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Proof theory in the Hilbert tradition

Proof theory: the general study of deductive systems

Structural proof theory: . . . with respect to structure,
transformations between proofs, normal forms, etc.

Hilbert’s program:

• Formalize abstract, infinitary, nonconstructive mathematics.

• Prove consistency using only finitary methods.

More general versions:

• Prove consistency relative to constructive theories.

• Understand mathematics in constructive terms.

• Study mathematical reasoning in “concrete” terms.



Proof theory in the Hilbert tradition

Proof-theoretic analysis can “reduce”:

• infinitary to finitary reasoning

• nonconstructive to constructive reasoning

• impredicative to predicative reasoning

• nonstandard to standard reasoning

• arbitrary choices to choice-free reasoning

In a sense, this eliminates “ideal” elements.



A brief history of forcing

Cohen, ’63: the independence of CH and AC from set theory.

Kripke, ’59-’65: semantics for modal and intuitionistic logic.

Perspectives:

• Set theory: generic extensions, approximations

• Modal logic: possible worlds

• Recursion theory: diagonalization, conditions

• Model theory: existentially closed models

• Categorical logic: logic of sheaves

• Descriptive set theory: generic truth

• Effective descriptive set theory

• Complexity theory

Themes: diagonalization, local/global properties, construction via
approximations



Overview

In this talk, I will explain how forcing is relevant (and ideally suited
to) traditional, Hilbert-style proof theory.

1. The framework

1.1 Minimal, intuitionistic, and classical logic
1.2 The forcing relation
1.3 Variations

2. Applications

2.1 Subsystems of second-order arithmetic
2.2 Intuitionistic theories
2.3 “Point-free” model theory



From minimal to classical logic

Flavors of first-order logic:
• Minimal (M): nicest computational interpretation
• Intuitionistic (I): add “from ⊥ conclude ϕ”
• Classical (C): add ¬¬ϕ→ ϕ or ϕ ∨ ¬ϕ

Intuitionistic to minimal (F): replace atomic A by A ∨ ⊥ or ¬¬A.
Then

`M ⊥ → ϕF

Classical to minimal (N): also replace ϕ ∨ ψ by ¬(¬ϕ ∧ ¬ψ) and
∃x ϕ by ¬∀x ¬ϕ. Then
• `M ϕN ↔ ¬¬ϕN

• Γ `C ϕ implies ΓN `M ϕN

The Kuroda translation (K): instead, add ¬¬ after each universal
quantifier.
• `M ¬¬ϕK ↔ ϕN

• `C ϕ implies `I ¬¬ϕK



Kripke semantics

Start with:

• a poset P (possible worlds)

• a domain D(p) at each world

• for each p ∈ P and atomic A, an interpretation of A at p

satisfying monotonicity: if q ≤ p, then

• D(q) ⊇ D(p)

• If p  A(a0, . . . , ak−1) then q  A(a0, . . . , ak−1).

Extend the forcing relation to L(D) inductively:

1. p  θ ∧ η iff p  θ and p  η

2. p  θ ∨ η iff p  θ or p  η

3. p  θ → η iff ∀q ≤ p (q  θ → q  η)

4. p  ∀x ϕ(x) iff ∀q ≤ p ∀a ∈ D(q) q  ϕ(a)

5. p  ∃x ϕ(x) iff ∃a ∈ D(p) p  ϕ(a)



Kripke semantics

Theorem.

• (monotonicity): p  ϕ and q ≤ p imply q  ϕ

• `M ϕ implies  ϕ

For intuitionistic logic, add

• p 6 ⊥

Theorem.

• p  ⊥ → ϕ

• `I ϕ implies  ϕ.



Forcing for classical logic

Weak forcing: define C ϕ by M ϕN .

For example:

• p C θ ∨ η iff ∀q ≤ p ∃r ≤ q ((r C θ) ∨ (r C η))

• p C ¬¬θ iff ∀q ≤ p ∃r ≤ q r C θ

Theorem.

