Forcing and Hilbert's program

Jeremy Avigad

Department of Philosophy and Department of Mathematical Sciences Carnegie Mellon University (currently visiting the INRIA-MSR Joint Research Centre in Orsay)

March, 2010

Proof theory in the Hilbert tradition

Proof theory: the general study of deductive systems

Structural proof theory: ... with respect to structure, transformations between proofs, normal forms, etc.

Hilbert's program:

- Formalize abstract, infinitary, nonconstructive mathematics.
- Prove consistency using only finitary methods.

More general versions:

- Prove consistency relative to constructive theories.
- Understand mathematics in constructive terms.
- Study mathematical reasoning in "concrete" terms.

Proof-theoretic analysis can "reduce":

- infinitary to finitary reasoning
- nonconstructive to constructive reasoning
- impredicative to predicative reasoning
- nonstandard to standard reasoning
- arbitrary choices to choice-free reasoning

In a sense, this eliminates "ideal" elements.

A brief history of forcing

Cohen, '63: the independence of CH and AC from set theory.

Kripke, '59-'65: semantics for modal and intuitionistic logic.

Perspectives:

- Set theory: generic extensions, approximations
- Modal logic: possible worlds
- Recursion theory: diagonalization, conditions
- Model theory: existentially closed models
- Categorical logic: logic of sheaves
- Descriptive set theory: generic truth
- Effective descriptive set theory
- Complexity theory

Themes: diagonalization, local/global properties, construction via approximations

In this talk, I will explain how forcing is relevant (and ideally suited to) traditional, Hilbert-style proof theory.

- 1. The framework
 - 1.1 Minimal, intuitionistic, and classical logic
 - 1.2 The forcing relation
 - 1.3 Variations
- 2. Applications
 - 2.1 Subsystems of second-order arithmetic
 - 2.2 Intuitionistic theories
 - 2.3 "Point-free" model theory

From minimal to classical logic

Flavors of first-order logic:

- Minimal (M): nicest computational interpretation
- Intuitionistic (I): add "from \perp conclude arphi"
- Classical (C): add $\neg \neg \varphi \rightarrow \varphi$ or $\varphi \lor \neg \varphi$

Intuitionistic to minimal (F): replace atomic A by $A \lor \bot$ or $\neg \neg A$. Then

$$\vdash_{M} \bot \to \varphi^{F}$$

Classical to minimal (N): also replace $\varphi \lor \psi$ by $\neg(\neg \varphi \land \neg \psi)$ and $\exists x \varphi$ by $\neg \forall x \neg \varphi$. Then

•
$$\vdash_M \varphi^N \leftrightarrow \neg \neg \varphi^N$$

• $\Gamma \vdash_C \varphi$ implies $\Gamma^N \vdash_M \varphi^N$

The Kuroda translation (K): instead, add $\neg\neg$ after each universal quantifier.

- $\vdash_M \neg \neg \varphi^K \leftrightarrow \varphi^N$
- $\vdash_C \varphi$ implies $\vdash_I \neg \neg \varphi^K$

Kripke semantics

Start with:

- a poset P (possible worlds)
- a domain D(p) at each world

• for each $p \in P$ and atomic A, an interpretation of A at p satisfying monotonicity: if $q \leq p$, then

•
$$D(q) \supseteq D(p)$$

• If
$$p \Vdash A(a_0, \ldots, a_{k-1})$$
 then $q \Vdash A(a_0, \ldots, a_{k-1})$.

Extend the forcing relation to L(D) inductively:

1.
$$p \Vdash \theta \land \eta$$
 iff $p \Vdash \theta$ and $p \Vdash \eta$
2. $p \Vdash \theta \lor \eta$ iff $p \Vdash \theta$ or $p \Vdash \eta$
3. $p \Vdash \theta \to \eta$ iff $\forall q \le p (q \Vdash \theta \to q \Vdash \eta)$
4. $p \Vdash \forall x \varphi(x)$ iff $\forall q \le p \forall a \in D(q) q \Vdash \varphi(a)$
5. $p \Vdash \exists x \varphi(x)$ iff $\exists a \in D(p) p \Vdash \varphi(a)$

Theorem.

- (monotonicity): $p \Vdash \varphi$ and $q \leq p$ imply $q \Vdash \varphi$
- $\vdash_M \varphi$ implies $\Vdash \varphi$

For intuitionistic logic, add

Theorem.

- $p \Vdash \bot \to \varphi$
- $\vdash_I \varphi$ implies $\Vdash \varphi$.

