is a coequalizer in Gpd.

Proof. Suppose given a functor m : Φ(T1A) → M in Gpd such that m ◦ µA =
m ◦ T1(α). Define m̃ : Φ(A) → G by setting g̃(m) := m(paq) for a any cell of
Φ(A). This gives a map of reflexive globular sets which is also a functor since,
given f : a → b and g : b → c in Φ(A), m̃(g ◦ f) is equal to m(pα(pgq · pfq)q) by
definition of m̃ and composition in Φ(A). This in turn is equal to

m ◦ T1(α)(ppgq · pfqq) = m ◦ µA(ppgq · pfqq)

= m(pgq · pfq)

which is the same as m(pgq◦pfq) where the composition is now in Φ(T1A). Finally,
by functoriality of m this is m(pgq) ◦m(pfq), as required. That m̃ is the canonical
map Φ(A) →M with m̃◦α = m follows from the fact that if n is any other functor
for which this equation holds, we have

n(a) = n(α ◦ ηA(a)) = m(paq) = m̃(a),

for a any cell of Φ(A). �

6.5. The induced model structure. In this section we will employ Crans’s Theo-
rem [4] for transferring cofibrantly generated model structures along an adjunction
to prove that there exists a cofibrantly generated model structure on Th1 and
therefore also on MLCx1. It will then be a consequence of the construction that
the adjunction between the category of groupoids and Th1 is in fact a Quillen
equivalence. We refer the reader to [9] for further details regarding Quillen model
categories.

We begin by defining the relevant classes of maps in Th1.

Definition 6.18. The weak equivalences, fibrations and cofibrations in Th1 are
defined as follows:

• f : A → B in Th1 is a weak equivalence if and only if Φ(f) is an
equivalence of groupoids;

• f : A→ B is a fibration if and only if Φ(f) is an isofibration of groupoids
(i.e., given an arrow ϕ : b′ → b in Φ(B) such that b = Φ(f)(a), there exists
an arrow ϕ′ : a′ → a in Φ(A) with Φ(f)(ϕ′) = ϕ); and

• f : A→ B is a cofibration if and only if it has the left-lifting property with
respect to maps which are simultaneously fibrations and weak equivalences.

Recall Crans’s transfer theorem:
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Theorem 6.19 (Crans [4]). Given cocomplete categories C and D with finite limits
and an adjunction F ⊣ G between them such that F : C → D, if C is a λ-cofibrantly
generated model category for λ and infinite regular cardinal, if

(1) F preserves λ-smallness; and
(2) if an arrow f : a→ b of D is in the saturated class generated by maps of the

form F (g) for g a trivial cofibration in C, then G(g) is a weak equivalence;

then there is a model structure on D obtained by defining a map f to be a weak
equivalence or fibration if G(f) is a weak equivalence or fibration in C, respectively,
and to be a cofibration if it has the left lifting property with respect to maps which
are simultaneously fibrations and weak equivalences.

We will apply this theorem to the adjunction

MLCx1 Gpd

Φ

66MLCx1 Gpd
vv

Ψ

⊥

described in Section 6.4 above. First we will prove that the components of the
unit of this adjunction are all weak equivalences in Gpd. This fact will be used to
establish the model structure and also to show that the model structure on Th1 is
Quillen equivalent to the model structure on Gpd.

Lemma 6.20. If G is a groupoid, then the unit ηG : G→ Φ◦Ψ(G) is a categorical
equivalence.

Proof. By definition, Φ ◦Ψ(G) is the groupoid obtained from the theory T1[G|◦] as
described above. Because T1[G|◦] is obtained as an equational extension of T1[G],
in the sense of Section 2.6, it follows that Proposition 5.13 applies to this theory.
Thus we may argue as in the proof of Theorem 5.14 to see that ηG is full and
essentially surjective on objects. Indeed, ηG is also faithful for roughly the same
reason. Explicitly, there is a model of the theory T1[G|◦] obtained from the groupoid
model of Hofmann and Streicher [8], as described in Section 5.2, by interpreting
the type pGq as the groupoid G. It is then easily seen that this interpretation
satisfies the additional axioms of T1[G|◦]. Accordingly, there exists a retraction
Φ ◦ Ψ(G) → G in Gpd obtained sending a term τ of T1[G|◦] to its interpretation
in this model. Thus, the unit is faithful. �

Lemma 6.21. All arrows of Th1 in the saturated class generated by those homo-
morphisms of the form Ψ(g) for g : G → H a trivial cofibration in Gpd are weak
equivalences as defined above.

