Homework 1

1. Take your favorite system for deduction in propositional logic, and write $\varphi \vdash_p \psi$ for "p is a deduction of ψ from an assumption of φ ". Define a *category of proofs*, with objects the formulas φ, ψ, \ldots and arrows the deductions,

$$p: \varphi \to \psi \quad \text{iff} \quad \varphi \vdash_p \psi$$

Composition is by the obvious substitution of a conclusion for an assumption in a deduction, and identity arrows are trivial proofs.

Show that this is a category. Show that this is not a preorder category.

- 2. Verify that, for a fixed set A, the operations $X \mapsto X^A$ and $X \mapsto A^X$ are, respectively, co- and contravariant functors on the category of sets.
- 3. Let \mathbf{C} be small.
 - (a) Show that Hom is a functor Hom : $\mathbf{C}^{\mathrm{op}} \times \mathbf{C} \to \mathbf{Cat}$.
 - (b) Show that the slice category construction determines a functor $\mathbf{C}/(-): \mathbf{C} \to \mathbf{Cat}$ by composition.
- 4. For the algebraically inclined:
 - (a) For any set X, define the *free monoid on* X by:

$$F(X) = \sum_{n \in \mathbb{N}} X^n$$
 (disjoint sum)

So, informally, elements of F(X) are finite tuples (x_1, \ldots, x_m) of elements of X. The monoid unit is the empty tuple u = (-), and the multiplication is concatination of tuples,

$$(x_1,\ldots,x_m)\cdot(y_1,\ldots,y_n)=(x_1,\ldots,x_m,y_1,\ldots,y_n)$$

Prove that this *is* a monoid.

- (b) Show that F(X) is free on X in the following sense: there is a function $\eta : X \to F(X)$, namely $\eta(x) = (x)$, such that for any monoid M and any function $f : X \to M$, there is a unique monoid homomorphism $\overline{f} : F(X) \to M$ such that $\overline{f} \circ \eta = f$.
- (c) Show that there is a functor $F : \mathbf{Sets} \to \mathbf{Mon}$ taking a set X to the free monoid F(X). (Hint: you can do it by hand, but the most elegant proof uses part b).