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Overview

Three traditions in logic:
e Syntactic (formal deduction)
e Semantic (interpretations and truth)

e Algebraic

Contents of this talk:
1. Conservation results in proof theory
2. A model-theoretic approach

3. An algebraic approach



Conservation results

Many theorems in proof theory have the following form:
For ¢ € T, if T1 proves ¢, then Ty proves ¢’
where
e T, and T5 are theories
e ' is a class of formulae

e ' is some “translation” of ¢ (possibly ¢ itself)

If Ty D T5, this is a conservation theorem. These can be:

1. Foundationally reductive (classical to constructive,
infinitary to finitary, impredicative to predicative,
nonstandard to standard)

2. Otherwise informative (ordinal analysis, combinatorial
independences, functional interpretations)

An example

The set of primitive recursive functions is the smallest
set of functions from N to N (of various arities)

e containing 0, S(x) =z + 1, pl(z1,...,2n) = 25
e closed under composition

e closed under primitive recursion:

f(O,Z):g(ZL f(x—i—l,é’):h(f(x,?),x,z_’)

Primitive recursive arithmetic is an axiomatic theory

e with defining equations for the primitive recursive
functions

e quantifier-free induction:

©(0) o(r) — p(z+1)

PRA can be presented either as a first-order theory or as a
quantifier-free calculus.

Theorem. (Herbrand) Suppose first-order PRA proves
Vo Jy ¢(z,y), with ¢ quantifier-free. Then for some
function symbol f, quantifier-free PRA proves ¢(z, f(x)).



Strengthening the conservation result

Let IX;(PRA) denote the theory obtained by adding
induction for ¥ formulae,

0(0) AVz (6(z) — 6(x 4+ 1)) — Va 0(x),
where 0(z) is of the form Ty ¢ (x,y, Z) for some

quantifier-free formula, ).

Theorem. (Mints, Parsons, Takeuti) If IX; proves
Vo Jy o(x,y) with ¢ q.f., then so does PRA.

In other words: IY; is conservative over PRA for I,
sentences.

In fact (Paris, Friedman) one can conservatively add a
schema of Y5 collection.

But wait, there’s more

Let RCA, be an extension of IY; with set variables
X,Y, Z ... and axioms asserting that “the universe of sets is
closed under recursive definability.”

RCA, is a reasonable framework for formalizing recursive
mathematics.

Theorem. RCA, is conservative over 1Y .

WKL, adds a compactness principle: every infinite tree on
{0,1} has a path.

Theorem. (Harrington, strengthening Friedman) WKL, is
I} conservative over RCA,.



Now how much would you pay?

You get all this:

Primitive recursive functions

Y1 induction

Y5 collection

Recursive comprehension

Weak Konig’s lemma

Other second-order principles (Simpson and students)
Higher types (Parsons, Kohlenbach, others)

Flexible type structures (Feferman, Jager, Strahm)

Nonstandard arithmetic/analysis (Avigad)

without losing Ily conservativity over PRA.

Furthermore, one can formalize interesting portions of

mathematics in these theories (Friedman, Simpson,

Kohlenbach, and many others).

Simpson calls this a “partial realization of Hilbert’s

program.”

Interlude

Recall the contents of this talk:
1. Conservation results in proof theory
2. A model-theoretic approach

3. An algebraic approach

I have described a proof-theoretic goal. Now let us consider
a model-theoretic method.



Proof theory versus model theory

Differences:
e Proof vs. truth
e Derivations vs. structures

e Definability in a theory vs. definability in a model

Areas of overlap:
e Soundness and completeness

Models of arithmetic

e Nonstandard arithmetic and analysis

Elimination of quantifiers (e.g. for RCF')

Model theoretic methods are often used in proof theory, e.g.

in proving conservation results.

Saturated models

Model theorists also like to get “something for nothing.”

Let M be a model for a language L. L(M) is the set of
formulae with parameters from M.

The complete diagram of M is the set of sentences of L(M)
true in M.

A type is a set of sentences in L(M) 4+ ¢, where ¢ are some

new constants.

A type T is realized in M if for some @ € M, (M, a) =T.

Definition. Let M be a model of cardinality A\. M is
saturated if every type involving less than A parameters
from M that is consistent with the complete diagram of M

is realized in M.

Theorem (GCH). Every model has a saturated
elementary extension.

Proof. Start with the complete diagram M. Make a
transfinite list of types. Iterate, and realize types. ..
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Herbrand-saturated models

The universal diagram of M is the set of universal
sentences of L(M) true in M.

A type is universal if it consists of universal sentences, and
principal if it consists of a single sentence.

Definition. M is Herbrand saturated if every universal
principle type consistent with the universal diagram of M is
realized in M.

Theorem. Every model has an Herbrand saturated
1-elementary extension (i.e. an extension preserving truth of

¥ formulae).

Proof. As before, iterate, and realize universal types. Cut
down to a term model at the end.

Corollary. Every consistent universally axiomatized theory
has an Herbrand-saturated model.
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Application to proof theory

Recall our prototypical proof-theoretic result:
If 7y F o, then T - .

By soundness and completeness, this is equivalent to
If To U {—p} has a model, so does T7 U {—p}.

So, instead of translating proofs, we can “translate” models.