Proof. Assume given a morphism f : T′ → T′′ of theories in the saturated class
generated by those Ψ(g) with g a trivial cofibration of groupoids. We prove by
induction on the structure of f as a member of the saturated class that it is a
weak equivalence. First, observe that if g : G → H is a trivial cofibration, then it
necessarily has a retraction g′ : H → G which is its quasi-inverse. The property
of having a retraction is preserved by Ψ and is stable under all of the generating
operations for the formation of the saturated class. As such, we may always assume
that maps in this class are split monomorphisms. In particular, if f : T′ → T′′ is in
the saturated class, then Φ(f) is necessarily faithful.
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In the base case, where f = Ψ(g) for g : G → H a trivial cofibration in Gpd,
because

G Ψ ◦ Φ(G)
ηG //

H Ψ ◦ Φ(G)ηH

//

G

H

g

��

Ψ ◦ Φ(G)

Ψ ◦ Φ(G)

Ψ◦Φ(g)

��

commutes and, by Lemma 6.20, the two units are also weak equivalences, it follows
from “three-for-two” that Ψ ◦ Φ(g) is also a weak equivalence in Gpd.

Next assume f is of the form
∐

i fi :
∐

i T′
i →

∐

i T′′
i with each fi a weak

equivalence. To see that Ψ(
∐

i fi) is essentially surjective on objects note that, by
Proposition 5.13, any vertex τ of Ψ(

∐

i T′′
i ) is propositionally equal to a basic term

pbq with b in some T′′
i . Since fi is essentially surjective on objects it follows that

there exists some paq in T′
i with pbq ≃ pfi(a)q. Thus, τ is isomorphic in Ψ(

∐

i T′′
i )

to pfi(a)q which is in the image of Ψ(
∐

i fi), as required. To see that Ψ(
∐

i fi)
is full note that it suffices, in virtue of Proposition 5.13, to prove that it is full
on basic terms. I.e., if τ : pfi(a)q → pfj(b)q in Ψ(

∐

i T′′
i ), then there exists some

τ̂ : paq → pbq in
∐

i T′
i such that

∐

i fi(τ̂ ) = τ . Given such a term τ it follows
from Proposition 5.13 that τ is a formal composite and we may prove the claim by
induction on the structure of τ as a formal composite. If τ is itself a basic term pgq,
then it follows from Lemma 6.12 that i = j and there exists a canonical summand
T′′

i such that pgq : pfi(a)q → pfi(b)q in T′′
i . Since fi is full it follows that pgq = ĝ

for ĝ : paq → pbq a term of T′
i with fi(ĝ) = pgq. Thus,

∐

i fi(ĝ) = pgq as required.
Next, if τ is a composite (υ′ · υ) for υ : pfi(a)q → pcq and υ′ : pcq → pfi(b)q,
then it follows from the fact that fi is essentially surjective on objects that there
exists some pdq and a term φ : pcq → pfi(d)q. Thus, since fi is full there exist lifts
υ̂ : paq → pdq and υ̂′ : pdq → pbq of φ · υ and υ′ · φ−1, respectively. Thus, since
fi is a map of theories and thefore preserves composition and inverses, υ̂′ · υ̂ is the
required lift of τ . Finally, the case where τ is an inverse is by a similar argument.

