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Conceptual understanding

It is commonly held that the goal of modern mathematics is to
acquire a conceptual understanding.

This is often associated with:
• complicated definitions
• lots of algebraic structures
• complicated arguments and shared expertise
• de-emphasis of calculation (which either doesn’t provide

understanding, or is uninteresting)
• unexpected connections between apparently different domains

of mathematics

The notion has origins in the nineteenth century.



Conceptual understanding

“. . . in our opinion truths of this kind should be drawn from the
notions involved rather than from notations.” [Gauss,
Disquisitiones, 1801]

“ . . . for these kinds of questions there exist considerations of a
metaphysical nature which hover over the calculations, and often
make them useless. . . . For, all that creates the beauty and at the
same time the difficulty of this theory [i.e. Abel’s theory of elliptic
functions] that one has ceaselessly to indicate the path of the
analysis and to anticipate the results, without ever being able to
carry them out.” [Galois, 1830?]

“. . . to seek proofs based immediately on fundamental
characteristics, rather than on calculation, and indeed to construct
the theory in such a way that it is able to predict the results of
calculation. . . ” [Dedekind, 1871]



Conceptual understanding

From a down-to-earth point a view, it’s a matter of conceptual
engineering and information management.

• We need ways to cope with complexity.
• Modularization and algebraic abstraction

• make information salient when it is needed
• suppress information when it isn’t
• provide clean interfaces.

• Different representations have different affordances.

The way mathematics manages to do this is fascinating.



Outline

This talk:
• conceptual understanding
• challenges: computers in mathematics
• historical comparisons:

• Newton and Propositio Kepleriana
• Dirichlet’s theorem on primes in an arithmetic progression

• morals
• bigger morals



Challenges

Four challenges from discrete geometry:
• the Kepler conjecture
• packing tetrahedra
• the Keller conjecture.
• optimal sphere packings in 8 and 24 dimensions



Challenges: Hales’ theorem

Theorem
The optimal density achieved by a packing of nonoverlapping
equally sized spheres in Euclidean space is the one attained by the
face-centered cubic packing.



Challenges: Hales’ theorem

An overview:
• Johannes Kepler asserted optimality in 1611.
• Thomas Hales (with Samuel Ferguson) announced a proof in

1998.
• The proof relies on:

• a combinatorial enumeration of “tame graphs”
• relaxations of nonlinear constraints to linear constraints
• checking the infeasibility of linear constraints.

All were obtained with the help of computers.
• Frustrated by referees, Hales launched an effort to formally

verify the result in 2003 and completed it (with many
collaborators) in 2014.



Challenges: packing tetrahedra

Theorem
There is a packing of equally
sized regular tetrahedra in
Euclidean space with density
4000/4671.



Challenges: packing tetrahedra

Overview:
• In 2006, John Conway and Salvatore Torquato obtained a

packing with a density of about 0.7175 manually.
• Other approaches parameterized families of solutions and used

optimization software.
• In 2009, Sharon Glotzer and colleagues used Monte-Carlo

simulations.
• The best result, due to Elizabeth Chen, Michael Engel, and

Glotzer used a parameterized family, but searched for local
improvements.



Challenges: higher-dimensional sphere packing

Theorem
The optimal density of an 8-dimensional sphere packing is attained
by E8, and the optimal density of a 24-dimensional sphere packing
is attained by the Leech lattice.



Challenges: higher-dimensional sphere packing

Overview:
• Remarkably little is known about optimal sphere packings in

higher dimensions.
• E8 and the Leech lattice have long been known to provide

remarkably efficient (and interesting) packings in 8 and 24
dimensions, respectively.

• In 2003, Henry Cohn and Noam Elkies showed that one could
use Fourier analysis to obtain upper bounds on
higher-dimensional packings.

• Using numerical methods, they found the best known bounds
for dimensions 4–36. They showed that E8 and the Leech
lattice are close to optimal.

• With the right “magic functions,” the methods could provide
tight bounds in those two cases.



Challenges: higher-dimensional sphere packing

• Numeric calculations by Cohn and Stephen Miller gave some
hints as to what these magic functions would look like.