I will show:
e Herbrand-saturated models have nice properties.

e In particular, an Herbrand-saturated model of PRA
satisfies X7 induction.

From the latter, it follows that IY; is conservative over
PRA for II, formulae.
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A nice property of Herbrand-saturated models

The following theorem says that any Il assertion true in
M is true for a very concrete reason.

Theorem. Suppose M is Herbrand-saturated, and

M EVZ Iy (7,7, @),
where ¢ is quantifier-free and d@ are parameters from M.
Then there are sequences of terms 1 (Z, Z,10), . . . , tx (&, Z,7),

and parameters b from M such that

— =

M EVE (&, 11 (F,d,b),d@) V ... V (7, t(&,d,b), d).

Proof. Just use the definition of Herbrand saturation, and
Herbrand’s theorem.
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Modeling ¥; induction

Suppose M is an Herbrand-saturated model of primitive
recursive arithmetic, satisfying

e 3y ¢(0,y,d)
o Va (Jy p(z,y,d) — Jy p(r+1,y,d).
with ¢ q.f. Rewrite the second formula as
Yo,y 3y (e(z,y,d@) — p(z + 1,9/, a)).

Then, by our “nice property”, there are a primitive
recurisve function symbol g and parameters b and ¢ such
that M satisfies

L4 @(07 C7 d)’

o o(x,y,d) = ¢l +1,9(x,y,d,b),a).
Let h(z, Z,v, @) by the symbol denoting the function
defined by

h(0,Z,v,W) = v

Wz +1,%0,9) = gla,h(z,2v,7), 7 @),

Then M satisfies

M EVz o(z, h(z,d,c,b),d).
and so M E Vz Jy ¢(z,y, d).
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Interlude

Other applications
Back to the table of contents:

1. Conservation results in proof theory
This is, essentially, the model-theoretic version of Siegs’
2. A model-theoretic approach

7w

“Herbrand analysis” and Buss’ “witnessing method.”

3. An algebraic approach
The method applies most directly to universal theories; but

any theory can be made universal by adding appropriate Using model-theoretic methods, one can prove

Skolem functions. So it works for
If 7y F o, then T = .

S over PV
: by showing instead that
e WKL, over PRA
If To U {—p} has a model, so does T} U {—p}.
o BXyiq over Iy

e Y/-AC over PA Suppose someone gives you a proof of ¢ in T7. Where is the

. . N
and so on. corresponding proof in T57

An algebraic approach can be used to recover some

constructive information.
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Back to the model theoretic construction

Theorem. Every consistent universal theory 7" has an
Herbrand-saturated model.

Proof. Let L, be L plus new constant symbols
€0, C1,Ca, . ... Let 01(Z1,71),02(Z2,2), ... enumerate the
quantifier-free formulae of L. Let Sy = T. At stage i, pick
a fresh sequence of constants ¢, and let
s S; U{VY;q1 0;41(6 Gip1)}  if this is consistent

i+1 =

i otherwise.

Let S, = J; Si. Let S" O S,, be maximally consistent.
“Read off” a model from S’; this model is Herbrand
saturated.
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Making it constructive

Main ideas:

e We don’t need a “classical model.” If we use a
Boolean-valued model, we do not need the maximally

consistent extension.

e Use a forcing relation. Conditions are finite sets of

universal formulae that are true in a “generic” model.

e Omit the consistency check; simply allow that some
conditions force 1.

e We do not need to enumerate anything; genericity takes
care of that.
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The forcing relation

A condition is a finite set of universal sentences of L.

Define p IF 0 inductively. Intuition: “6 is true in any generic

model satisfying p.”

plF8 = PRAUpF 6 for atomic 6
plFLl = PRAUpF L
plE(@An) = plFOandpltn
plk (0 —n) = for every condition ¢ D p, if ¢ IF 0, then ¢ I 7

pl-Va 6(x) = for every closed term t of L, p IF 6(¢)
Define =, ¢ V ¢, and Jz ¢ in terms of the other

connectives.

A formula 1) is said to be forced, written I v, if @ I 1).
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The algebraic version of the proof

Lemma. All the axioms of IX; are forced.

Lemma. If a I, sentence is forced, it is provable in PRA.

Theorem. IY; is Il conservative over PRA.

Proof. If IX; proves Vz 3y ¢(x,y), it is forced, and hence
provable in PRA.

20



Notes on the proof

Q. What makes the proof “algebraic”?

A. Defining [¢] = {p | pIF ¢} yields a Boolean-valued
model of IY;.

Q. What makes the proof constructive?

A. Two answers:
1. Can formalize it in Martin-Lof type theory.

2. Can read of an explicit algorithm: from a proof d in
I¥Y;, get a typed term Ty, denoting a proof in PRA.
Normalizing Ty yields the proof.
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Conclusions

Some other uses of algebraic methods:

nonstandard arithmetic
weak Ko6nig’s lemma
eliminating Skolem functions

proving cut elimination theorems

Questions:

Are there other metamathematical or proof-theoretic
applications?

Are there concrete computational applications?

Can algebraic methods be useful in studying particular
mathematical theories, and extracting additional
information?

Are there model-theoretic applications, e.g. in
constructivizing model-theoretic results?

Are there applications to bounded arithmetic and proof
complexity?
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