Forcing for classical logic

Weak forcing: define $\Vdash_C \varphi$ by $\Vdash_M \varphi^N$.

For example:

- $p \Vdash_C \theta \lor \eta$ iff $\forall q \le p \exists r \le q ((r \Vdash_C \theta) \lor (r \Vdash_C \eta))$
- $p \Vdash_C \neg \neg \theta$ iff $\forall q \leq p \exists r \leq q \ r \Vdash_C \theta$

Theorem.

- 1. monotonicity: $p \Vdash_C \varphi$ and $q \leq p$ imply $q \Vdash_C \varphi$
- 2. genericity: $p \Vdash_C \varphi$ iff $\forall q \leq p \exists r \leq q \ r \Vdash_C \varphi$
- 3. soundness: $\vdash_{\mathcal{C}} \varphi$ implies $\Vdash_{\mathcal{C}} \varphi$

Strong forcing: define $\Vdash_{C'} \varphi$ by $\Vdash_M \varphi^K$.

Then

$$\Vdash_{\mathcal{C}} \varphi \textit{ iff} \Vdash_{\mathcal{C}'} \neg \neg \varphi$$

Notes and variations

- 1. $p \Vdash_C \varphi$ corresponds to " φ is true in every extension by a generic containing p"
- 2. Can replace $p \not\Vdash \bot$ by "if $p \Vdash \bot$ then $p \Vdash A(a_0, \ldots, a_{k-1})$."
- 3. Beth models:

 $p \Vdash \varphi \lor \psi$ iff for some covering C(p) of p, $\forall q \in C(p) ((q \Vdash \varphi) \lor (q \Vdash \psi))$

and similarly for \exists .

- 4. Replace the poset by a category (presheaf models)
- Replace Beth's coverings by a Grothendieck topology (sheaf models)
- 6. Extend to higher-order logic (and set theory)

"Internalized" constructions

Think syntactically:

- Work in a theory *T*.
- Use definable predicates, Cond, \leq , Name, $p \Vdash A(a_0, \ldots, a_{k-1}).$
- Assume T proves monotonicity, etc.

Then T can verify the soundness of forcing:

- Minimal logic verifies minimal forcing
- Intuitionistic logic verifies intuitionistic forcing
- Classical logic verifies classical forcing
- With modified falsity, minimal logic verifies intuitionstic forcing
- With additional negations, minimal logic verifies classical forcing
- One can also get genericity in minimal logic

Interlude

We've considered:

- 1. Minimal, intuitionistic, and classical logic
- 2. The forcing relation
- 3. Notes and variations

To interpret T_1 in T_2 :

- Define a poset, basic forcing notions in T_2 .
- Show axioms of T_1 are forced.
- Conclude: if T_1 proves φ , then T_2 proves " φ is forced."

For partial conservativity, show

• For $\varphi \in \Gamma$, if T_2 proves " φ is forced," then T_2 proves φ .

Applications

1. Subsystems of second-order arithmetic

- Choice principles (Steele, Friedman)
- Weak König's lemma
- Baire Category Theorem
- Ramsey's theorem
- 2. Intuitionistic theories
 - Goodman's theorem
 - Continuity, Bar recursion (Beeson, Grayson, Hayashi)
 - Interpreting classical theories in constructive ones
- 3. "Point-free" model theory
 - Nonstandard arithmetic and analysis
 - Eliminating Skolem functions
 - Algebraic proofs of cut elimination

I'll discuss some examples, favoring my own work.

Subsystems of arithmetic

Language: $0, 1, +, \times, <, \in, x, y, z, \dots X, Y, Z, \dots$

Full second-order arithmetic has:

- Quantifier-free defining equations
- Induction
- Comprehension: $\exists Z \ \forall x \ (x \in Z \leftrightarrow \varphi(x))$

One can also consider various choice principles.

Restrict induction to Σ_1^0 formulas with parameters, and restrict set existence principles:

- RCA_0 : recursive (Δ_1^0) comprehension
- *WKL*₀: paths through infinite binary trees
- ACA₀: arithmetic comprehension
- ATR₀: transfinitely iterated arithmetic comprehension
- Π_1^1 -*CA*₀: Π_1^1 comprehension

König's lemma. Every infinite, finitely branching tree T has an infinite path

Kleene's basis theorem. The leftmost branch is computable in T'.

Weak König's lemma. Every infinite tree on $\{0,1\}$ has an infinite path.

The Jockusch-Soare low basis theorem. Every such tree has a *low* path, i.e. satisfying $P' \leq_T T'$.