Next, let theories T′ = T1[G|E], S = T1[H |F ] and S′ = T1[K|F ′] and suppose
f : T′ → T′′ is obtained as the pushout of a map f ′ : S → S′ with the property in
question as indicated in the following diagram:

S T′
g′

//

S′ T′′
g

//

S

S′

f ′

��

T′

T′′

f

��

Then T′′ is the theory T1[K+G|F ′, E, f ′ = g′] where the theory is defined by adding
the evident axioms to T1[K+G]. Given a basic term pcq in T′′, either pcq is a basic
term of either S′ or T′. If it is in T′, then we are done. On the other hand, if pcq
is in S′, then it follows from the induction hypothesis that there is a propositional
equality ϕ : f ′(τ) → pcq in S′, for τ a term of S. Thus, g(ϕ) : f ◦ g′(τ) → pcq in T′′

and Ψ(f) is essentially surjective on objects since, by Proposition 5.13 every object
of Ψ(T′′) is isomorphic to a basic term. To see that Ψ(f) is full it again suffices to
prove this for basic terms. I.e., assume given a term τ : paq → pbq in T′′ with paq
and pbq terms from T′ (recall that in this situation f just sends a term of T′ to itself
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in T′′). By Proposition 5.13, τ is a formal composite and we prove the claim by
induction on its structure as such. First, when τ is a basic term phq : paq → pbq.
In this case we have by definition that either phq is a term of S′ or of T′, although
it may have a different type in either theory. Assume phq : pcq → pdq in S′ with
pcq = paq and pdq = pbq in T′′. Using the interpretation of T′ from Lemma 6.16 it
follows that a ≡ c for the corresponding equivalence relation. Thus, since paq is a
basic term of T′ and pcq is a basic term of S′, there exist terms pe1q, pe2q, . . . , penq

such that

pcq = f ′(pe1q)

g′(pe1q) = g′(pe2q)

f ′(pe2q) = f ′(pe3q)

...

f ′(pen−1q) = f ′(penq)

g′(penq) = paq

Similarly, there exist terms pe′1q, . . . , pe
′
mq satisfying the analogous conditions and

in particular such that f ′(pe′1q) = pdq and g′(pe′mq) = pbq. Thus, by induction

hypothesis, there exists a term ĥ : pe1q → pe′1q in S such that f ′(ĥ) = phq. Thus,

g′(ĥ) : paq → pbq is a term of T′ and g′(ĥ) = phq in T′′.
On the other hand, if phq : pcq → pdq is in T′, then there exist terms pe1q, . . . , penq

and pe′1q, . . . pe
′
mq such that

pcq = g′(pe1q)

f ′(pe1q) = f ′(pe2q)

g′(pe2q) = g′(pe3q)

...

f ′(pen−1q) = f ′(penq)

g′(penq) = paq

and analogously for the terms pe′iq so that, in particular, g′(pe′1q) = pdq and
g′(pe′mq) = pbq. Since f ′ is full there exist terms φi : ei+1 → ei for 1 ≤ i ≤ n− 1
such that f ′(φi) = r(f ′(peiq)). Similarly, we have φ′i : e′i → e′i+1 with f ′(φ′i) =
r(f ′(pe′iq)). As such, in T′ we have the term

g′(φ′n−1) ◦ · · · ◦ g
′(φ′1) ◦ phq ◦ g′(φ1) ◦ · · · ◦ g

′(φn−1) : paq → pbq

which is then easily seen to be equal to phq in T′′, as required. As such, we have
completed the proof of the case where τ is a basic term. The cases where τ is a
composite or symmetry term are straightforward generalizations of this case. Thus,
we have proved that

∐

i fi is a weak equivalence.
Finally, the case where f is a transfinite composition (which we may take to be,

in this case, simply a countable colimit) f : A0 → lim−→i
Ai is straightforward using

the induction hypothesis and the fact that such colimits are filtered and, by Lemma
6.3 are created by the forgetful functor MLCx1 → rGSet. �

With Lemma 6.21 at our disposal we are now in a position to establish our main
theorem regarding the category Th1.
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Theorem 6.22. There is a model structure on Th1 in which the weak equivalences,
fibrations and cofibrations are as defined above.

Proof. By Lemma 6.21 the second condition of Crans’s Transfer Theorem (stated
as 6.19 above) is satisfied. The first condition is by the fact that the diagram

Th1 Gpd
Φ //Th1

rGSet
��?

??
??

?
Gpd

rGSet
����

��
��

commutes and the forgetful functors (those with codomain rGSet in the diagram)
create filtered colimits. �

Corollary 6.23. The adjunction Ψ ⊣ Φ between Gpd and Th1 is a Quillen equiv-
alence with respect to the standard model structure on Gpd and the model structure
on Th1 from Theorem 6.22.

