
The Lean Theorem Prover

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

June 29, 2017



Formal and Symbolic Methods

Computers open up new opportunities for mathematical reasoning.

Consider three types of tools:

• computer algebra systems
• automated theorem provers and reasoners
• proof assistants

They have different strengths and weaknesses.



Computer Algebra Systems

Computer algebra systems are widely used.

Strengths:
• They are easy to use.
• They are useful.
• They provide instant gratification.
• They support interactive use, exploration.
• They are programmable and extensible.



Computer Algebra Systems

Weaknesses:
• The focus is on symbolic computation, rather than abstract
definitions and assertions.

• They are not designed for reasoning or search.
• The semantics is murky.
• They are sometimes inconsistent.



Automated Theorem Provers and Reasoners

Automated reasoning systems include:
• theorem provers
• constraint solvers

SAT solvers, SMT solvers, and model checkers combine the two.

Strengths:
• They provide powerful search mechanisms.
• They offer bush-button automation.



Automated Theorem Provers and Reasoners

Weaknesses:
• They do not support interactive exploration.
• Domain general automation often needs user guidance.
• SAT solvers and SMT solvers work with less expressive
languages.



Ineractive Theorem Provers

Interactive theorem provers includes systems like HOL light, HOL4,
Coq, Isabelle, PVS, ACL2, . . .

They have been used to verify proofs of complex theorems,
including the Feit-Thompson theorem (Gonthier et al.) and the
Kepler conjecture (Hales et al.).

Strengths:
• The results scale.
• They come with a precise semantics.
• Results are fully verified.



Interactive Theorem Provers

Weaknesses:
• Formalization is slow and tedious.
• It requires a high degree of commitment and experise.
• It doesn’t promote exploration and discovery.



Outline

The Lean project aims to combine the best all these worlds.

I will discuss:
• the Lean project
• metaprogramming in Lean
• a connection between Lean and Mathematica
• automation in Lean



The Lean Theorem Prover

Lean is a new interactive theorem prover, developed principally by
Leonardo de Moura at Microsoft Research, Redmond.

Lean is open source, released under a permissive license, Apache
2.0.

See http://leanprover.github.io.

http://leanprover.github.io


The Lean Theorem Prover

Why develop a new theorem prover?

• It provides a fresh start.
• We can incorporate the best ideas from existing provers, and
try to avoid shortcomings.

• We can craft novel engineering solutions to design problems.



The Lean Theorem Prover

The aim is to bring interactive and automated reasoning together,
and build

• an interactive theorem prover with powerful automation
• an automated reasoning tool that

• produces (detailed) proofs,
• has a rich language,
• can be used interactively, and
• is built on a verified mathematical library

• a programming environment in which one can
• compute with objects with a precise formal semantics,
• reason about the results of computation,
• extend the capabilities of Lean itself,
• write proof-producing automation



The Lean Theorem Prover

Overarching goals:
• Verify hardware, software, and hybrid systems.
• Verify mathematics.
• Support reasoning and exploration.
• Support formal methods in education.
• Create an eminently powerful, usable system.
• Bring formal methods to the masses.



History

• The project began in 2013.
• Lean 2 was “announced” in the summer of 2015.
• A major rewrite was undertaken in 2016.
• The new version, Lean 3 is in place.
• A standard library and automation are under development.
• HoTT development is ongoing in Lean 2.



People

Code base: Leonardo de Moura, Gabriel Ebner, Sebastian Ullrich,
Jared Roesch, Daniel Selsam

Libraries: Jeremy Avigad, Floris van Doorn, Leonardo de Moura,
Robert Lewis, Gabriel Ebner, Johannes Hölzl, Mario Carneiro

Past project members: Soonho Kong, Jakob von Raumer

Contributors: Assia Mahboubi, Cody Roux, Parikshit Khanna, Ulrik
Buchholtz, Favonia (Kuen-Bang Hou), Haitao Zhang, Jacob Gross,
Andrew Zipperer, Joe Hurd



The Lean Theorem Prover

Notable features:
• based on a powerful dependent type theory
• written in C++, with multi-core support
• small trusted kernel with independent type checkers
• supports constructive reasoning, quotients and extensionality,
and classical reasoning

• elegant syntax and a powerful elaborator
• well-integrated type class inference
• a function definition system compiles structural / nested /
mutual / well-founded recursive definitions down to primitives