Iterative construction: at stage *n*, thin the tree to guarantee that $\varphi_n^P(0)$ will diverge, if possible; extend the path one step.

Theorem (Friedman). WKL_0 is conservative over primitive recursive arithmetic for Π_2^0 sentences.

Theorem (Harrington). WKL_0 is, moreover, conservative over RCA_0 for Π_1^1 sentences.

Proof.

- Start with a countable model of *RCA*₀.
- Pick an infinite binary tree.
- Add a generic branch (conditions: infinite subtrees).
- Show Σ_1^0 induction is preserved.
- Iterate.

Weak König's lemma

There are two ways of interpreting WKL_0 in RCA_0 :

- Hájek: formalize a sharper version of the low basis theorem.
- Avigad: formalize the (iterated, proper-class) forcing argument. Conditions: sequences of names for infinite binary trees.

Variations:

- Brown and Simpson: use Cohen forcing to get a version of Baire Category theorem.
- Simpson and Smith: results for *WKL* and elementary arithmetic.
- Ferreira, Fernandes: results for WKL and feasible arithmetic.
- Simpson, Tanaka, Yamazaki: additional definability results.

Definition. RT(k) is the statement that every for 2-coloring of k tuples of natural numbers there is an infinite homogeneous set.

Theorem (Jockusch). There is a recursive coloring of triples such that 0' is computable from any infinite homogenous set.

Theorem (Simpson). For each (standard) $k \ge 3$, RT(k) is equivalent to arithmetic comprehension over RCA_0 .

What about RT(2)?

Theorem (Jockusch). There is a recursive coloring such that no infinite homogeneous set is computable from 0'.

Corollary. WKL_0 does not prove RT(2).

Theorem (Seetapun). If A is not recursive, there is a recursive coloring such that A is not computable from any infinite homogeneous set.

Corollary. $RCA_0 + RT(2)$ does not prove ACA_0 .

It is open as to whether WKL_0 proves RT(2).

Theorem (Cholak, Jockusch, Slaman). Every 2-coloring C has an infinite homogeneous set H that is $low_2(C)$, i.e. H'' = C''.

Theorem (Cholak, Jockusch, Slaman). $RCA_0 + I\Sigma_2 + RT(2)$ is conservative over $RCA_0 + I\Sigma_2$ for Π_1^1 sentences.

first theorem : second theorem :: Jockusch-Soare : Harrington.

Can the forcing argument be turned into a syntactic translation?

Goodman's theorem

Let HA^{ω} be a finite-type version of Heyting arithmetic (a conservative extension, without comprehension axioms).

The axiom of choice:

$$\forall x^{\sigma} \exists y^{\tau} \varphi(x, y) \rightarrow \exists f^{\sigma \rightarrow \tau} \forall x^{\sigma} \varphi(x, f(x)).$$

Classically, this implies comprehension. But intuitionistically:

Theorem (Goodman). $HA^{\omega} + AC$ is a conservative extension of HA^{ω} for arithmetic sentences.

Beeson's presentation:

- $HA^{\omega} + AC$ is realized in HA^{ω} , even with an extra function symbol.
- Force so that " φ is realized" implies " φ is true" for arithmetic sentences.

Interpreting classical theories constructively

The Gödel-Gentzen double-negation translation is a powerful tool:

- It reduces PA to HA, PA_2 to HA_2 , ZF to IZF.
- The Friedman-Dragalin translation recovers Π_2^0 theorems. But these methods do not work for S_2^1 , $I\Sigma_1$, $\Sigma_1^1 - AC$, KP.

What goes wrong? Some examples:

- The double-negation interpretation of Σ₁ induction involves induction on predicates of the form ¬¬∃x A(x, y).
- The double negation translation of the $\boldsymbol{\Sigma}_1^1$ axiom of choice is of the form

$$\forall x \neg \neg \exists Y \varphi(x, Y) \rightarrow \neg \neg \exists Y \forall x \varphi(x, Y_x)$$

where φ is arithmetic.

We can use the latitude in defining " $p \Vdash \perp$ " to repair the double negation translation.

- Buchholz: theories of inductive definitions
- Coquand and Hofmann: Σ_1 induction, bounded arithmetic
- Avigad: bounded arithmetic, Σ₁¹-AC, admissible set theory

Interpreting classical theories

For arithmetic with Σ_1 induction, it suffices to obtain a forcing interpretation of Markov's principle:

$$\neg \forall x \; A(x) \to \exists x \; \neg A(x)$$

Take conditions p to be (codes for) finite sets of Π_1 sentences,

$$\{\forall x \ A_1(x), \forall x \ A_2(x), \ldots, \forall x \ A_k(x)\}.$$

Define $p \leq q$ to be $p \supseteq q$.

