
Formalizing Forcing Arguments in Subsystems of

Second-Order Arithmetic∗

Jeremy Avigad

October 23, 1996

Abstract

We show that certain model-theoretic forcing arguments involving sub-
systems of second-order arithmetic can be formalized in the base the-
ory, thereby converting them to effective proof-theoretic arguments. We
use this method to sharpen conservation theorems of Harrington and
Brown-Simpson, giving an effective proof that WKL+0 is conservative
over RCA0 with no significant increase in the lengths of proofs.

1 Introduction

Although forcing is usually considered to be a model-theoretic technique it has
a proof-theoretic side as well, in that forcing notions can usually be expressed
syntactically in the base theory. One can often use this fact to convert a model-
theoretic forcing argument to a proof-theoretic one, and in doing so obtain a
sharper and more effective version of the theorem being proven. We’ll illustrate
this approach by formalizing two conservation results, one due to Harrington
and the other due to Brown and Simpson, involving subsystems of second-order
arithmetic. These results orginally appeared in the author’s dissertation [1],
where more details can be found.

RCA0 denotes the weak base theory in the language of second-order arith-
metic consisting of the quantifier-free defining axioms for the operations S, +,
and ×; induction restricted to Σ0

1 formulas, possibly with set parameters, and
a second-order axiom comprehension scheme

(RCA) ∀x(ϕ(x) ↔ ψ(x)) → ∃Y ∀x(x ∈ Y ↔ ϕ(x))

where ϕ and ψ are Σ0
1 and Π0

1 formulas, respectively. Intuitively, this axiom
asserts the existence of sets that are ∆0

1-definable, or recursive, in parameters
from the model.

∗This research has been partially supported by an Office of Naval Research Graduate
Fellowship.

1

The theory WKL0 adds to this a second-order axiom formalizing a weak
version of König’s lemma,

(WKL) T an infinite binary tree → ∃X(X is a path through T)

stating that there is a path through any infinite binary tree. Here a binary tree T
is a set of (codes of) binary sequences that is closed under initial segments, and
a path through T is a set X such that every initial segment of the characteristic
function of X is in T . For more information see, for example, [12, 13, 14].

Both RCA0 and WKL0 were first defined by Harvey Friedman, who gave
a model-theoretic proof that in fact WKL0 is conservative over PRA (Primi-
tive Recursive Arithmetic) for Π0

2 sentences, in the following sense: if WKL0

proves ∀x∃yϕ(x, y) for some quantifier free formula ϕ, then in fact PRA proves
ϕ(x, f(x)) for some term f . Using a model-theoretic forcing argument Harring-
ton was able to strengthen Friedman’s result by showing that in fact WKL0 is
conservative over RCA0 for Π1

1 formulas. (RCA0 is interpretable in the frag-
ment of Peano arithmetic IΣ1, and the conservation of the latter system over
PRA for Π0

2 sentences has long been known.) Sieg [10, 11] later gave an ef-
fective version of Friedman’s result using cut-elimination, a Herbrand analysis,
and Howard’s notion of hereditary majorizability for primitive recursive terms.

Because Sieg’s proof uses cut-elimination, it allows for the possibility of a
superexponential increase in the lengths of proofs between the two systems. In
fact, one can show that though there is no significant increase in the lengths of
proofs between RCA0 and IΣ1, there is a superexponential increase between
IΣ1 and PRA [6]. This leaves open the question of whether one can obtain a
conservation result for WKL0 over RCA0 with a more restrictive bound on the
increase in the lengths of proofs.

Meanwhile, Brown and Simpson [3] used forcing methods again to extend
Harrington’s conservation result to the theory WKL+0, which adds to WKL0

an additional axiom scheme

(BCT) ∀n∀σ∃τ ⊇ σϕ(n, τ) → ∃f∀n∃mϕ(n, f [m]),

where σ and τ are taken to range over binary sequences, τ ⊇ σ means that τ
extends σ, f is assumed to be a function with range {0, 1}, and f [m] denotes
the sequence consisting of the first m values of f . Intuitively, this says that if
{ϕn} defines a sequence of open dense subsets of 2ω, then there is a point lying
in their intersection. Brown and Simpson [3] use this axiom to prove a version
of the usual Baire Category Theorem which is not derivable in RCA0, as well
and the Open Mapping Theorem for separable Banach spaces.

Because the axioms (BCT) deal with formulas of arbitrary complexity, Sieg’s
methods cannot be applied, leaving open the question of whether there is an
effective proof of their result.

In this paper we give an affirmative answer to both questions, by showing
that the Harrington and Brown-Simpson arguments can be formalized within
RCA0 to yield the following result:

2

Theorem 10.1 There is a recursive function f and a polynomial p such that
the following holds: if d codes a proof in WKL+0 of a Π1

1 formula ϕ, then f(d)
codes a proof of ϕ in RCA0, and the length of f(d) is less than p(the length of d).
Here the “length” of a proof is measured by the number of symbols.

In other words, one can translate WKL+0 proofs to RCA0 proofs without a
significant increase in size. The rest of this paper will outline a proof of this
theorem. For expository reasons we’ll focus on proving the result for WKL0,
while Section 9 will discuss the modifications necessary to handle WKL+0.

2 The Model-Theoretic Conservation Result

To our knowledge, an account of Harrington’s argument for the conservation of
WKL0 over RCA0 has never been published, so we’ll describe it here briefly.
The result has its origins in the low-basis theorem of [7] (see also [15] or [5]),
but it can be phrased as a forcing argument, as is done in [12].

Let L2 be the language of second-order arithmetic. An L2 structure M
consists of a first-order part, henceforth denoted by |M |, and a second-order
part, which we’ll denote by SM . M1 is an ω-submodel ofM2, writtenM1 ⊆ω M2,
if |M1| = |M2| and SM1 ⊆ SM2 ; in other words, M2 has the same first-order part
as M1 but possibly more sets. Note that in this latter definition |M1| = |M2|
may still be nonstandard. If M is an L2 structure and X is a subset of |M |,
we’ll use M ∪ {X} to denote the structure whose first-order part is |M | and
whose second-order part is SM ∪ {X}.

If M is a model of RCA0 then, following [12], we’ll use TM to denote the set
of T ∈ SM such that M |= “T is an infinite binary tree.”

We’ll use IΣ1 to denote the theory based on the axioms and rules of second-
order logic that consists of the quantifier-free axioms of arithmetic and induc-
tion restricted to Σ0

1 formulas, possibly involving set parameters.1 Harrington’s
method involves showing that any countable model of RCA0 can be expanded
to a model of WKL0 by adding sets to the second-order part and leaving the
first-order part alone. One first proves the following two lemmas:

Lemma 2.1 Let M be a countable model of IΣ1. Then M can be expanded to
a model of RCA0 by adding countably many sets to its second-order part.

Proof. Define M ′ to be the structure whose first-order part is the same as
that of M , and whose second-order part consists of all sets ∆0

1-definable in M
with parameters from |M | ∪ SM . Since M ′ has the same first-order part as M
the first-order axioms of RCA0 hold, and we’ve added enough sets to handle
recursive comprehension. Finally, Σ0

1-induction in M ′ reduces to Σ0
1-induction

M once parameters are replaced by their ∆0
1 definitions. �

Lemma 2.2 Let M be model of RCA0, and let T ∈ TM . Then there is a subset
G of |M | such that

1This is really an abuse of notation since IΣ1 is generally used to denote the corresponding
first-order theory, but this should cause no confusion here.

3

1. M ∪ {G} |= “G is a path through T”

2. M ∪ {G} |= IΣ1

This lemma, which says that one can add paths through trees to models of
RCA0 and still maintain Σ0

1 induction, forms the heart of the argument. Its
proof will be discussed below. Putting the two results together, we see that
given any countable model M of RCA0 and any T ∈ TM , we can expand M to
another countable model M ′ of RCA0 such that M ⊆ω M

′ and M ′ |= “there is
a path through T .” Iterating this process gives us the main theorem:

Theorem 2.3 Let M be a countable model of RCA0. Then M can be expanded
to a model M ′ of WKL0 such that M ⊆ω M

′.