• flexible means of writing declarative proofs and tactic-style
proofs

• server support for editors, with proof-checking and live
information



The Lean Theorem Prover

• editor modes for Emacs and VSCode
• a javascript version runs in a browser
• a fast bytecode interpreter for evaluating computable
definitions

• a powerful framework for metaprogramming via a monadic
interface to Lean internals

• profiler and roll-your-own debugger
• simplifier with conditional rewriting, arithmetic simplification
• SMT-state extends tactics state with congruence closure,
e-matching

• online documentation and courseware
• enthusiastic, talented people involved



Logical Foundations

Lean is based on a version of the Calculus of Inductive
Constructions, with:

• a hierarchy of (non-cumulative) universes, with a type Prop of
propositions at the bottom

• dependent function types (Pi types)
• inductive types (à la Dybjer)

Semi-constructive axioms and constructions:
• quotient types (the existence of which imply function
extensionality)

• propositional extensionality

A single classical axiom:
• choice



Defining Functions

Lean’s primitive recursors are a very basic form of computation.

To provide more flexible means of defining functions, Lean uses an
equation compiler.

It does pattern matching:

def list_add {α : Type u} [has_add α] :
list α → list α → list α

| [] _ := []
| _ [] := []
| (a :: l) (b :: m) := (a + b) :: list_add l m

#eval list_add [1, 2, 3] [4, 5, 6, 6, 9, 10]



Defining Functions

It handles arbitrary structural recursion:

def fib : N → N
| 0 := 1
| 1 := 1
| (n+2) := fib (n+1) + fib n

#eval fib 10000

It detects impossible cases:

def vector_add [has_add α] :
Π {n}, vector α n → vector α n → vector α n

| ._ nil nil := nil
| ._ (@cons ._ _ a v) (cons b w) := cons (a + b)

(vector_add v w)

#eval vector_add (cons 1 (cons 2 (cons 3 nil)))
(cons 4 (cons 5 (cons 6 nil)))



Defining Inductive Types

Nested and mutual inductive types are also compiled down to the
primitive versions:

mutual inductive even, odd
with even : N → Prop
| even_zero : even 0
| even_succ : ∀ n, odd n → even (n + 1)
with odd : N → Prop
| odd_succ : ∀ n, even n → odd (n + 1)

inductive tree (α : Type)
| mk : α → list tree → tree



Defining Functions
The equation compiler handles nested inductive definitions and
mutual recursion:

inductive term
| const : string → term
| app : string → list term → term

open term

mutual def num_consts, num_consts_lst
with num_consts : term → nat
| (term.const n) := 1
| (term.app n ts) := num_consts_lst ts
with num_consts_lst : list term → nat
| [] := 0
| (t::ts) := num_consts t + num_consts_lst ts

def sample_term := app "f" [app "g" [const "x"], const "y"]

#eval num_consts sample_term



Defining Functions

We can do well-founded recursion:

def div : nat → nat → nat
| x y :=

if h : 0 < y ∧ y ≤ x then
have x - y < x, from . . .,
div (x - y) y + 1

else
0

Here is Ackermann’s function:

def ack : nat → nat → nat
| 0 y := y+1
| (x+1) 0 := ack x 1
| (x+1) (y+1) := ack x (ack (x+1) y)



Type Class Inference

Type class resolution is well integrated.

class semigroup (α : Type u) extends has_mul α :=
(mul_assoc : ∀ a b c, a * b * c = a * (b * c))

class monoid (α : Type u) extends semigroup α, has_one α :=
(one_mul : ∀ a, 1 * a = a) (mul_one : ∀ a, a * 1 = a)

def pow {α : Type u} [monoid α] (a : α) : N → α

| 0 := 1
| (n+1) := a * pow n

infix `^`:= pow



Type Class Inference

@[simp] theorem pow_zero (a : α) : a^0 = 1 := by unfold pow

theorem pow_succ (a : α) (n : N) : a^(n+1) = a * a^n :=
by unfold pow

theorem pow_mul_comm' (a : α) (n : N) : a^n * a = a * a^n :=
by induction n with n ih; simp [*, pow_succ]

theorem pow_succ' (a : α) (n : N) : a^(n+1) = a^n * a :=
by simp [pow_succ, pow_mul_comm']

theorem pow_add (a : α) (m n : N) : a^(m + n) = a^m * a^n :=
by induction n; simp [*, pow_succ', nat.add_succ]

theorem pow_mul_comm (a : α) (m n : N) :
a^m * a^n = a^n * a^m :=

by simp [(pow_add a m n).symm, (pow_add a n m).symm]

instance : linear_ordered_comm_ring int := . . .