1. monotonicity: p C ϕ and q ≤ p imply q C ϕ

2. genericity: p C ϕ iff ∀q ≤ p ∃r ≤ q r C ϕ

3. soundness: `C ϕ implies C ϕ

Strong forcing: define C ′ ϕ by M ϕK .

Then

C ϕ iff C ′ ¬¬ϕ



Notes and variations

1. p C ϕ corresponds to “ϕ is true in every extension by a
generic containing p”

2. Can replace p 6 ⊥ by “if p  ⊥ then p  A(a0, . . . , ak−1).”

3. Beth models:

p  ϕ ∨ ψ iff for some covering C (p) of p,
∀q ∈ C (p) ((q  ϕ) ∨ (q  ψ))

and similarly for ∃.

4. Replace the poset by a category (presheaf models)

5. Replace Beth’s coverings by a Grothendieck topology (sheaf
models)

6. Extend to higher-order logic (and set theory)



“Internalized” constructions

Think syntactically:

• Work in a theory T .

• Use definable predicates, Cond , ≤, Name,
p  A(a0, . . . , ak−1).

• Assume T proves monotonicity, etc.

Then T can verify the soundness of forcing:

• Minimal logic verifies minimal forcing

• Intuitionistic logic verifies intuitionistic forcing

• Classical logic verifies classical forcing

• With modified falsity, minimal logic verifies intuitionstic
forcing

• With additional negations, minimal logic verifies classical
forcing

• One can also get genericity in minimal logic



Interlude

We’ve considered:

1. Minimal, intuitionistic, and classical logic

2. The forcing relation

3. Notes and variations

To interpret T1 in T2:

• Define a poset, basic forcing notions in T2.

• Show axioms of T1 are forced.

• Conclude: if T1 proves ϕ, then T2 proves “ϕ is forced.”

For partial conservativity, show

• For ϕ ∈ Γ, if T2 proves “ϕ is forced,” then T2 proves ϕ.



Applications

1. Subsystems of second-order arithmetic
• Choice principles (Steele, Friedman)
• Weak König’s lemma
• Baire Category Theorem
• Ramsey’s theorem

2. Intuitionistic theories
• Goodman’s theorem
• Continuity, Bar recursion (Beeson, Grayson, Hayashi)
• Interpreting classical theories in constructive ones

3. “Point-free” model theory
• Nonstandard arithmetic and analysis
• Eliminating Skolem functions
• Algebraic proofs of cut elimination

I’ll discuss some examples, favoring my own work.



Subsystems of arithmetic

Language: 0, 1,+,×, <,∈, x , y , z , . . .X ,Y ,Z , . . .

Full second-order arithmetic has:

• Quantifier-free defining equations

• Induction

• Comprehension: ∃Z ∀x (x ∈ Z ↔ ϕ(x))

One can also consider various choice principles.

Restrict induction to Σ0
1 formulas with parameters, and restrict set

existence principles:

• RCA0 : recursive (∆0
1) comprehension

• WKL0 : paths through infinite binary trees

• ACA0 : arithmetic comprehension

• ATR0 : transfinitely iterated arithmetic comprehension

• Π1
1 -CA0 : Π1

1 comprehension



Weak König’s lemma

König’s lemma. Every infinite, finitely branching tree T has an
infinite path

Kleene’s basis theorem. The leftmost branch is computable in
T ′.

Weak König’s lemma. Every infinite tree on {0, 1} has an
infinite path.

The Jockusch-Soare low basis theorem. Every such tree has a
low path, i.e. satisfying P ′ ≤T T ′.

Iterative construction: at stage n, thin the tree to guarantee that
ϕP

n (0) will diverge, if possible; extend the path one step.



Weak König’s lemma

Theorem (Friedman). WKL0 is conservative over primitive
recursive arithmetic for Π0

2 sentences.

Theorem (Harrington). WKL0 is, moreover, conservative over
RCA0 for Π1

1 sentences.

Proof.

• Start with a countable model of RCA0 .

• Pick an infinite binary tree.

• Add a generic branch (conditions: infinite subtrees).