• In 2016, Maryna Viazovska constructed a function to prove
that the density achieved by the E8 packing is optimal in eight
dimensions. The construction was a tour de force, drawing on
modular forms, properties of the Laplace transform,
experimentation, and guesswork.

• Within a week of the announcement, Cohn, Abhinav Kumar,
Miller, and Danylo Radchenko had joined her to extend the
method to show the optimality of the packing based on the
Leech lattice in twenty-four dimensions.



Challenges: the Keller conjecture

In 1930, Ott-Heinrich Keller conjectured that any tiling of
n-dimensional space by unit cubes requires face-sharing.

Theorem
Keller’s conjecture is true up to and including dimension 7, but
fails for dimension 8 and above.



Challenges: the Keller conjecture

Overview:
• In 1940, Oskar Perron showed that the conjecture is true for

n ≤ 6.
• In 1990, Keresztély Corrádi and Sándor Szabó reduced the

statement to one about finite graphs.
• In 1992, Jeffrey Lagarias and Peter Shor showed that it is

false for n ≥ 10.
• In 2002, John Mackey showed that it is false for n ≥ 8.
• In 2019, Joshua Brakensiek, Marijn Heule, Mackey, and David

Narváez showed that it is true for n = 7, using a SAT solver,
symmetry-breaking, clever encodings, and heuristics.



Reactions

These are great results. But they don’t fit the “conceptual” mold:
• The proofs are relatively short.
• They don’t require a large scaffold of algebraic definitions and

theorems.
• They use computers, in various ways: numeric and symbolic

computation, optimization, simulation, and search.



Reactions: packing tetrahedra

4000/4671 isn’t optimal.

The result is “experimental mathematics.”

For some, this is a term of derision.

In any case, it doesn’t feel like real mathematics.



Reactions: the Keller conjecture

SAT solvers are computer science, not mathematics.

“Don’t expect mathematicians to be interested—this is a ‘finite
computation.’ ”



Reactions: the Kepler conjecture

“. . . for the purpose of this discussion, what I call a traditional
mathematician is someone who has a permanent position that
involves proving theorems . . . . What they do is try to get a
conceptual and rigorous understanding of which mathematical
statements are true. Both adjectives are important. To them,
Hales’ proof of the Kepler conjecture is nothing like solving the
conjecture. And the Flyspeck project is purely computer science.
That doesn’t mean it is not interesting; it is something different,
because at least part of the proof lacks the ‘conceptual’ adjective.
You will often hear mathematicians, talking about their own
proofs, saying things like ‘there is nothing to understand here, it’s
only a computation.’ ”



Reactions: higher-dimensional sphere packing
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Reactions: higher-dimensional sphere packing

“. . . it’s wonderful to see a relatively simple proof of a deep
theorem in sphere packing.”

“Her proof is thus a notable contribution to the story of E8, and
more generally the story of exceptional structures in mathematics.”

“Viazovska . . . establishes a new connection between modular
forms and discrete geometry.”

“Instead of justifying sphere packing by aspects of the problem or
its applications, we’ll justify it by its solutions: a question is good
if it has good answers. Sphere packing turns out to be a far richer
and more beautiful topic than the bare problem statement
suggests. From this perspective, the point of the subject is the
remarkable structures that arise as dense sphere packings.”



Reactions: higher-dimensional sphere packing

“. . . modular forms are deep and mysterious functions connected
with lattices, as are the magic functions, so wouldn’t it make sense
for them to be related?”

“Despite our lack of understanding [of other higher dimensional
sphere packing problems], the special role of eight and twenty-four
dimensions aligns with our experience elsewhere in mathematics.
Mathematics is full of exceptional or sporadic phenomena that
occur in only finitely many cases, and the E8 and Leech lattices are
prototypical examples. These objects do not occur in isolation, but
rather in constellations of remarkable structures.”



Reactions: higher-dimensional sphere packing



Reflection

Recent results in discrete geometry don’t fit our image of
mathematical understanding.

Should we reconsider that image?

Can we make room for computational results?

Let’s get some historical perspective:
• Newton and the inverse square law of gravity.
• Dirchlet’s theorem on primes in an arithmetic progression.