Proof. Use the previous two lemmas to form a sequence of models

M = M0 ⊆ω M1 ⊆ω M2 ⊆ω . . . ⊆ω Mi ⊆ω . . .

where each Mi is a model of RCA0 and for every T ∈ TMi
there is a j > i

such that Mj |= “there exists a path through T.” If we let Mω = ∪Mi, this Mω

satisfies the conclusion of the theorem. �
This theorem implies the conservation result:

Corollary 2.4 WKL0 is conservative over RCA0 for Π1
1 sentences.

Proof. If RCA0 doesn’t prove ϕ for some Π1
1 formula ϕ, by completeness

there is a model M of RCA0 ∪ {¬ϕ}. By the Skolem-Lowenheim theorem we
can assume that this model is countable. Expand M to a model M ′ of WKL0

as in Theorem 2.3. Since ¬ϕ is Σ1
1 and M ′ contains all the sets of M , M ′ models

¬ϕ as well. So WKL0 doesn’t prove ϕ either. �
We now turn to a discussion of the proof of Lemma 2.2. One proves this using

forcing, where the forcing conditions are in fact members of TM ordered under
inclusion. The “generic” path G that is then added to M is the intersection of
a generic set of members of TM . As usual, a formula ϕ making reference to the
new generic G is “forced” by a condition T if ϕ is true whenever G is interpreted
as a generic path through T . One then shows that if T ∈ TM and G is a generic
path through T , then properties (1) and (2) hold. The first is immediate from
the definition of G, while the second requires showing that certain references to
forcing are expressible in M by first-order formulas of low complexity. Though
we omit the details here, the syntactic analog of the lemma can be found in
Section 5.

The proof of the Brown-Simpson result is similar, and involves showing that
one can also add Cohen reals to expand M to a model of (BCT). Here the
forcing conditions are finite binary sequences, where the condition σ extends
the condition τ if σ extends τ in the usual sense. A full proof of this result
appears in [3] and is discussed in Section 9.

4

3 An overview of the formalization

The major goal of this paper is to formalize the arguments of Section 2. To
do so, we’ll define notions of forcing and generic validity from within RCA0,
where “ϕ is generically valid” corresponds roughly to the statement “ϕ is true
in the model Mω.” We’ll show that, with these definitions, RCA0 proves that
the axioms of WKL0 are generically valid, and that generic validity is preserved
under rules of inference. Furthermore, for arithmetic ϕ, RCA0 will prove that
ϕ is generically valid if and only if it’s true, and that the sets of Mω “contain”
the sets of the original universe. With these notions in hand, our proof will run
as follows:

Suppose WKL0 proves that some arithmetic ϕ is true of all sets.
Then RCA0 proves that ϕ is generically valid. And so RCA0 proves
that ϕ is true of all sets in the original universe.

As it turns out, the formalization is not entirely routine. We summarize the
main components here.

In Section 4 we present the syntactic definition of a general forcing relation,
modulo the specific choice of poset, names, and atomic forcing notions. We need
to define both “strong” and “weak” forcing relations: though weak forcing has
a clearer semantic interpretation, complexity considerations require us to use
strong forcing for the Brown-Simpson result.

In Section 5 we use this framework to define the notions of “1-forcing” and
“1-generic validity” to refer to truth in the generic extension M1, in which
we’ve added a generic path through some binary tree. In this case the forcing
conditions, infinite binary trees, form a definable class in the base model rather
than a set, but this does not pose any immediate difficulties. More problematic
is the fact that we have to name sets that are ∆0

1-definable from parameters
in the original model and the new generic, where the notion of ∆0

1-definability
depends on the generic itself. As Lemmas 2.1 and 2.2 suggest, we need to
proceed in two stages: first we define an intermediate “ 1

2 -forcing” to describe a
model with a single new generic, and then add the sets ∆0

1-definable from that.
Section 6 shows how to iterate the forcing and define “n-forcing” and “n-

generic validity” for each standard natural number n. In Section 7 we show
that these definitions can be given uniformly, so that n is a parameter. This
uniformity doesn’t come cheap: a priori the complexity of the forcing definitions
seems to increase with each iteration, and we have to take care to use low-
complexity equivalents.

Using the uniform definitions we can finally define “ω-forcing” in Section 8,
allowing us to iterate the forcing “generically” and add paths through every
infinite binary tree in the final model. The last two sections discuss briefly
length-of-proof considerations, as well as the modifications necessary to handle
WKL+0.

5

4 Formalizing forcing arguments

In this section we describe two kinds of forcing relations, namely “strong” and
“weak” forcing. In formalizing Harrington’s argument, we will define a number
of weak forcing relations; it is only with the Brown-Simpson argument that
we have to use strong forcing. In any event, in defining these relations the
general pattern will be the same: from within the base theory we’ll first identify
the conditions and the names, and give the definition of forcing for atomic
formulas. Then we’ll extend the definition to arbitrary formulas by induction
on their logical complexity. Although the conditions, names, and atomic clauses
will vary, this last part remains the same, and so we give the general framework
here. (Much of our approach follows the presentation in [2]; see also [8].)

Before we define any forcing notion we need to have identified from within
the base theory what it means for P to be a condition, which we’ll write
Condition(P), and what it means for a condition P to extend a condition Q,
which we’ll write P ≤ Q.2 We’ll always choose our conditions so that the base
theory proves that they form a partial order with a greatest element ∅. Note
that the conditions can be either first- or second-order objects. In the latter
case it makes no sense to talk about “the set of all conditions,” but in neither
case do we need to. All we need is that the class of conditions is defined by
some formula.

Next, we need names for the first- and second-order objects in our forcing
extensions. In our applications the first-order objects will always name them-
selves, while sets in the forcing extension will be named by other sets in the base
model. Whether or not an object is a valid name may dependend on an associ-
ated condition; so in fact we need to specify what it means for a condition P to
force that an object X is a valid name, which we’ll denote as P
s Name(X).
In all our applications the second-order universe of the base theory is intended
to be a subset of that of the forcing extension, so for each set X our base theory
will have a canonical name for it, X̂, with properties that will be discussed later
on.

Finally, we need to define what it means for a condition P to (strongly) force
an atomic formula ϕ, written P
s ϕ. The definitions of P
s Name(X) and
P
s ϕ should satisfy some basic requirements.

Definition 4.1 Assume the notions “Condition(P)” and “P ≤ Q” have been
defined so that the base theory proves that the class of conditions under ≤ forms
a partial order with least element ∅. The definition of “P
s Name(X)” and
the association of a formula “P
s ϕ” to every atomic formula ϕ will be called
a good strong forcing notion if the following are satisfied:

1. The free variables of P
s ϕ are the same as those of ϕ, plus an additional
variable for P ; the free variables of P
s Name(X) are P and X.

2. Monotonicity: the base theory proves that if P and Q are conditions such
that P
s ϕ and Q ≤ P , then Q
s ϕ as well; likewise for P
s Name(X).

2In [1] we used ≥ for this purpose.

6

3. Substitution: for each term t

P
s (ϕ(x/t)) ↔ (P
s ϕ)(x/t).

Assuming, then, that the above are in place— a partial order and a good
strong forcing notion— we now indicate how to extend the forcing definition to
arbitrary formulas. We adopt the following convention: variables P , Q, and R
are intended to range over conditions, so quantifiers ranging over these variables
should be taken to be so relativized. In other words, a formula written ∀P . . .
should be taken as shorthand for the formula ∀P (Condition(P) → . . .) and a
formula written ∃P . . . should be taken to mean ∃P (Condition(P) ∧ . . .).

Definition 4.2 Given a good strong forcing notion P
s ϕ for atomic ϕ we
extend the definition to arbirary formulas inductively as follows:

1. P
s ¬ϕ ≡def ∀Q ≤ P (Q 1s ϕ)

2. P
s ϕ ∧ ψ ≡def (P
s ϕ) ∧ (P
s ψ)

3. P
s ϕ ∨ ψ ≡def (P
s ϕ) ∨ (P
s ψ)

4. P
s ϕ→ ψ ≡def ∀Q ≤ P (Q
s ϕ→ ∃R ≤ Q(R
s ψ))

5. P
s ∃xϕ ≡def ∃x(P
s ϕ)

6. P
s ∀xϕ ≡def ∀x∀Q ≤ P∃R ≤ Q(R
s ϕ)

7. P
s ∃Xϕ ≡def ∃X(P
s Name(X) ∧ ϕ)

8. P
s ∀Xϕ ≡def ∀X∀Q ≤ P∃R ≤ Q(R
s Name(X) → ϕ)

If ∅
s ϕ we’ll write
s ϕ and say “ϕ is strongly forced.”