Proof Language

Proofs can be written as terms, or using tactics.

def gcd : nat → nat → nat
| 0 y := y
| (succ x) y := have y % succ x < succ x,

from mod_lt _ $ succ_pos _,
gcd (y % succ x) (succ x)

theorem gcd_dvd_left (m n : N) : gcd m n | m := . . .

theorem gcd_dvd_right (m n : N) : gcd m n | n := . . .

theorem dvd_gcd {m n k : N} : k | m → k | n → k | gcd m n := . . .



Proof Language

theorem gcd_comm (m n : N) : gcd m n = gcd n m :=
dvd_antisymm

(have h1 : gcd m n | n, from gcd_dvd_right m n,
have h2 : gcd m n | m, from gcd_dvd_left m n,
show gcd m n | gcd n m, from dvd_gcd h1 h2)

(have h1 : gcd n m | m, from gcd_dvd_right n m,
have h2 : gcd n m | n, from gcd_dvd_left n m,
show gcd n m | gcd m n, from dvd_gcd h1 h2)

theorem gcd_comm1 (m n : N) : gcd m n = gcd n m :=
dvd_antisymm

(dvd_gcd (gcd_dvd_right m n) (gcd_dvd_left m n))
(dvd_gcd (gcd_dvd_right n m) (gcd_dvd_left n m))



Proof Language

theorem gcd_comm2 (m n : N) : gcd m n = gcd n m :=
suffices ∀ {m n}, gcd m n | gcd n m,

from (dvd_antisymm this this),
assume m n : N,
show gcd m n | gcd n m,

from dvd_gcd (gcd_dvd_right m n) (gcd_dvd_left m n)

theorem gcd_comm3 (m n : N) : gcd m n = gcd n m :=
begin

apply dvd_antisymm,
{ apply dvd_gcd, apply gcd_dvd_right, apply gcd_dvd_left },
apply dvd_gcd, apply gcd_dvd_right, apply gcd_dvd_left

end



Proof Language

theorem gcd_comm4 (m n : N) : gcd m n = gcd n m :=
begin

apply dvd_antisymm,
{ have : gcd m n | n, apply gcd_dvd_right,

have : gcd m n | m, apply gcd_dvd_left,
show gcd m n | gcd n m, apply dvd_gcd; assumption },

{ have : gcd n m | m, apply gcd_dvd_right,
have : gcd n m | n, apply gcd_dvd_left,
show gcd n m | gcd m n, apply dvd_gcd; assumption },

end

theorem gcd_comm5 (m n : N) : gcd m n = gcd n m :=
by apply dvd_antisymm;

{apply dvd_gcd, apply gcd_dvd_right, apply gcd_dvd_left}



Proof Language

attribute [ematch] gcd_dvd_left gcd_dvd_right dvd_gcd
dvd_antisymm

theorem gcd_comm6 (m n : N) : gcd m n = gcd n m :=
by finish

theorem gcd_comm7 (m n : N) : gcd m n = gcd n m :=
begin [smt] eblast end



Lean as a Programming Language

Lean implements a fast bytecode evaluator:
• It uses a stack-based virtual machine.
• It erases type information and propositional information.
• It uses eager evaluation (and supports delayed evaluation with
thunks).

• You can use anything in the Lean library, as long as it is not
noncomputable.

• The machine substitutes native nats and ints (and uses GMP
for large ones).

• It substitutes a native representation of arrays.
• It has a profiler and a debugger.
• It is really fast.

Compilation to native code is under development.



Lean as a Programming Language

#eval 3 + 6 * 27
#eval if 2 < 7 then 9 else 12
#eval [1, 2, 3] ++ 4 :: [5, 6, 7]
#eval "hello " ++ "world"
#eval tt && (ff || tt)

def binom : N → N → N
| _ 0 := 1
| 0 (_+1) := 0
| (n+1) (k+1) := if k > n then 0

else if n = k then 1
else binom n k + binom n (k+1)

#eval (range 7).map $ λ n, (range (n+1)).map $ λ k, binom n k



Lean as a Programming Language

section sort
universe variable u
parameters {α : Type u} (r : α → α → Prop) [decidable_rel r]
local infix 4 : 50 := r

def ordered_insert (a : α) : list α → list α

| [] := [a]
| (b :: l) := if a 4 b then a :: (b :: l)

else b :: ordered_insert l

def insertion_sort : list α → list α

| [] := []
| (b :: l) := ordered_insert b (insertion_sort l)

end sort

#eval insertion_sort (λ m n : N, m ≤ n)
[5, 27, 221, 95, 17, 43, 7, 2, 98, 567, 23, 12]



Lean as a Programming Language

There are algebraic structures that provides an interface to terminal
and file I/O.