Proof. By Lemma 6.20 it suffices to prove that if T′ is an object of Th1, then
the counit εT′ : Ψ ◦ Φ(T′) → T′ is a weak equivalence. However, in general given
categories C and D satisfying the conditions of Theorem 6.19, if the components of
the unit of the adjunction are weak equivalences, then it follows from the three-for-
two property in C and the triangle law for adjunctions that the components of the
counit are also weak equivalences. �

Corollary 6.24. The 1-truncated Martin-Löf complexes are a model of homotopy
1-types.

Proof. By Corollary 6.23 and the corresponding fact for groupoids we have the
following equivalences of categories:

Ho(1-Type) ≃ Ho(Gpd) ≃ Ho(Th1) ≃ Ho(MLCx1).

�

Appendix A. Rules of type theory

In this appendix we describe the syntax of the system Tω . All rules below are
stated in an ambient context which is omitted for ease of presentation.

A.1. Structural rules.

Γ ⊢ J
Weakening

∆,Γ ⊢ J

where J ranges over judgements and we assume without loss of generality that the
variables declared in ∆ and Γ are disjoint.

a : A x : A,∆ ⊢ B(x) : type
Type substitution

∆[a/x] ⊢ B(a) : type

a : A x : A,∆ ⊢ b(x) : B(x)
Term substitution

∆[a/x] ⊢ b(a) : B(a)

A : type
Variable declaration

x : A,∆ ⊢ x : A
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A.2. Rules governing definitional equality.
A : type

A = A : type

A = B : type

B = A : type

A = B : type B = C : type

A = C : type

a : A
a = a : A

a = b : A
b = a : A

a = b : A b = c : A
a = c : A

a = b : A x : A ⊢ B(x) : type

B(a) = B(b) : type

a = b : A x : A ⊢ f(x) : B(x)

f(a) = f(b) : B(a)

A = B : type a : A

a : B

A.3. Formation rules.

x : A ⊢ B(x) : type ∏

formation∏

x:AB(x) : type

x : A ⊢ B(x) : type ∑

formation∑

x:AB(x) : type

a, b : A
Id formation

⊢ A(a, b) : type

N formation
⊢ N : type

A.4. Introduction and elimination rules for dependent products.

x : A ⊢ f(x) : B(x) ∏

introduction
λx:Af(x) :

∏

x:AB(x)

f :
∏

x:AB(x) a : A ∏

elimination
app(f, a) : B(a).
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A.5. Introduction and elimination rules for dependent sums.

a : A b : B(a) ∑

introduction
pair(a, b) :

∑

x:AB(x)

⊢ p :
∑

x:AB(x) x : A, y : B(x) ⊢ ψ(x, y) : C
(

pair(x, y)
)

∑

elimination
R
(

[x : A, y : B(x)]ψ(x, y), p
)

: C(p)

A.6. Introduction and elimination rules for identity types.

a : A
Id introduction

r(a) : A(a, a)

x : A, y : A, z : A(x, y) ⊢ B(x, y, z) : type

x : A ⊢ ϕ(x) : B
(

x, x, r(x)
)

f : A(a, b)
Id elimination

J[x,y:A,z:A(x,y)]B(x,y,z)

(

[x : A]ϕ(x), a, b, f) : B(a, b, f)

A.7. Introduction and elimination rules for natural numbers.
N introduction (i)

0 : N

n : N
N introduction (ii)

S(n) : N

n : N c : C(0) x : N, y : C(x) ⊢ γ(x, y) : C
(

S(x)
)

N elimination
rec

(

n, c, [x : N, y : C(x)]γ(x, y)
)

: C(n)

A.8. Conversion rules.
λx:Af(x) :

∏

x:AB(x) a : A ∏

conversion
app

(

λx:Af(x), a
)

= f(a) : B(a)

a : A b : B(a) x : A, y : B(x) ⊢ ψ(x, y) : C
(

pair(x, y)
)

∑

conversion
R
(

[x : A, y : B(x)]ψ(x, y), pair(a, b)
)

= ψ(a, b) : C
(

pair(a, b)
)

a : A
Id conversion

J[x,y:A,z:A(x,y)]B(x,y,z)