One can check by induction on the complexity of ϕ that the conditions of
Definition 4.1 hold for all formulas:

Lemma 4.3 If one begins with a good strong forcing notion and extends it to
all formulas as in the previous definition, the resulting forcing relation satisfies
monotonicity and substitution as well.

Strong forcing as we’ve just defined it is necessary in many applications
where the complexity of the forcing definition is of key concern, but its semantic
interpretation is problematic: for example, the basic axioms of logic are not
strongly forced, and it is possible to have P
s ϕ without P
s ¬¬ϕ as well.
As a result, the notion of weak forcing which we are about to define is the more
natural one. The semantic interpretation of “P weakly forces ϕ,” which we’ll
write P
 ϕ, is that ϕ is true in every generic extension containing P .

7

Definition 4.4 A good strong forcing notion
 is also a good weak forcing
notion if it satisfies

P
 ϕ↔ P
 ¬¬ϕ

for all atomic formulas ϕ as well as the predicate Name(X). In other words,
for all such ϕ,

P
 ϕ↔ ∀Q ≤ P∃R ≤ Q(R
 ϕ).

As in the case of strong forcing we can extend the definition to arbitrary
formulas, using the clauses given in the following definition.

Definition 4.5 Given a good weak forcing notion P
 ϕ for atomic ϕ we extend
the definition to arbirary formulas inductively as follows:

1. P
 ¬ϕ ≡ ∀Q ≤ P (Q 1 ϕ)

2. P
 ϕ ∧ ψ ≡ (P
 ϕ) ∧ (P
 ψ)

3. P
 ϕ ∨ ψ ≡ ∀P ≤ Q∃R ≤ Q((R
 ϕ) ∨ (R
 ψ))

4. P
 ϕ→ ψ ≡ ∀Q ≤ P (Q
 ϕ→ ∃R ≤ Q(R
 ψ))

5. P
 ∃xϕ ≡ ∀Q ≤ P∃R ≤ Q∃x(R
 ϕ)

6. P
 ∀xϕ ≡ ∀x(P
 ϕ)

7. P
 ∃Xϕ ≡ ∀Q ≤ P∃R ≤ Q∃X(R
 Name(X) ∧ ϕ)

8. P
 ∀Xϕ ≡ ∀X(P
 Name(X) → ϕ)

If ∅
 ϕ we’ll write
 ϕ and say “ϕ is weakly forced” or “ϕ is generically valid.”

Using induction on formula complexity one can show

Lemma 4.6 If one begins with a good weak forcing notion and extends it to
all formulas as in the previous definition, the resulting forcing relation satisfies
monotonicity and substitution, as well as

P
 ϕ↔ P
 ¬¬ϕ

for all formulas ϕ; in other words,

P
 ϕ↔ ∀Q ≤ P∃R ≤ Q(R
 ϕ).

The connection with strong forcing and an explanation of the “strong”/“weak”
terminology is given by the following

Proposition 4.7 Suppose
s is a good strong forcing notion. Then the relation

 given by

P
 ϕ ≡def P
s ¬¬ϕ

for atomic ϕ and the predicate Name(X) is a good weak forcing notion, and
furthermore, the above equivalence holds for all formulas ϕ.

8

So one can define a good strong forcing notion
s ϕ and work with that, with
the knowledge that
s ¬¬ϕ is a good weak forcing notion which satisfies the
clauses of Definition 4.5. Below we’ll drop the adjectives “strong” and “weak”
and say “P forces ϕ” when it is clear which type of relation we mean.

That weak forcing is a natural concept is guaranteed by the following propo-
sition, which states that the laws and rules of second-order logic are generically
valid.

Proposition 4.8 Let ϕ be an axiom of second-order predicate logic with free
set variables X1 . . . Xn. Then the base theory proves

 Name(X1) ∧ . . . ∧Name(Xn) → ϕ.

Furthermore if ϕ follows from premises ψ1 . . . ψn by a logical rule of inference,
then the base theory proves

(P
 ψ1) ∧ . . . ∧ (P
 ψn) → (P
 ϕ).

The proof involves picking your favorite set of axioms and rules and unwinding
definitions (see [2]).

5 Defining 1-forcing

We are now ready apply the tools of the previous section to the task at hand.
Working in the base theory RCA0 we want to define a forcing relation that will
capture the notion of truth in a model M1 which is again a model of RCA0

and contains a new generic path through some infinite tree. Referring back to
Lemma 2.2 we see that in the semantic argument this was done in two steps: first
we added a single generic to our base model M to obtain the model M 1

2
= M [G],

and then we expanded M 1
2

to the model M1 by adding all sets ∆0
1-definable from

parameters. Our syntactic development will be clearest if we emulate these two
steps. First we’ll define a forcing notion
 1

2
to describe truth in M 1

2
, using

names for the sets of the base model plus a name for the new generic. Then
we’ll define a forcing notion
1 to describe truth in the model M1, using names
for the sets ∆0

1-definable with parameters from M 1
2
. Both will be weak forcing

relations.
1
2 -conditions are defined to be infinite binary trees. In other words, we define

1
2 -Condition(P) to mean

P is a binary tree ∧ ∀n∃σ(σ ∈ P ∧ length(σ) = n).

Since there are only 2n binary sequences of length n, the length of σ can be
bounded by a primitive recursive term, and so RCA0 proves that this is equiv-
alent to a Π0

1 formula. We then define P ≤ 1
2
Q to mean P ⊆ Q.

We’ll have two types of 1
2 -names: names for the sets of base model, say

X̂ = {〈0, x〉|x ∈ X}, and a name for the new generic, say Ĝ = {〈1, 0〉}. The

9

predicate P
 1
2
Name(X) will simply assert that X has one of these forms;

note that this assertion doesn’t depend on P .
Finally, we have to define P
 1

2
ϕ for atomic ϕ. We can take P
 1

2
t1 = t2

to be simply t1 = t2, where t1 and t2 are terms in the language of arithmetic.
Similarly, we can take P
 1

2 t ∈ X̂ to mean t ∈ X for sets X of the base model.
How should be define, then, P
 1

2
t ∈ Ĝ? Recalling that G is supposed to

represent an infinite path through P , it makes sense to say that P forces that t
is in Ĝ if and only if every infinite path through P necessarily contains t; this
will be true if and only if only finitely many nodes of P don’t contain t. In other
words, we define P
 1

2
t ∈ Ĝ to mean

{σ ∈ P |σt = 0} is finite.

Since P is a tree, note that this is equivalent to a Σ0
1 statement, namely

∃n∀σ(σ ∈ P ∧ length(σ) = n→ σt = 1),

where we can again bound the universal quantifier over σ.
Our first order of business is to verify the following

Lemma 5.1 The 1
2 -forcing notion just described is a good weak forcing notion.

Proof. Monotonicity and substitution are easy to verify. The only part that
requires any work is showing that

P
 1
2
t ∈ Ĝ↔ P
 1

2
¬¬(t ∈ Ĝ)

for every condition P . First note that a condition Q 1
2 -forces ¬(t ∈ Ĝ) if and

only if (by definition) no extension R 1
2 -forces t ∈ Ĝ; which is true if and only

if every extension R of Q has infinitely many nodes σ such that σt = 0; which
is true if and only if only finitely many nodes σ of Q have σt = 1 (because
otherwise R = Q−{σ ∈ Q|σt = 0} would be a condition extending Q with only
finitely many (in fact zero) nodes σ such that σt = 0). In other words, for any
condition Q, Q
 1

2
¬(t ∈ Ĝ) if and only if

{σ ∈ Q|σt = 1} is finite.