Users can implement their own, or have the virtual machine use the
“real” one.

At some point, we decided we should have a package manager to
manage libraries and dependencies.

Gabriel Ebner wrote one, in Lean.



Lean as a Metaprogramming Language

Question: How can one go about writing tactics and automation?

Various answers:
• Use the underlying implementation language (ML, OCaml,
C++, . . . ).

• Use a domain-specific tactic language (LTac, MTac, Eisbach,
. . . ).

• Use reflection (RTac).



Metaprogramming in Lean

Our answer: go meta, and use the object language.

(MTac, Idris, and now Agda do the same, with variations.)

Advantages:
• Users don’t have to learn a new programming language.
• The entire library is available.
• Users can use the same infrastructure (debugger, profiler, etc.).
• Users develop metaprograms in the same interactive
environment.

• Theories and supporting automation can be developed
side-by-side.



Metaprogramming in Lean

The method:
• Add an extra (meta) constant: tactic_state.
• Reflect expressions with an expr type.
• Add (meta) constants for operations which act on the tactic
state and expressions.

• Have the virtual machine bind these to the internal
representations.

• Use a tactic monad to support an imperative style.

Definitions which use these constants are clearly marked meta, but
they otherwise look just like ordinary definitions.



Metaprogramming in Lean

meta def find : expr → list expr → tactic expr
| e [] := failed
| e (h :: hs) :=

do t ← infer_type h,
(unify e t >> return h) <|> find e hs

meta def assumption : tactic unit :=
do { ctx ← local_context,

t ← target,
h ← find t ctx,
exact h }

<|> fail "assumption tactic failed"

lemma simple (p q : Prop) (h1 : p) (h2 : q) : q :=
by assumption



Metaprogramming in Lean

Summary:
• We extend the object language with a type that reflects an
internal tactic state, and expose operations that act on the
tactic state.

• We reflect the syntax of dependent type theory, with
mechanisms to support quotation and pattern matching over
expressions.

• We use general support for monads and monadic notation to
define the tactic monad and extend it as needed.

• We have an extensible way of declaring attributes and
assigning them to objects in the environment (with caching).

• We can easily install tactics written in the language for use in
interactive tactic environments.

• We have a profiler and a debugging API.



Metaprogramming in Lean

The metaprogramming API includes a number of useful things, like
an efficient implementation of red-black trees.

Tactics are fallible – they can fail, or produce expressions that are
not type correct.

Every object is checked by the kernel before added to the
environment, so soundness is not compromised.



Metaprogramming in Lean

Most of Lean’s tactic framework is implemented in Lean.

Examples:
• The usual tactics: assumption, contradiction, . . .
• Tactic combinators: repeat, first, try, . . .
• Goal manipulation tactics: focus, . . .
• A procedure which establishes decidable equality for inductive
types.

• A transfer method (Hölzl).
• Translations to/from Mathematica (Lewis).
• A full-blown superposition theorem prover (Ebner).

The method opens up new opportunities for developing theories
and automation hand in hand.



Metaprogramming in Lean

Having a programming language built into a theorem prover is
incredibly flexible.

We can:
• Write custom automation.
• Develop custom tactic states (with monad transformers) and
custom interactive frameworks.

• Install custom debugging routines.
• Write custom parser extensions.



Lean and the Outside World

Metaprogramming opens up opportunities for interacting with other
systems.

We hope to call external tools from within Lean:
• automated theorem provers
• SMT solvers (such as Z3, CVC4)
• computer algebra systems

Ideally, the results will be verified in Lean, but we can also choose
to trust them.

Interactivity is a plus.

For example, we can preprocess data in Lean before sending it out.



Lean and Computer Algebra Systems

Robert Y. Lewis has implemented a prototype connection to
Mathematica.