History: the inverse square law

In 1609, based on data from Tycho Brahe, Kepler determined that
the planets travel in ellipses with the sun at the focus.

A centerpiece of Newton’s Philosophiæ Naturalis Principia
Mathematica (1687) is the Propositio Keplieriana:

Assuming the laws of motion, given that the path of a
body is an ellipse and only force on it is directed to one
focus, that force is inversely proportional to the distance.

In other words, assuming gravitational force accounts for the
motion, he derived the inverse square law.



History: the inverse square law
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History: the inverse square law

Algebra and geometry:
• Early algebra was fundamentally about geometric magnitudes

and constructions.
• In the 1630s, Descartes showed that symbolic algebraic

methods could be used to solve difficult geometric problems.
• In 1666, Newton developed a symbolic version of calculus

using algebraic methods.
• He soon became very critical of Cartesian methods for not

providing proper understanding.
• The Principia, published in 1687, is explicitly geometric.



History: the inverse square law

Christiaan Huygens, 14 years senior to Newton, was a towering
figure in 17th century science.

He was critical of Newton for straying from a pure geometric
interpretation.

The theory of proportions dealt with sameness of ratios:
A/B : C/D.

You can only “compound” ratios with the same middle term,
A/B × B/C is A/C .

To “compound” A/B and C/D, one has to construct an F such
that B/F : C/D, in which case, the compound ratio is A/F .



History: Dirichlet’s theorem

Theorem
Let m and k be relatively prime. Then the arithmetic progression
m, m + k, m + 2k, . . . contains infinitely many primes.

For example, there are no primes in the sequence

6, 15, 24, 33, 42, 51, . . . .

There are infinitely many primes in the sequence

5, 14, 23, 32, 41, 50, . . .



History: Dirichlet’s theorem

Legendre assumed this in 1798, in giving a purported proof of the
law of quadratic reciprocity.

Gauss pointed out this gap, and presented two proofs of quadratic
reciprocity in his Disquisitiones Arithmeticae of 1801.

He ultimately published six proofs of quadratic reciprocity, and left
two more proofs in his Nachlass. But he never proved the theorem
on primes in an arithmetic progression.

Dirichlet’s 1837 proof is notable for the sophisticated use of
analytic methods to prove a number-theoretic statement.



History: Dirichlet’s theorem

If G is a finite abelian group, χ is a character on G if it is a
homomorphism from G to the nonzero complex numbers, i.e.

χ(g1g2) = χ(g1)χ(g2)

for every g1 and g2 in G .

The following two “orthogonality” relations hold:

∑
g∈G

χ(g) =
{

|G | if χ = χ0
0 otherwise

and ∑
χ∈Ĝ

χ(g) =
{

|G | if g = 1
0 otherwise



History: Dirichlet’s theorem

Modern presentations of Dirichlet’s theorem use characters on
(Z/kZ)∗.

They define the Dirichlet L-functions:

L(s, χ) =
∞∑

n=1

χ(n)
ns .

Euler product expansion:

L(s, χ) =
∏
q

(
1 − χ(q)

qs

)−1
=

∏
q∤k

(
1 − χ(q)

qs

)−1

This converges when Re(s) > 1.



History: Dirichlet’s theorem

Taking logarithms of both sides:

log L(s, χ) =
∑
q∤k

χ(q)
qs + O(1).

Multiply both sides by χ(m) and sum over χ.

∑
χ

χ(m) log L(s, χ) =
∑

χ

∑
q∤k

χ(m)χ(q)
qs + O(1).

Interestingly, they do not require knowing how to name, describe,
or calculate any particular characters.

It can be done, though.



History: Dirichlet’s theorem

In the case where the common difference is a prime, p:
• Let c be a primitive element modulo p.
• For every n coprime to p, let γn be such that cγn ≡ n mod p.
• Characters χ correspond to p − 1st roots of unity ω, where

χ(n) = ωγn .

Pick a generator Ω of the p − 1st roots of unity, {Ω0, . . . , Ωp−2}.

Instead of L(s, χ), we can write Lm(s) for the L-series
corresponding to the root Ωm.