Repeating the argument, P 1
2 -forces ¬¬(t ∈ Ĝ) if and only if (by definition) no

extension Q 1
2 -forces ¬(t ∈ Ĝ); which is true if and only if every extension Q of

P has infinitely many nodes σ such that σt = 1; which is true if and only if P
has only finitely many nodes σ such that σt = 0; which is true, by definition, if
and only if P
 t ∈ Ĝ. �

The next lemma states that an arithmetic formula with parameters from the
base model is 1

2 -forced if and only if it’s true in the original model. From the
semantic point of view, this should be clear; such a formula makes no reference
to the new generic set.

10

Lemma 5.2 Let ϕ(X1, . . . , Xn) be arithmetic with only the set parameters shown.
Then RCA0 proves that for all sets X1 . . . Xn, the following are equivalent:

1. ∀P (P
 1
2
ϕ(X̂1, . . . , X̂n))

2. ∃P (P
 1
2
ϕ(X̂1, . . . , X̂n))

3. ϕ(X1, . . . , Xn)

Proof. Routine, using induction on the complexity of ϕ. �
The next lemma states something that again should seem intuitively clear:

a condition P forces that a binary string σ codes an initial segment of the
characteristic function of the generic if and only if finitely many nodes of P
disagree with σ. We use the notation σ ⊂ X to mean that the binary sequence
σ is an initial segment of the characteristic function of X, and we use the
notation σ ⊥ τ to mean that the binary sequences σ and τ are incompatible,
that is, disagree at some position in both their domains.

Lemma 5.3 P 1
2 -forces σ ⊂ Ĝ if and only if

{τ ∈ P |τ ⊥ σ}

is finite. In particular, if P 1
2 -forces σ ∈ Ĝ, then σ ∈ P as well.

Proof. “σ ⊂ Ĝ” is an abbreviation for the assertion

∀i < length(σ)(σi = 0 → i 6∈ Ĝ ∧ σi = 1 → i ∈ Ĝ).

Let Si = {τ ∈ P |τi 6= σi}, so that Si represents the nodes of P that disagree
with σ at the ith place. Then by expanding out the forcing definition one can
show the following equivalences:

P
 1
2
σ ⊂ Ĝ ↔ ∀i < length(σ)P
 1

2
(σi = 0 → i 6∈ Ĝ ∧ σi = 1 → i ∈ Ĝ)

↔ ∀i < length(σ)(Si is finite)
↔ ∪i<length(σ)Si is finite
↔ {τ ∈ P |τ ⊥ σ} is finite. �

The heart of Harrington’s forcing argument involves showing that the state-
ment P
 1

2
ϕ for Σ0

1 formulas ϕ is equivalent to a Σ0
1 assertion. To state this

more precisely we need the following well-known fact, which states that a Σ0
1

formula involving a set parameter can be put into a nice normal form.

Lemma 5.4 (Normal Form Lemma) Let ϕ(X) be a Σ0
1 formula with set param-

eter X. Then there is a ∆0
0 formula θϕ(σ) such that the quantifier-free axioms

of arithmetic prove
ϕ(X) ↔ ∃σ ⊂ Xθϕ(σ)

and furthermore
θ(σ) ∧ τ ⊃ σ → θϕ(τ).

11

Intuitively, this lemma states that a Σ0
1 formula in X is true if and only if it

is made true by a finite part of X. The proof for ∆0
0 formulas proceeds by

induction on their complexity. The claim can then be extended to formulas
with an existential quantifier by noting that, if α(x,X) is ∆0

0, we have

∃xα(x,X) ↔ ∃x∃σ ⊂ Xθα(x, σ)
↔ ∃σ ⊂ X∃x < length(σ)θα(x, σ)

where the last formula in the equivalence has the desired form.
With this behind us, we can now state

Lemma 5.5 Suppose ϕ(X1, . . . , Xn, G) is a Σ0
1 formula with only the free set

variables shown. Then RCA0 proves the following: For any X1, . . . , Xn, the
statement P
 1

2
ϕ(X̂1, . . . , X̂n, Ĝ) is equivalent to the statement

{σ ∈ P |¬θϕ(X1, . . . , Xn, σ)} is finite,

where θϕ is as in the statement of the Normal Form Lemma 5.4.

Proof. By Lemma 5.2 we know that the quantifier-free axioms of arithmetic
are 1

2 -generically valid, so that the formula P
 1
2
ϕ is equivalent to

P
 1
2
∃σ ⊂ Ĝθϕ(X̂1, . . . , X̂n, σ) (1)

in RCA0.3 From here on we argue in RCA0. Unwinding clauses of the forcing
definition, (1) is equivalent to

∀Q ≤ 1
2
P∃R ≤ 1

2
Q∃σ(R
 1

2
σ ⊂ Ĝ ∧ θϕ(X̂1, . . . , X̂n, σ)).

Applying Lemmas 5.2 and 5.3 this is equivalent to

∀Q ≤ 1
2
P∃R ≤ 1

2
Q∃σ({τ ∈ R|τ ⊥ σ} is finite ∧ θϕ(X1, . . . , Xn, σ)).

Letting

S = {σ ∈ P |¬θϕ(X1, . . . , Xn, σ)}, (2)

we claim (2) is equivalent to the assertion “S is finite,” as required. To show
one direction of the equivalence, suppose S is finite and let Q be any condition

3Ulrich Kohlenbach has pointed out the the reduction of ϕ to normal form implicitly
requires the fact that

∀x∃σ(length(σ) = x ∧ σ ⊂ Ĝ).

To see that this is 1
2
-forced, observe that using Σ0

1-collection RCA0 can prove

∀x∀P∃Q ≤ P (Q has exactly one sequence σ of length x)

and such a condition Q 1
2
-forces

length(σ) = x ∧ σ ⊂ Ĝ.

12

extending P . Since S is finite, there is some n so that every sequence of length
n in Q satisfies θϕ(X1, . . . , Xn, σ). Since Q is infinite, by Σ0

1 collection (provable
from Σ0

1 induction in RCA0, as in [5]) some sequence σ of length n has infinitely
many descendents. Letting

R = {τ ∈ P |τ is compatible with σ}

we have
{τ ∈ R|τ ⊥ σ} is finite ∧ θϕ(X1, . . . , Xn, σ).

Conversely, suppose S is infinite. Then S itself is a condition extending P , and
for every σ in S we have ¬θϕ(X1, . . . , Xn, σ). Then there is no condition R
extending S and string σ such that

{τ ∈ R|τ ⊥ σ} is finite ∧ θϕ(X1, . . . , Xn, σ)

since whenever θϕ(X1, . . . , Xn, σ) holds, σ is not in S and hence incompatible
with infinitely many elements of R. �

Corollary 5.6 Suppose ϕ is a Σ0
1 (resp. Π0

2) formula. Then RCA0 proves that
the formula P
 1

2
ϕ is equivalent to another Σ0

1 (resp. Π0
2) formula.

Proof. For Σ0
1 formulas this follows immediately from the previous lemma,

since saying
{σ ∈ P |¬θϕ(X1, . . . , Xn)} is finite

amounts to saying that there exists an m such that all the sequences of length
m in P satisfy θϕ(X1, . . . , Xn).

The corresponding statement for Π0
2 formulas follows by adding a universal

quantifier to ϕ and applying the appropriate clause of Definition 4.5. �

Lemma 5.7 RCA0 proves that Σ0
1-induction is 1

2 -generically valid.

Proof. A typical instance of Σ0
1-induction is of the form

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x+ 1)) → ∀xϕ(x)

where ϕ is Σ0
1, possibly with set parameters. Suppose P 1

2 -forces ϕ(0) and
ϕ(x) → ϕ(x + 1) for every x; we want to show that there is a condition Q
extending P such that Q 1

2 -forces ∀xϕ(x). Since by Corollary 5.6 the statement
P
 1

2
ϕ(x) is Σ0

1, so we can use the hypotheses and Σ0
1-induction in the base

model to prove that for every x we have P
 1
2
ϕ(x). By Definition 4.5 this

means that P itself 1
2 -forces ∀xϕ(x) and we’re done. �

So now we’ve got a truth definition for a model M 1
2

which satisfies all the
axioms of IΣ1. We can use this to define a 1- forcing relation that is very similar
to the 1

2 -forcing relation, except that it allows us to name sets that are recursive
in parameters from the model M 1

2
.