• Show Σ0
1 induction is preserved.

• Iterate.



Weak König’s lemma

There are two ways of interpreting WKL0 in RCA0 :

• Hájek: formalize a sharper version of the low basis theorem.

• Avigad: formalize the (iterated, proper-class) forcing
argument. Conditions: sequences of names for infinite binary
trees.

Variations:

• Brown and Simpson: use Cohen forcing to get a version of
Baire Category theorem.

• Simpson and Smith: results for WKL and elementary
arithmetic.

• Ferreira, Fernandes: results for WKL and feasible arithmetic.

• Simpson, Tanaka, Yamazaki: additional definability results.



Ramsey’s theorem

Definition. RT (k) is the statement that every for 2-coloring of k
tuples of natural numbers there is an infinite homogeneous set.

Theorem (Jockusch). There is a recursive coloring of triples such
that 0′ is computable from any infinite homogenous set.

Theorem (Simpson). For each (standard) k ≥ 3, RT (k) is
equivalent to arithmetic comprehension over RCA0 .

What about RT(2)?



Ramsey’s theorem

Theorem (Jockusch). There is a recursive coloring such that no
infinite homogeneous set is computable from 0′.

Corollary. WKL0 does not prove RT (2).

Theorem (Seetapun). If A is not recursive, there is a recursive
coloring such that A is not computable from any infinite
homogeneous set.

Corollary. RCA0 + RT (2) does not prove ACA0 .

It is open as to whether WKL0 proves RT (2).



Ramsey’s theorem

Theorem (Cholak, Jockusch, Slaman). Every 2-coloring C has
an infinite homogeneous set H that is low2(C ), i.e. H ′′ = C ′′.

Theorem (Cholak, Jockusch, Slaman). RCA0 + IΣ2 + RT (2)
is conservative over RCA0 + IΣ2 for Π1

1 sentences.

first theorem : second theorem ::
Jockusch-Soare : Harrington.

Can the forcing argument be turned into a syntactic translation?



Goodman’s theorem

Let HAω be a finite-type version of Heyting arithmetic (a
conservative extension, without comprehension axioms).

The axiom of choice:

∀xσ ∃y τ ϕ(x , y)→ ∃f σ→τ ∀xσ ϕ(x , f (x)).

Classically, this implies comprehension. But intuitionistically:

Theorem (Goodman). HAω + AC is a conservative extension of
HAω for arithmetic sentences.

Beeson’s presentation:

• HAω + AC is realized in HAω, even with an extra function
symbol.

• Force so that “ϕ is realized” implies “ϕ is true” for arithmetic
sentences.



Interpreting classical theories constructively

The Gödel-Gentzen double-negation translation is a powerful tool:

• It reduces PA to HA, PA2 to HA2 , ZF to IZF .

• The Friedman-Dragalin translation recovers Π0
2 theorems.

But these methods do not work for S1
2 , IΣ1 , Σ 1

1 −AC , KP.

What goes wrong? Some examples:

• The double-negation interpretation of Σ1 induction involves
induction on predicates of the form ¬¬∃x A(x , y).

• The double negation translation of the Σ1
1 axiom of choice is

of the form

∀x ¬¬∃Y ϕ(x ,Y )→ ¬¬∃Y ∀x ϕ(x ,Yx)

where ϕ is arithmetic.



Interpeting classical theories

We can use the latitude in defining “p  ⊥” to repair the double
negation translation.

• Buchholz: theories of inductive definitions

• Coquand and Hofmann: Σ1 induction, bounded arithmetic

• Avigad: bounded arithmetic, Σ1
1-AC , admissible set theory



Interpreting classical theories

For arithmetic with Σ1 induction, it suffices to obtain a forcing
interpretation of Markov’s principle:

¬∀x A(x)→ ∃x ¬A(x)

Take conditions p to be (codes for) finite sets of Π1 sentences,

{∀x A1(x),∀x A2(x), . . . ,∀x Ak(x)}.

Define p ≤ q to be p ⊇ q.