History: Dirichlet’s theorem

In the case where the modulus k is not prime:
• Decompose (Z/kZ)∗ into a product of cyclic groups.
• Choose generators for each cyclic group.
• A unit n modulo k has indices αn, βn, γn, γ′

n, . . .

• Each character χ(n) corresponds to a choice of roots of unity,
θ, φ, ω, ω′, . . . by the equation χ(n) = θαφβωγω′γ′ .

I left the dependence on n is left implicit.

If we choose appropriate primitive roots of unity, each character is
given by a list of indices a, b, c, c ′, . . ..

Instead of L(s, χ), we can write La,b,c,c′,....



History: Dirichlet’s theorem
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History: Dirichlet’s theorem

• Dirichlet 1837: Dirichlet’s original proof
• Dirichlet 1840, 1841: extensions to Gaussian integers,

quadratic forms
• Dedekind 1863: presentation of Dirichlet’s theorem
• Dedekind 1879, Weber 1882: characters on arbitrary abelian

groups
• Hadamard 1896: presentation of Dirichlet’s theorem and

extensions
• de la Vallée Poussin 1897: presentation of Dirichlet’s theorem

and extensions
• Kronecker (1901, really 1870s and 1880s): constructive,

quantitative treatment
• Landau 1909, 1927: presentation of Dirichlet’s theorem and

extensions



History: Dirichlet’s theorem

Mathematicians quickly realized that Dirichlet’s proof could be
modularized to suppress the details of the representations.

But they still described the representations and made the
translation explicit.

In other words, the proofs were fundamentally about the symbolic
expressions, even though they became increasingly hidden.

It was a long time for mathematicians to dispense with
computational detail entirely.



Moral 1: Views of understanding change

It was once a common view that mathematics is fundamentally
about geometric magnitudes, and that geometric understanding is
essential to mathematics.

It was once a common view that mathematics is fundamentally
about symbolic representations and calculation, and that a
computational understanding is essential to mathematics.

It is now a common view that mathematics is fundamentally about
abstract structures and the relationships between them, and that a
conceptual understanding is essential to mathematics.
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Moral 2: change happens for good reasons

Changes in mathematics do not happen suddenly.

They are driven by pragmatic needs, and justified by mathematical
success.

In times of change, the mathematical community gradually comes
to terms with

• the benefits to using new methods,
• the drawbacks,
• what is gained,
• and what is lost.

It tries to maximize the gains while minimizing the losses.
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Moral 3: mathematics incorporates its past

Geometry is still fundamental to mathematics.

We know have other ways to think about what Euclid did, and
what Newton did.

Computation is also fundamental to mathematics.

We now have a better understanding of what to compute.



Outline

This talk:
• conceptual understanding
• challenges: computers in mathematics
• historical comparisons:

• Newton and Propositio Kepleriana
• Dirichlet’s theorem on primes in an arithmetic progression

• morals
• bigger morals



Bigger moral 1: the value of history

Studying the history of mathematics helps us understand where we
are now.

It also helps us appreciate where we are now.

If we could find ways to support historical research, our students
would benefit, and so would we.
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Bigger moral 2: the value of philosophical reflection

According to Strevens: it is a
misstep to suggest “that science
would flourish if scientists knew
and cared more about the rest of
existence. Quite the contrary:
their obliviousness is the greatest
guarantee that they will follow
without deviation the empirical
path laid out by the iron rule.”



Bigger moral 2: the value of philosophical reflection

We express judgments about what makes for good mathematics
every time we:

• decide what to work on,
• decide what to teach,
• write a book or article,
• review an article,
• decide who to hire or promote,
• bestow an award.

We should be better at talking about what’s important to us.



Bigger moral 2: the value of philosophical reflection

We should live our mathematical lives deliberately.
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Bigger moral 3: optimism

There are legitimate reasons to be concerned about how computers
might change mathematics.

But ultimately, we decide how to use the technology.

Mathematics knows what it’s doing (even though we don’t).

We should not be afraid to explore.
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Bigger moral 3: optimism

These days, there are lots of things we should be worried about.

Mathematics isn’t one of them.

Future generations will understand things better than we do, and
they will be thinking about things in ways we can’t even imagine.

We should be encouraged, because that’s exactly why we do
mathematics.
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