1-conditions are the same as 1
2 -conditions, namely infinite trees of the base

model, and we use the same ordering as before.

13

We want our 1-names to code sets that are ∆0
1 in the generic and a parameter

from the original model (thanks to pairing, one parameter is enough). So we’ll
take our 1-names to be triples 〈X,ψ, χ〉 where ψ(x,X,G) and χ(x,X,G) are
(codes of) the Σ0

1 and Π0
1 formulas that will code the recursive set. Letting TrΣ0

1

and TrΠ0
1

be appropriate truth predicates, we define P
1 Name(〈X,ψ, χ〉) to
mean

P
 1
2
∀x(TrΣ0

1
(ψ, x, X̂, Ĝ) ↔ TrΠ0

1
(χ, x, X̂, Ĝ));

in other words, P forces that the formulas ψ and χ represent a valid ∆0
1 defini-

tion. Note that by Corollary 5.6 this definition has complexity Π0
2.

Finally, the definition of P
1 t ∈ 〈X,ψ, χ〉 is given by

P
 1
2
TrΣ0

1
(ψ, t, X̂, Ĝ).

Of course, if P
1 Name(〈X,ψ, χ〉) then this is equivalent to

P
 1
2
TrΠ0

1
(χ, t, X̂, Ĝ).

It isn’t difficult to show that 1-forcing is also good weak forcing notion. We
can again define canonical 1-names for sets in the base model and the generic,
taking, for example, X̂ to be

〈X,x ∈ X,x ∈ X〉

and Ĝ to be
〈∅, x ∈ G, x ∈ G〉.

With a little bit of work (see [1]), we can show that most of the properties
of 1

2 -forcing are true of 1-forcing as well:

Lemma 5.8 Let ϕ(X1, . . . , Xn) be arithmetic with only the set parameters shown.
Then RCA0 proves that for all sets X1 . . . Xn, the following are equivalent:

1. ∀P (P
1 ϕ(X̂1, . . . , X̂n))

2. ∃P (P
1 ϕ(X̂1, . . . , X̂n))

3. ϕ(X1, . . . , Xn)

Lemma 5.9 RCA0 proves that P 1-forces σ ⊂ Ĝ if and only if {τ ∈ P |τ ⊥ σ}
is finite.

Lemma 5.10 Suppose ϕ is a Σ0
1 (resp. Π0

2) formula. Then RCA0 proves that
the formula P
1 ϕ is equivalent to another Σ0

1 (resp. Π0
2) formula.

Lemma 5.11 RCA0 proves that Σ0
1-induction is 1-generically valid.

In fact, we can show

Lemma 5.12 RCA0 proves that each axiom of RCA0 is 1-generically valid.

14

Proof. We’ve already handled the axioms of IΣ1, and our naming scheme
handles (RCA). �

We may not seem to have accomplished much so far: we have taken great
pains to produce, in RCA0, an interpretation of the phrase “ϕ is true in M1”
where M1 is another model of RCA0. Our major gain, though, is represented
by the following

Lemma 5.13 RCA0 proves that if P is a 1-condition then

P
1 ∃X(X is a path through P̂).

In other words,
P
1 ∃X∀σ(σ ⊂ X → σ ∈ P̂).

Proof. In fact, Lemma 5.9 implies that

P
1 ∀σ(σ ∈ Ĝ→ σ ∈ P̂).�

This is a far cry from showing that (WKL) is 1-forced: semantically speaking
all we can say is that if P , an infinite binary tree in the base model, happens to
be one of the conditions of the generic, then M [G] has a path through P . But
as we’ll see we can handle more trees by iterating the forcing, and in fact, if we
iterate the forcing “generically” we can get them all.

6 Iterating a forcing definition

Suppose we begin with a theory T and define within T a forcing relation in which
the axioms of T are again generically valid. Then we can use Proposition 4.8
to iterate the process and show that T proves that it is generically valid that
the axioms of T are generically valid. Having added one generic to obtain a
modelM [G1] of T , we’re essentially adding another generic to obtainM [G1][G2].
The conditions of the second forcing relation are conditions of M [G1], sets in
M [G1][G2] are named by sets of M [G1], and so on. Iterating the process we
obtain the models Mn for each standard n.

To carry out the iteration uniformly, however, we need to find, for each n,
a single forcing relation that will add n generics at once. We present such a
relation below. Proposition 6.3 then shows that adding all the generics at once
is equivalent to adding them one at a time.

Definition 6.1 Once n-forcing notions have been defined, n+1-forcing notions
are defined as follows.

1. An n+ 1-condition is defined to be a pair 〈P, P ′〉 such that

n-Condition(P) ∧ P
n (Name(P ′) ∧ 1-Condition(P ′)).

2. If 〈P, P ′〉 and 〈Q,Q′〉 are n+1-conditions, we say 〈P, P ′〉 ≤n+1 〈Q,Q′〉 if

P ≤n Q ∧ P
n (P ′ ≤1 Q
′).

15

3. 〈P, P ′〉
n+1 Name(X) is defined to mean

P
n (P ′
1 Name(X)).

4. If ϕ is atomic, 〈P, P ′〉
n+1 ϕ is defined to mean

P
n (P ′
1 ϕ).

5. Finally, we extend the definition of weak n+1-forcing to arbitrary formulas
ϕ using the clauses of Definition 4.5.

Proving the following propositions involves unwinding the forcing definitions.
Details can be found in [1].

Proposition 6.2 Suppose T proves that 1-forcing is a good weak forcing notion
and that the axioms of T are 1-generically valid. If n-forcing is a good weak
forcing notion for some standard n, then so is n+ 1-forcing.

Proposition 6.3 Let T be as above and suppose n-forcing is a good weak forcing
notion. Then for each formula ϕ, T proves that

(〈P, P ′〉
n+1 ϕ) ↔ (P
n (P ′
1 ϕ)).

Proposition 6.4 Let T be as above. Then for each standard n, if T proves that
the axioms of T are n-generically valid, then it proves that they’re n+ 1-generically
valid as well.

Of course, these propositions imply that for each standard integer n, T
proves that the axioms of T are n-generically valid. The reason behind our
strange wording will become clear later on.

We now apply these results to the forcing argument at hand. Using RCA0

as our base theory and our particular definition of 1-forcing we get

Lemma 6.5 Given the definition of 1-forcing in Section 5 and the correspond-
ing definitions for weak n-forcing, if RCA0 proves the axioms of RCA0 are n-
generically valid for some standard n, then it proves that they’re n+1-generically
valid.

Again this implies that the axioms of RCA0 are n-generically valid for each
standard n. We also have the generalization of Lemma 5.13:

Lemma 6.6 Suppose RCA0 proves that the axioms of RCA0 are n-generically
valid. Then it also proves the following: If X is an n-name and P is an n-
condition such that P
n (X is an infinite binary tree), then

〈P,X〉
n+1 ∃Y (Y is a path through X).

16

Proof. By Proposition 6.3, RCA0 proves that

〈P,X〉
n+1 ∃Y (Y is a path through X)

is equivalent to

P
n (X
1 ∃Y (Y is a path through X)).

Since RCA0 proves that axioms of RCA0 are n-generically valid, it proves this
latter formula by Lemma 5.13. �

The final lemma of this section shows that for formulas ϕ of low complexity,
the notion P
n ϕ remains of low complexity for every standard n. Recall that
Lemma 5.10 showed that this is true when n = 1. Using Proposition 6.3 we get:

Lemma 6.7 Suppose for some n RCA0 proves that the axioms of RCA0 are
n-generically valid. Then if for every Σ0

1 (resp. Π0
2) formula ϕ RCA0 proves

that the assertion P
n ϕ is again of Σ0
1 (resp. Π0

2) complexity, then the same
holds true when n is replaced by n+ 1.

Again, this conjoined with Lemma 6.5 implies that the complexity of P
n ϕ
remains Σ0

1 (resp. Π0
2) for each standard n; and, of course, at the moment these

are the only n for which we have a meaningful definition of n-forcing. But the
reason for our strange phrasing will become clear in the next section when we
define n-forcing uniformly.