(

[x : A]ϕ(x), a, a, r(a)
)

= ϕ(a) : B
(

a, a, r(a)
)

N conversion (i)
rec

(

0, c, [x : N, y : C(x)]γ(x, y)
)

= c : C(0)

n : N
N conversion (ii)

rec
(

S(n), c, [x : N, y : C(x)]γ(x, y)
)

= γ
(

n, rec
(

c, [x : N, y : C(x)]γ(x, y), n
))

: C
(

S(n)
)
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Appendix B. All terms of type N are propositionally equal to

numerals

In order to show that all closed terms of type N are propositionally equal to
numerals we will employ, as in the results on relevant types and terms in Section
5, a logical relations style argument. Recall that a term τ of type N is a numeral
if it is either 0 or is of the form Sn(0) for a natural number n.

Definition B.1. A type T is N-relevant if it is of one of the following forms:

• T is N.
• T is of the form Πx:A.S(x) and x : A ⊢ S(x) is N-relevant.
• T is of the form Σx:A.S(x) and either A or x : A ⊢ S(x) is relevant.

A term τ of N-relevant type T in the empty context is N-relevant if

• T is N and τ is propositionally equal to a numeral.
• T is of the form Πx:A.S(x) and τ is propositionally equal to a term τ ′ such

that app(τ ′, a) is N-quasirelevant, for all N-quasirelevant terms a : A, where
N-quasirelevant is defined by analogy with the definition of quasirelevant
terms in Definition 5.5.

• T is of the form Πx:A.S(x) and τ is propositionally equal to a term τ ′ such
that π0(τ

′) and π1(τ
′) are N-quasirelevant.

A term τ(x1, . . . , xn) of N-relevant type T (x1, . . . , xn) in the non-empty context
(x1 : A1, . . . , xn : An(x1, . . . , xn−1)) is N-relevant if, for any sequence of closed N-
quasirelevant terms a1 : A1, . . . , an : An(a1, . . . , an−1), τ(a1, . . . , an) is N-quasirelevant.

It is an immediate consequence of Definition B.1 that the N-relevant terms possess
the same general closure properties as the relevant terms from Section !!!. In order
to show that all terms of N-relevant type are N-relevant it is necessary to show first
that the N-relevant terms are closed under the formation of elimination terms for
identity types and the proof of this fact is analogous to that given for the relevant
terms.

Proposition B.2. If ∆ is a context

∆ =
(

x0, x1 : A, z : A(x0, x1), v1 : B1(x0, x1, z), . . . , vn : Bn(x0, x1, z, v1, . . . , vn−1)
)

,

then all of the terms

∆ ⊢ z ⊳ vn,

∆σ ⊢ z ⊲ wn,

x0, x1 : A, z : A(x0, x1) ⊢ κn(z), and

x0, x1 : A, z : A(x0, x1) ⊢ νn(z)

are N-quasirelevant, for i = 0, 1.

Proof. Let N-quasirelevant terms a0, a1 : A, f : A(a0, a1), b1 : B1(a0, a1, f), . . . , bn :
Bn(a0, . . . , bn−1) and d1 : B1(ai, ai, r(ai)), . . . , dn : Bn(ai, . . . , dn−1) be given to
show that the terms f ⊳ bn, f ⊲ dn, κn(f) and νn(f) are N-quasirelevant. The
proof is by induction on the structure of Bn(x0, x1, z, v1, . . . , vn−1) as a N-relevant
type. (When it is not N-relevant, the claim is trivial.)

First, when Bn(x0, . . . , vn−1) is just N itself, we have that f ⊳ bn ≃ bn
and f ⊲ dn ≃ dn. Thus, these terms are N-quasirelevant. Likewise, κn(f) ≃
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λv1 · · ·λvn−1 .λy:N.y and νn(f) ≃ λw1 · · ·λwn−1 .λy:N.y and these terms are therefore
N-relevant.

The remaining cases are proved in precisely the same way as in the proof of
Proposition 5.11. �

Proposition B.3. All terms of N-relevant type are N-relevant.

Proof. The proof is essentially the same as the proof of Proposition 5.13 using
Proposition B.2. �

Corollary B.4. Every closed term of type N is propositionally equal to a numeral.
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