For θ atomic, define p  θ to be

∃y (A1(y) ∧ . . . ∧ Ak(y)→ θ).

In particular, p  ⊥ is equivalent to

∃y (¬A1(y) ∨ . . . ∨ ¬Ak(y)).

Then it turns out that if p  ¬∀x A(x), then p  ∃x ¬A(x).
In other words, Markov’s principle is forced.



Some details

Lemma. The following are provable in I Σi
1:

1. {∀x A(x)}  ∀x A(x)
2. If p  ¬∀x A(x), then p  ∃x ¬A(x).
3.  ¬∀x A(x)→ ∃x ¬A(x)

Proof. For 1, we have

∀x A(x)  ∀x A(x) ≡ ∀z (∀x A(x)  A(z))

≡ ∀z ∃y (A(y)→ A(z)).

For 2, let p be the set {∀x B1(x), . . . ,∀x Bk(x)}, and suppose
p  ¬∀x A(x). By 1, we have p ∪ {∀x A(x)}  ⊥. In other words,

∃y (B1(y) ∧ . . . ∧ Bk(y) ∧ A(y)→ ⊥)

which implies

∃x , y (B1(y) ∧ . . . ∧ Bk(y)→ ¬A(x)),

which is to say
∃x (p  A(x)).

But this is just p  ∃x A(x).



Point-free thinking

• Points in a topological space can be approximated by open
neighborhoods.

• Real numbers can be approximated by rational intervals.

• A maximal ideal can be approximated by subideals.

• An ultrafilter can be approximated by filters.

• A maximally consistent sets can be approximated by finite
consistent sets.

In constructive or restricted frameworks, it is often better to:

• Work with the approximations.

• Use generic objects.

• Reason about what is “forced” to be true.

Remember: genericity = Kripke models + double negation
interpretation.



Weak theories of nonstandard arithmetic

Add to the language of PRA:
• a predicate, st(x) (“x is standard”)
• a constant, ω

Let NPRA consist of PRA plus the following axioms:
• ¬st(ω)
• st(x) ∧ y < x → st(y)
• st(x1) ∧ . . . ∧ st(xk)→ st(f (x1, . . . , xk)), for each function

symbol f
• A very restricted transfer principle (∀ sentences without

parameters)

A short model-theoretic argument shows:

Theorem. Suppose NPRA proves ∀stx ∃y ϕ(x , y), with ϕ
quantifier-free in the language of PRA. Then PRA proves
∀x ∃y ϕ(x , y).

In particular, the conclusion holds if NPRA proves either
∀x ∃y ϕ(x , y) or ∀stx ∃sty ϕ(x , y).



Weak theories of nonstandard arithmetic

Claims:

• The result extends to higher type theories.

• One can formalize arguments in analysis and measure theory.

• The conservation result can be obtained by an explicit forcing
translation.

In the translation, for example:

• The standard natural numbers correspond to bounded
sequences of natural numbers.

• Reals correspond to bounded sequences of rationals.

• Nonstandardly large intervals translate to sequences of
arbitrarily large intervals.



Eliminating Skolem functions

A Skolem axiom has the form

∀~x , y (ϕ(~x , y)→ ϕ(~x , f (~x))),

“if anything satisfies ∃y ϕ(~x , y), f (~x) does.”

These can be eliminated from first-order proofs.

• The model-theoretic argument is easy.

• Syntactic arguments are harder, and worse than exponential.

Pudlák: Is there an example of a single Skolem axiom that cannot
be eliminated efficiently?



Eliminating Skolem functions

Theorem (Avigad). In any theory in which one can code finite
partial functions, one can interpret Skolem axioms efficiently.

The idea: force with finite approximations to each Skolem function.



Conclusion

Metamathematical proof theory involves

• reflecting on the methods of mathematics, and

• representing them syntactically.

One hopes for

• mathematical,

• philosophical, and

• computational

insights.

Forcing can play a role, providing ways of

• interpreting “abstract” (or infinitary) principles, and

• reasoning with approximations.