• Lean expressions are sent to Mathematica, with instructions.
• Mathematica inteprets the expressions and carries out the
instructions.

• Mathematica results are sent back to Lean.
• Lean interprets the results.
• Lean can then do whatever it wants with them, such as verify
correctness.

Care has to be taken to preserve enough information to survive the
round trip.



Lean and Computer Algebra Systems

An example:

• Lean sends Mathematica a polynomial.
• Mathematica factors it and returns the list of factors.
• Lean verifies that the product of the factors is equal to the
original.



Lean and Computer Algebra Systems

Consider x + x . In Lean:

app (app (app (app (const "add" [0])
(const "real" []))

(const "real.has_add" [])) X X

where

X := local_const "17.27" "x" "bi" (const "real" []),



Lean and Computer Algebra Systems

This is sent to Mathematica:

LeanApp[LeanApp[LeanApp[
LeanApp[LeanConst["add", {0}],

LeanConst["real", {}]],
LeanConst["real.has_add", {}]], X], X].

where

X := LeanLocal["17.27", "x", "bi",
LeanConst["real", {}]]

Procedures written in Mathematica interpret add but preserve X.



Lean and Computer Algebra Systems

With luck, 1− 2x + x2 gets translated to

Plus[1,Times[-2, X], Power[X, 2]]

where

X := LeanLocal["17.27", "x", "bi",
LeanConst["real",{}]]

Applying Factor produces Power[Plus[-1, X], 2].

The result gets sent back to Lean and interpreted there.



Lean and Computer Algebra Systems

Sample applications:
• Factoring integers.
• Factoring polynomials.
• Matrix decompositions.
• Verifying linear arithmetic (via Farkas witnesses).
• Verifying primality.
• Quickchecking theorems.
• Axiomatizing bounds on expressions that are hard to compute.

The last two require trust, whereas the others can be checked.



Automation in Lean

In addition to the metaprogramming language, native automation is
showing signs of life:

• A term rewriter / simplifier.
• An SMT state extending the tactic state, with:

• congruence closure
• E-matching
• unit propagation
• special handling for AC operations



The simplifier

def append : list α → list α → list α

| [] l := l
| (h :: s) t := h :: (append s t)

def concat : list α → α → list α

| [] a := [a]
| (b::l) a := b :: concat l a

@[simp] lemma append_assoc (s t u : list α) :
s ++ t ++ u = s ++ (t ++ u) :=

by induction s; simph

lemma append_ne_nil_of_ne_nil_left (s t : list α) :
s 6= [] → s ++ t 6= nil :=

by induction s; intros; contradiction

@[simp] lemma concat_eq_append (a : α) (l : list α) :
concat l a = l ++ [a] :=

by induction l; simph [concat]



SMT state

Lean has an SMT state the extends the usual tactic state. It
supports:

• congruence closure
• unit propagation
• ematching



SMT state

example (a b c : α) : a = b → p (a + c) → p (c + b) :=
begin [smt]

intros
end

example (p q r : Prop) : p ∧ (q ∨ r) → (p ∧ q) ∨ (p ∧ r) :=
begin [smt]

intros
end



SMT state

example (p q : Prop) :
(p ∨ q) → (p ∨ ¬q) → (¬p ∨ q) → p ∧ q :=

begin [smt]
intros h1 h2 h3,
destruct h1

end

example (p q : Prop) : p ∨ q → p ∨ ¬q → ¬p ∨ q → p ∧ q :=
begin [smt]

intros,
by_cases p

end



Conclusions

To summarize, Lean implements an axiomatic framework with a
small trusted kernel, a computational interpretation, and a precise
semantics.

• It is an interactive theorem prover.
• It is a programming language.
• It is also a metaprogramming language.
• It has native automation (still under development).
• It can interact with external tools.

This provides a powerful framework for supporting mathematical
reasoning.



Conclusions

Shankar: “We are in the golden age of metamathematics.”

Formal methods will have a transformative effect on mathematics.

Computers change the kinds of proofs that we can discover and
verify.

In other words, they enlarge the scope of what we can come to
know.

It will take clever ideas, and hard work, to understand how to use
them effectively.

But it’s really exciting to see it happen.



References

Documentation, papers, and talks on are leanprover.github.io.

There are various talks on my web page.

See especially the paper “A metaprogramming framework for formal
verification,” to appear in the proceedings of ICFP 2017.

leanprover.github.io

