Homework 2

1. In any category with binary products, show that:

$$
A \times(B \times C) \cong(A \times B) \times C .
$$

(Hint: define the notion of a "ternary product," and then use the fact that they are unique up to isomorphism.)
2. In any category with binary products and coproducts, show that:

$$
C^{A+B} \cong C^{A} \times C^{B} .
$$

(There's no trick for this one - you'll have to crank it out.)
3. Show that the category of types of the λ-calculus with sum types has binary coproducts.
4. Show that the category of groups is not cartesian closed, but that the category of groupoids is. (A groupoid is a category in which all arrows are isos.)
5. Prove the three laws of positive intuitionistic propositional calculus from the laws for a CCC.