7 Defining n-forcing uniformly

At this stage we’ve shown how to define n-forcing for each standard n, but
that isn’t quite sufficient for our purposes. What we really want is a uniform
definition of n-forcing, that is, definitions of the notions “P is an n-condition,”
“P ≤n Q,” “P
n Name(X),” and for each ϕ “P
n ϕ,” where n is a parameter.
Furthermore, we’d like to be able to show within RCA0 that, with our new
definition, for every n the axioms of RCA0 are n-generically valid. This last
goal, however, turns out to be a little bit too ambitious, and more than we
need. In fact, it will be sufficient to show that our new forcing definition has
this property for “enough” n, that is, for a set of numbers forming a definable
cut.

Definition 7.1 Let T be a theory in a language that includes the language of
arithmetic. Then a definable cut (with respect to T) is a formula J such that T
proves

J(0) ∧ ∀n(J(n) → J(n+ 1)).

Referring back to the definitions in Section 5 we see that our basic 1-forcing
notions are of low complexity. “1-Condition(P)” is Π0

1 in P ; “P ≤1 Q” is ∆0
1

in P and Q; “P
1 Name(X)” is Π0
2 in P and X; and finally, the definition

17

of “P
1 t ∈ X” is Σ0
1 in P and X. Moreover, repeated application of Lem-

mas 6.5 and 6.7 will reveal that for each standard n, RCA0 proves that the
basic n-forcing notions have the same complexity as their 1-forcing counter-
parts. Finally, we note that the transformations are uniform; fixing appropri-
ate Π0

2 truth predicates, there are primitive recursive functions Condition(n),
LessThanEq(n), Name(n), and ElementOf(n) such that for each standard n,
RCA0 proves the following:

n-Condition(P) ↔ TrΠ0
2
(Condition(n), P),

P ≤n Q↔ TrΠ0
2
(LessThanEq(n), P,Q),

P
n Name(X) ↔ TrΠ0
2
(Name(n), P,X),

and
P
n t ∈ X ↔ TrΠ0

2
(ElementOf(n), t, P,X).

It then makes sense to use these functions for our uniform definition of n-forcing.
In other words, we define a new forcing relation
n where n is now a parameter;
n-conditions, ≤n, n-names, and n-forcing for atomic formulas are now defined
using the right-hand side of the above equivalences. The weak forcing is then
exended to formulas of arbitrary complexity in the usual way.

Again we’d like to emphasize that rather than using the clauses of Defini-
tion 6.1 to define n+ 1-forcing from n-forcing, we’re using their low-complexity
equivalents guaranteed by Lemma 6.7. If our primitive recursive functions have
been reasonably chosen we can prove these these equivalances and show, from
within RCA0, that our uniform definition agrees with Definition 6.1:

Lemma 7.2 RCA0 proves the following: Suppose the axioms of RCA0 are n-
generically valid. Then the following hold:

1. n+ 1-Condition(〈P, P ′〉) ↔
n-Condition(P) ∧ P
n (Name(P ′) ∧ 1-Condition(P ′))

2. 〈P, P ′〉 ≤n+1 〈Q,Q′〉 ↔ P ≤n Q ∧ P
n (P ′ ≤1 Q
′)

3. 〈P, P ′〉
n+1 Name(X) ↔ P
n (P ′
1 Name(X))

4. 〈P, P ′〉
n+1 t ∈ X ↔ P
n (P ′
1 t ∈ X)

In the statements above, all the n- and n + 1-notions refer to our new defini-
tions, whereas all mentions of 1-forcing refer to the original definitions given in
Section 5.

Let J(n) say that “all the axioms of RCA0 are n-forced;” that is,

J(n) ≡def

∧
{
n ϕ | ϕ is an axiom of RCA0}.

Here we’re relying on the fact that RCA0 is finitely axiomatizable using truth
predicates. It would be nice if we could prove from within our base theory that
J(n) holds for all n. The bad news is, since the statement J(n) has second-order

18

quantifiers, proving this claim requires more induction than is available to us in
RCA0. The good news is that we never really need to know that the predicate
J is true of all numbers. In the next section we’ll see that it’s enough to know
that

Lemma 7.3 J(n) is a definable cut, that is, RCA0 proves that for all n, J(n) →
J(n+ 1).

Proof. The proof is virtually the same as the proof of Lemma 6.5, except
that we use the new n-forcing definitions throughout. �

Repeating the proof of Proposition 6.3 with our new definitions we get

Lemma 7.4 With the new uniform definitions of n-forcing, for each formula
ϕ RCA0 proves the following: if J(n) holds then

(〈P, P ′〉
n+1 ϕ) ↔ (P
n (P ′
1 ϕ)).

Once again, we want to emphasize that they key difference is that now n
appears as a parameter in the statement of the lemma. In the same way, we can
prove the analog of Lemma 6.6:

Lemma 7.5 RCA0 proves the following: Suppose J(n) and

P
n (X is an infinite binary tree).

Then
〈P,X〉
n+1 ∃Y (Y is a path through X).

Now, with these uniform forcing definitions in hand, we’re finally ready to
define a forcing relation that will capture the notion of truth in the model Mω.

8 Putting it all together: the general forcing
definition

The model Mω we describe should first of all be a model in which ω-many
generic sets have been added. But we want more than that: the sets should
themselves should be added generically, so that whenever an infinite binary
tree gets added to the model, a path through it gets added at some later stage.
This section will describe forcing notions that do the job. The conditions of our
forcing relation will be n-conditions for varying n. Intuitively, an n-condition
specifies information about the first n-generics, so we’ll say that an n-condition
P extends and n′-condition Q if and only if n ≤ n′ and P extends Q with respect
to the information they both specify. We’ll use such a poset to define a new
weak forcing argument
ω and then show that it is sufficient for our purposes.

If Q is an n-condition and m ≥ n we can identify Q with an m-condition

〈. . . 〈〈Q, ∅̂〉, ∅̂〉, . . . , ∅̂〉

19

by padding it with canonical names for the greatest 1-condition. Similarly, if X
is an n-name and m ≥ n we can identify X with an m-name X ′ so that

(P
n t ∈ X) ↔ (P
m t ∈ X ′);

for example, if m = n + 1 we take X ′ = X̂, the canonical name for X, and so
on. So in an expression like P
k Name(X), where P is an n-condition and X
is an m-name and k ≥ max(m,n), we are implicitly identifying P and X with
the corresponding k-condition and k-name, respectively. With this convention
in place, we are ready to define ω-forcing.

Definition 8.1 From within RCA0 we make the following definitions:

1. An ω-condition is an n-condition for some n such that J(n). That is, we
define ω-Condition(P) to mean

∃n(J(n) ∧ n-Condition(P)).

2. If P is an m-condition and Q is an n-condition, say P ≤ω Q if m ≥ n
and P ≤m Q.

3. If P is an n-condition and X is an m-name such that J(m), we’ll say that
P
ω Name(X) if P
k Name(X) where k = max(m,n).

4. Similarly, if P is an n-condition and X is a m-name, define P
ω t ∈ X
to mean P
k t ∈ X where k = max(m,n).

5. Finally, we extend the definition to arbitrary formulas ϕ using the clauses
of Definition 4.5

It is straightforward to check that ω-forcing is a good weak forcing notion.
If P is an n-condition and m < n, we define P � m (“P restricted to m”) to be
the m-condition corresponding to an initial segement of P .

We now have a tentative truth definition for the model Mω. We can think
of the models Mn as being the ω-submodels of Mω containing only the first
n-generics (and sets recursive in them). Now consider an arithmetic formula
ϕ(X1, . . . , Xj) with only the set parameters shown, and suppose X1, . . . , Xj

are all n-names for some n. Then the truth of ϕ in Mω should be equivalent
to its truth in Mn, since ϕ makes no reference to anything outside the Mn’s
universe. The following lemma, the statement of which relies heavily on our
uniform definition of n-forcing, makes this precise. It is very much analagous
to Lemma 5.8.

Lemma 8.2 For any arithmetic ϕ(X1, . . . , Xj) with only the set parameters
shown, RCA0 proves the following: Suppose X1, . . . , Xj are n-names and P is
an ω-condition. Then

(P
ω ϕ(X1, . . . , Xj)) ↔ (P � n
n ϕ(X1, . . . , Xj)).