For θ atomic, define $p \Vdash \theta$ to be

$$\exists y \ (A_1(y) \land \ldots \land A_k(y) \to \theta).$$

In particular, $p \Vdash \bot$ is equivalent to

$$\exists y \ (\neg A_1(y) \lor \ldots \lor \neg A_k(y)).$$

Then it turns out that if $p \Vdash \neg \forall x \ A(x)$, then $p \Vdash \exists x \neg A(x)$. In other words, Markov's principle is forced.

Some details

Lemma. The following are provable in $I\Sigma'_1$: 1. $\{\forall x \ A(x)\} \Vdash \forall x \ A(x)$ 2. If $p \Vdash \neg \forall x \ A(x)$, then $p \Vdash \exists x \neg A(x)$. 3. $\Vdash \neg \forall x \ A(x) \rightarrow \exists x \neg A(x)$

Proof. For 1, we have

$$\forall x \ A(x) \Vdash \forall x \ A(x) \equiv \forall z \ (\forall x \ A(x) \Vdash A(z))$$

 $\equiv \forall z \ \exists y \ (A(y) \rightarrow A(z)).$

For 2, let p be the set $\{\forall x \ B_1(x), \dots, \forall x \ B_k(x)\}$, and suppose $p \Vdash \neg \forall x \ A(x)$. By 1, we have $p \cup \{\forall x \ A(x)\} \Vdash \bot$. In other words, $\exists y \ (B_1(y) \land \dots \land B_k(y) \land A(y) \to \bot)$

which implies

$$\exists x, y \ (B_1(y) \land \ldots \land B_k(y) \to \neg A(x)),$$

which is to say

$$\exists x \ (p \Vdash A(x)).$$

Point-free thinking

- Points in a topological space can be approximated by open neighborhoods.
- Real numbers can be approximated by rational intervals.
- A maximal ideal can be approximated by subideals.
- An ultrafilter can be approximated by filters.
- A maximally consistent sets can be approximated by finite consistent sets.

In constructive or restricted frameworks, it is often better to:

- Work with the approximations.
- Use generic objects.
- Reason about what is "forced" to be true.

Remember: genericity = Kripke models + double negation interpretation.

Weak theories of nonstandard arithmetic

Add to the language of *PRA*:

- a predicate, st(x) ("x is standard")
- a constant, ω

Let NPRA consist of PRA plus the following axioms:

- $\neg st(\omega)$
- $st(x) \land y < x \rightarrow st(y)$
- $st(x_1) \land \ldots \land st(x_k) \rightarrow st(f(x_1, \ldots, x_k))$, for each function symbol f
- A very restricted transfer principle (∀ sentences without parameters)

A short model-theoretic argument shows:

Theorem. Suppose *NPRA* proves $\forall^{st} x \exists y \varphi(x, y)$, with φ quantifier-free in the language of *PRA*. Then *PRA* proves $\forall x \exists y \varphi(x, y)$.

In particular, the conclusion holds if NPRA proves either

Weak theories of nonstandard arithmetic

Claims:

- The result extends to higher type theories.
- One can formalize arguments in analysis and measure theory.
- The conservation result can be obtained by an explicit forcing translation.

In the translation, for example:

- The standard natural numbers correspond to bounded sequences of natural numbers.
- Reals correspond to bounded sequences of rationals.
- Nonstandardly large intervals translate to sequences of arbitrarily large intervals.

A Skolem axiom has the form

$$\forall \vec{x}, y \ (\varphi(\vec{x}, y) \rightarrow \varphi(\vec{x}, f(\vec{x}))),$$

"if anything satisfies $\exists y \ \varphi(\vec{x}, y), \ f(\vec{x})$ does."

These can be eliminated from first-order proofs.

- The model-theoretic argument is easy.
- Syntactic arguments are harder, and worse than exponential.

Pudlák: Is there an example of a single Skolem axiom that cannot be eliminated efficiently?

Theorem (Avigad). In any theory in which one can code finite partial functions, one can interpret Skolem axioms efficiently.

The idea: force with finite approximations to each Skolem function.

Conclusion

Metamathematical proof theory involves

- reflecting on the methods of mathematics, and
- representing them syntactically.

One hopes for

- mathematical,
- philosophical, and
- computational

insights.

Forcing can play a role, providing ways of

- interpreting "abstract" (or infinitary) principles, and
- reasoning with approximations.