20

Proof. An easy induction on the logical complexity of ϕ. �
Using this lemma to reduce ω-forcing to n-forcing for appropriate n, we can

show

Lemma 8.3 RCA0 proves that each basic axiom of RCA0 is ω-generically
valid.

Finally, we come to the point of the whole affair:

Lemma 8.4 RCA0 proves that (WKL) is ω-generically valid.

Proof. Argue in RCA0. Suppose P is an ω-condition and X is an ω-name
such that

P
ω Name(X) ∧ (X is an infinite tree).

We need to show that there is an ω-condition Q extending P such that

Q
ω ∃Y (Y is a path through X).

Since P is an ω-condition and P
ω Name(X) there is an n such that: J(n)
holds, P can be identified with an n-condition, and X can be identified with an
n-name such that P
n Name(X). Hence by Lemma 8.2 we have that

P
n (X is an infinite tree).

Then 〈P,X〉 is an n+ 1-condition and by Lemma 7.5 we have that

〈P,X〉
n+1 ∃Y (Y is a path through X).

But J(n) implies J(n+ 1), so 〈P,X〉 is the desired ω-condition. �
This yields our main result:

Theorem 8.5 WKL0 is conservative over RCA0 for Π1
1 sentences.

Proof. Suppose WKL0 proves ∀Xϕ(X) for some arithmetic ϕ. Since RCA0

proves that each axiom of WKL0 is ω-generically valid and that ω-generic va-
lidity is maintained under rules of inference, it also proves that ∀Xϕ(X) is
ω-generically valid, and hence

∀X
ω (Name(X) → ϕ(X)).

Now, arguing in RCA0, let X be any set and let X̂ be its canonical 1-name.
Then
ω Name(X̂) and so
ω ϕ(X̂). By Lemma 8.2 we have
1 ϕ(X̂), and
hence by Lemma 5.8 we can conclude ϕ(X). �

In the next section we’ll discuss what is necessary to extend this result to
WKL+0, and after that we’ll explore briefly what happens to the lengths of the
proofs in the translation.

21

9 Handling WKL+0

We will now consider what is needed to modify the whole argument to handle
the scheme (BCT) given in Section 1, namely

∀n∀σ∃τ ⊇ σϕ(n, τ) → ∃f∀n∃mϕ(n, f [m]).

Suppose for the moment we want to prove a conservation result for RCA+0,
that is, RCA0 conjoined with the axiom schema (BCT). The semantic forcing
argument, which appears in [3], is a simple instance of Cohen forcing in which the
conditions are finite segments of 0’s and 1’s representing initial segments of the
characteristic function of the generic set being added. Translating the argument
to an effective one using the methods described here poses little difficulty. As
in Section 5 we start by defining a “ 1

2 -forcing” relation. They key difference is
that due to complexity considerations we have to work with the strong version
of the forcing relation as well.

Definition 9.1 Within RCA0, we define new notions of 1
2 -forcing as follows.

1. A 1
2 -condition p is (a code for) a finite sequence of 0’s and 1’s.

2. If p and q are 1
2 -conditions, p ≤ 1

2
q if p extends q in the usual sense.

3. p
s
1
2
Name(X) if X is a canonical name for a set in the base model or

the new generic, as in Section 5.

4. Define p
s
1
2
t ∈ Ĝ to mean pt = 1.

5. We extend the relation p
s
1
2
ϕ to arbitrary formulas ϕ and define the

corresponding weak forcing notions as described in Section 5.

Note that p
 1
2
t ∈ Ĝ will hold if and only if p
s

1
2
t ∈ Ĝ, so for atomic

formulas the strong and weak forcing notions agree. For arbitrary formulas the
two notions diverge, though they’re related by Proposition 4.7.

It is easy to check that Lemma 5.2, which states that arithmetic formulas
are forced if and only if they’re true, still holds:

Lemma 9.2 Let ϕ(X1, . . . , Xn) be arithmetic with only the set parameters shown.
Then RCA0 proves that for all sets X1 . . . Xn, the following are equivalent:

1. ∀p(p
s
1
2
ϕ(X̂1, . . . , X̂n))

2. ∃p(p
s
1
2
ϕ(X̂1, . . . , X̂n))

3. ∀p(p
 1
2
ϕ(X̂1, . . . , X̂n))

4. ∃p(p
 1
2
ϕ(X̂1, . . . , X̂n))

5. ϕ(X1, . . . , Xn)

22

Furthermore, we have the following analog of Lemma 5.3:

Lemma 9.3 RCA0 proves that the following are equivalent

1. p
s σ ⊂ Ĝ

2. p
 σ ⊂ Ĝ

3. σ ⊂ p

Unfortunately, Corollary 5.6 is somewhat weakened, in that we can no longer
make the same claim about Σ0

1 formulas.

Lemma 9.4 Suppose ϕ is a Π0
2 formula. Then RCA0 proves that the formula

P
 1
2
ϕ is equivalent to another Π0

2 formula.

Proof. This is easy to check using the clauses of Definition 4.5 and noting
that 1

2 -forcing for atomic formulas is ∆0
1. �

Because forcing for Σ0
1 formulas is no longer Σ0

1 we can’t use the same proof
we did in Section 5 to show that Σ0

1 induction is 1-generically valid. However,
strong forcing for Σ0

1 formulas does remain Σ0
1, and we can use that fact to push

the proof through. Because strong forcing doesn’t have the nice semantic prop-
erties that weak forcing does, it is harder to understand what exactly is going
on in the following proof. But in both instances handling induction amounts
to showing that certain forcing notions are of sufficiently low complexity to use
induction in the base theory.

Lemma 9.5 RCA0 proves that Σ0
1 induction is 1

2 -generically valid.

Proof. Suppose ϕ is Σ0
1. We need to show that

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x+ 1)) → ∀xϕ(x)

is 1
2 -generically valid. In fact, we claim that it’s strongly 1

2 -forced by the empty
condition. Suppose p strongly 1

2 -forces the inductive hypothesis, so that

p
s
1
2
ϕ(0)

and,
∀x∀q ≤ 1

2
p∃r ≤ 1

2
q(r
s

1
2
ϕ(x) → ϕ(x+ 1)).

We claim that p strongly 1
2 -forces the conclusion ∀xϕ(x); i.e.

∀x∀q ≤ 1
2
p∃r ≤ 1

2
q(q
s

1
2
ϕ(x)).

Switching the first two quantifiers to get

∀q ≤ 1
2
p∀x∃r ≤ 1

2
q(q
s

1
2
ϕ(x))

23

we now fix q ≤ 1
2
p and use induction on x in the formula

∃r ≤ 1
2
q(r
s

1
2
ϕ(x)).

The fact that p
s
1
2
ϕ(0) gives the base case, and the fact that for every x and

q ≤ 1
2
p there is r ≤ 1

2
q such r
s

1
2

(ϕ(x) → ϕ(x + 1)) yields the induction

hypothesis. So by Σ0
1-induction in our base theory we’re done. �

Now we can go on to develop the corresponding 1-forcing notions as was
done in Section 5. As before, then, we can show that Σ0

1-induction and recursive
comprehension, and hence all the axioms of RCA0, are 1-generically valid. Our
gain is then represented by the following

Lemma 9.6 Let ϕ(n, σ,X1, . . . , Xn) be arithmetic with the set parameters shown.
Then RCA0 proves the following: for any sets X1, . . . , Xn

∀n∀σ∃τ ⊃ σϕ(n, τ, X̂1, . . . , X̂n) → ∃f∀n∃mϕ(n, f [m], X̂1, . . . , X̂n)

is 1-generically valid.

Proof. Argue in RCA0. Suppose a condition p forces the left hand side.
Then by Lemma 9.2 we have that

∀n∀σ∃τ ⊃ σϕ(n, τ,X1, . . . , Xn)

is true. We claim that this implies that

 1
2
∀n∃mϕ(n, Ĝ[m], X̂1, . . . , X̂n),

which suffices to prove the lemma. Working backwards, this latter formula is
equivalent to

 1
2
∀n∃m, τ(τ = Ĝ[m] ∧ ϕ(n, τ, X̂1, . . . , X̂n)).

Using the clauses of Definition 4.5 we see that this is equivalent to

∀n∀p∃q ⊃ p∃m(q
 1
2

(τ = Ĝ[m] ∧ ϕ(n, τ, X̂1, . . . , X̂n))).

But it isn’t hard to show that q
 1
2
τ = Ĝ[m] is true if and only if τ = q[m],

and so again by Lemma 9.2 we get

∀n∀p∃q ⊃ p∃τ,m(τ = q[m] ∧ ϕ(n, τ,X1, . . . , Xn)),

which is equivalent to

∀n∀p∃q ⊃ p∃m(ϕ(n, q[m], X1, . . . , Xn)).

But it is easy to see that this is implied by

∀n∀σ∃τ ⊃ σϕ(n, τ,X1, . . . , Xn)

24

as desired. �
This lemma falls short of (BCT), since only parameters from the base model

are allowed. However, when we iterate the forcing, we’ll have that if ϕ satis-
fies the hypothesis of (BCT) with n-names as parameters, then the n + 1st

generic will verify the conclusion. All our forcing notions are of low complexity:
1-Condition(p) is ∆0

1, as is p ≤1 q; p
1 Name(X) and p
1 t ∈ X are both Π0
2,

and Lemma 9.4 guarantees that this complexity is maintained when the forcing
is iterated. So, repeating the constructions of Sections 6, 7, and 8 yields the
desired conservation result.

Finally, to handle both (WKL) and (BCT) at the same time, one has to
define an n-forcing that alternates between the two forcing types, for example,
using Harrington forcing at the odd stages and Brown-Simpson forcing at the
even stages. Though the details may be tedious they present no conceptual
difficulties, yielding:

Theorem 9.7 WKL+0 is conservative over RCA0 for Π1
1 sentences.

10 The lengths of the proofs

Theorem 9.7 is not new, though the effective proof presented here is. We now
take advantage of this effective proof to show that WKL+0 doesn’t have any
significant speedup over RCA0. That is, we show that when a proof in WKL+0

is translated to one in RCA0, there is at most a polynomial increase in length.
We’ll assume that our proof systems are standard Hilbert-style proof sys-

tems. For the “length of a proof” we employ the measure used in [9] which
counts the number of symbols involved.

Suppose one has proven a Π1
1 sentence ∀Xϕ(X) in WKL+0 (we’ll assume

for simplicity that there is only one universal second-order quantifier). We’ll
examine the steps necessary to translating the proof p to one in RCA0. The
proof p is of the form

ϕ1, ϕ2, . . . , ϕn(= ∀Xϕ(X))

where each ϕi (1) is a logical axiom, (2) is an axiom of RCA0, or (3) follows
from previous ϕj by a deduction rule. The proof p will be replaced by a proof
in RCA0 having the following general form:

“ϕ1 is ω-generically valid,”“ϕ2 is ω-generically valid,” . . . ,
“ϕn is ω-generically valid.”

This last line translates to

∀X(
ω Name(X) → ϕ(X)).

Now, arguing in RCA0 let X be any set, and let X̂ be its canonical name. Then
we have

ω ϕ(X̂)

25

followed by the conclusion
“ϕ(X) is true.”

That the logical axioms are ω-generically valid and that ω-generic validity
is maintained by deductive inferences is guaranteed by Proposition 4.8, and the
lengths of the proofs described there are polynomially related to the lengths of
the relevant formulas. We can take RCA0 (and hence WKL0) to be finitely
axiomatized (with only a polynomial increase in the length of proof over the
more standard axiomatization); so proving that the axioms of WKL0 are ω-
generically valid can be done with a constant length of proof. Each instance of
the Baire Category Theorem used in p also has to be shown to be ω-generically
valid. It is straightforward to check that the lengths proofs obtained from
Lemma 5.8 (which states that an arithmetic formula is 1-forced if and only if
it’s true) and Lemma 8.2 (which states that an arithmetic formula involving
only n-names if ω-forced if and only if it’s n-forced) are polynomially bounded
in the lengths of the formulas involved, as is then verifying that the length of
the proof that an instance of (BCT) is ω-generically valid is also bounded by a
polynomial in the length of the original axiom.

So, with a length of proof polynomial in the original, we can show that
∀Xϕ(X) is ω-generically valid. Letting X be any set, RCA0 can show that its
canonical name X̂ satisfies
ω Name(X) in a constant length proof, and hence
conclude
ω ϕ(X̂). Once again the application of Lemmas 5.8 and 8.2, which
allow us to conclude that ϕ(X) is true, can by done with a length of proof
polynomial in the length of ϕ.

This gives us the main result of this paper:

Theorem 10.1 There is a recursive function f and a polynomial p such that
the following holds: if d codes a proof in WKL+0 of a Π1

1 formula ϕ, then f(d)
codes a proof of ϕ in RCA0, and the length of f(d) is less than p(the length of d).

11 Final comments and acknowledgments

The work here was done independently of [4], in which P. Hájek shows that
WKL0 has no significant speedup over IΣ1 in proving arithmetic sentences.
Working with the language of recursion theory, he shows that one is able to
abandon much of the forcing formalism and simply define an interpretation
for the second-order sets of WKL0 within IΣ1. Though his arguments are
streamlined and elegant, the methods here have some advantages:

1. The sets of our “model” Mω include the sets of the base model, thus
answering one of the questions posed at the end of [4].

2. These methods work for the WKL0+ as well; until this point, there was
no way of proving the conservation result for the Baire Category Theorem
effectively, even allowing for a nonpolynomial speedup.

3. They can perhaps be adapted to other forcing arguments as well.

26

With regard to this last item, we remark that the methods of this paper can be
applied to any argument involving iterated forcing over models of second-order
arithmetic in which the basic forcing notions are of a complexity that don’t grow
in the iteration.

I’d like to thank my advisor, Jack Silver, for his invaluable guidance, and
Solomon Feferman for his encouragement and support.

References

[1] Avigad, Jeremy, Proof-Theoretic Investigations of Subsystems of Second-
Order Arithmetic, Ph. D. dissertation, U. C. Berkeley, 1995.

[2] Beeson, Michael J., Foundations of Constructive Mathematics, Springer,
1985.

[3] Brown, Douglas K. and Stephen G. Simpson, “The Baire Category Theo-
rem in Weak Subsystems of Second-Order Arithmetic,” Journal of Symbolic
Logic, Vol. 58 No. 2 (1993), pp. 557-578.

[4] Hájek, Petr, “Interpretability and fragments of arithmetic”, in Peter Clote
and Jan Krajicek, editors, Arithmetic, Proof Theory, and Computational
Complexity, Oxford University Press, 1993.

[5] Hájek, Petr and Pavel Pudlák, Metamathematics of First-Order Arithmetic,
Springer, 1991.

[6] Ignjatovic, Aleksandar, Fragments of First and Second Order Arithmetic
and Length of Proofs, Ph.D. Dissertation, U. C. Berkeley, 1990.

[7] Jockusch, C. G. Jr. and R. I. Soare, “Π0
1 classes and degrees of theories,”

Transactions of the American Mathematical Society, Vol. 183 (1972), pp.
33-56.

[8] Kunen, Kenneth, Set Theory: An Introduction to Independence Proofs,
North-Holland, 1990.

[9] Pudlák, Pavel, “On the length of proofs of finitistic consistency statements
in first order theories,” in Paris et al. editors, Logic Colloqium ’84, North
Holland, 1986.

[10] Sieg, Wilfried, “Fragments of Arithmetic,” Annals of Pure and Applied
Logic, Vol. 28 (1985), pp. 33-71.

[11] Sieg, Wilfried, “Herbrand Analyses,” Archive for Mathematical Logic, Vol.
30 (1991), pp. 409-441.

[12] Simpson, Stephen G., Subsystems of Second Order Arithmetic, preprint.

27

[13] Simpson, Stephen G., “Subsystems of Z2 and Reverse Mathematics,” ap-
pendix to Gaisi Takeuti, Proof Theory (second edition), North-Holland,
1987.

[14] Simpson, Stephen G., “On the strength of König’s duality theorem of count-
able bipartite graphs,” Journal of Symbolic Logic, 59:113-123, 1994.

[15] Soare, Robert I., Recursively Enumerable Sets and Degrees, Springer, 1980.

28

