
Chapter 1

Files and directories

There are six programs that we use to parse and translate definitions, and gather and view data on
them:

1. lptparse

2. Lpt2dzfc

3. SymbolCounter

4. Qcounter

5. DagMaker

6. GraphViewer

These programs, and their supporting files, come in a directory structure that has a main directory
with the following subdirectories:

1. dags

2. data

3. defs

4. dFiles

5. expand

6. expandDG

7. graphs

8. lpt2dzfc

9. lptparse

10. tex

11. util

1

Chapter 2

Using the software

Start by typing definitions in LPT, and saving them in a file in the directory lptparse/lptfiles,
with extension .lpt. You will find in the directory lptparse/lptfiles that I have provided as
examples all the .lpt files that I used in my project.

2.1 Parsing and translation

We’ll consider how to process the file MunkTop12.lpt, which contains the definitions from Munkres
Topology section 12, written in LPT.

We begin by typing

./partran MunkTop12

at the UNIX command prompt. The file partran is a shell script that applies both the parser
lptparse, and the translator lpt2dzfc, one after the other (it parses and translates, hence “par-
tran”). The results are as follows:

1. A bracketed (i.e. parsed) version of MunkTop12.lpt, is saved as

lptparse/lptoutput/MunkTop12.br

where the file extension .br stands for “bracketed”.

2. The translation into DZFC of each of the definitions in MunkTop12.lpt is computed, and
the results are saved in the .xml files in the defs directory. Also, entries are added to the
0index.xml file in the main directory. These files are not designed for viewing (although they
can be viewed using a web browser); they are meant to be used by the other programs in the
suite.

3. A file named MunkTop12.tex is stored in the tex directory. It contains, for each definition in
MunkTop12.lpt,

(a) the LATEX version of the definition as written in LPT, and

(b) the LATEX version of the definition as translated into DZFC.

2

4. A file named MunkTop12.d is stored in the dFiles directory. A .d file is used as a “batch list”
for all the data-gathering programs, which we will go over in Section 2.2.

Alternatively, you may use lptparse and Lpt2dzfc individually.

2.1.1 lptparse

To run lptparse on a file in the directory lptparse/lptfiles, say the file MunkTop12.lpt for
example, begin by entering the lptparse directory, with

cd lptparse

Then type

./lptparse < lptfiles/MunkTop12.lpt

This results in the creation of a file called lptout, in the lptparse directory. It contains the
bracketed version of the input.

If you wish, you may then type

cp lptout lptoutput/MunkTop12.br

in order to save this output in a .br file in the lptoutput directory, as partran does for you
automatically. For the purposes of further illustration, let’s suppose you choose to do this. (Note
that if you do not do this, then your data in the file lptout will be overwritten the next time you
run lptparse.)

In any case, return to the main directory by typing

cd ..

2.1.2 Lpt2dzfc

By running Lpt2dzfc manually you can take advantage of a few command line options that are not
available to you if you simply use partran.

The command line syntax is:

java lpt2dzfc/Lpt2dzfc (-t|-p|-s|-o) brFile

Here, brFile is your file containing bracketed LPT definitions. You have your choice of the
switches -t, -p, -s, and -o.

Use -s in order to save your definitions in the .xml files in the defs directory, and make changes to
the 0index.xml file in the main directory, but skipping any duplicate definitions. This means that,
for example, if you type

java lpt2dzfc/Lpt2dzfc -s algebra1.br

3

and if algebra1.br contains a definition of the relation GROUP with arity 3, and if there already
exists a definition of GROUP with arity 3, then your definition will not be recorded.

Use -o in order to achieve the same thing as with the -s switch, only overwriting any duplicate
definitions. So in the example of GROUP with arity 3, your new definition overwrites the old one.

Use -p to perform the translation of each definition into DZFC, but to simply print each translation
to the screen, and make no alterations to the files in the defs directory, or to the 0index.xml file.

As with the -p switch, the -t switch alters no files. It simply prints to the screen the parse tree for
each bracketed definition in the passed input file.

2.2 Counting symbols and quantifiers in expanded defini-
tions

The data-gathering programs are designed to be applied to .d files, and thereby process all the
definitions named in them, at one go. They also take command line parameters that make it easier
to gather the data from separate .d files in one place.

2.2.1 SymbolCounter

Consider first the SymbolCounter program. It counts the length of definitions, taken at various
states of expansion, as was done in my thesis project.

For example, we may begin by typing

java expandDG/SymbolCounter -b dFiles/MunkTop12.d -l expandDG/leaves -d data/SymbCounts

at the command prompt.
The

-b dFiles/MunkTop12.d

field tells SymbolCounter to use dFiles/MunkTop12.d as the “batch” file. (The -b switch stands for
“batch”.) This means that SymbolCounter will process each definition named in dFiles/MunkTop12.d
in turn.

The

-l expandDG/leaves

field tells SymbolCounter to use expandDG/leaves as the “leaves” file. This is the set of defined
concepts that will not be expanded whenever they may be encountered.

The

-d data/SymbCounts

field tells SymbolCounter to store the data that it computes in the file data/SymbCounts.

Output:

4

1. A file named MunkTop12 SymbolData.tex is saved in the tex directory, containing a format-
ted table presenting the data gathered on the definitions named in MunkTop12.d. For each
definition, we get the number of symbols in:

(a) its translation into DZFC,
(b) the full expansion thereof, and
(c) the partial expansion thereof, relative to the leaves named in expandDG/leaves.

2. In the file data/SymbCounts named in the command line we get the same data as is presented
in the tex/MunkTop12 SymbolData.tex file, only in a simple comma-delimited format that
can be read by a spreadsheet program such as Microsoft Excel.

Consider now what happens with a subsequent run of SymbolCounter. If we type

java expandDG/SymbolCounter -b dFiles/MunkTop13.d -l expandDG/leaves -d data/SymbCounts

at the command prompt (note that this time we’re working on the next file in our Topology series,
dFiles/MunkTop13.d), then, since we used the same

-d data/SymbCounts

field, the comma-delimited data this time will be appended to the file data/SymbCounts. This way
we can gather all the data from, say, our topology definitions, in one file, and all our algebra data
in another file, etc.

Options:
The -l and -d fields are optional; we may omit either or both of them. If the leaves field is

omitted then the second and third columns in the data tables will always be the same, since partial
expansion with respect to an empty set of leaves is the same thing as total expansion.

If the data field is omitted then the formatted table will still be stored in MunkTop12 SymbolData.tex.
But the simple comma-delimited data will not be stored anywhere.

There is one more switch, the -c switch, that we may use in the command line. It goes after the
-b field and before the -l or -d fields. Thus, we may type

java expandDG/SymbolCounter -b dFiles/MunkTop12.d -c -l expandDG/leaves

for example.
The -c switch stands for “clear” and its purpose is to clear certain internal data used by the

SymbolCounter algorithm. As I explain in my thesis paper, the algorithm that I use for computing
the lengths of expanded definitions works by storing, for each definition, a representation of a linear
function, which gives the length of the expanded definition as a function of the lengths of the
arguments plugged in for its free variables.

Each time you run SymbolCounter on a new .d file, the new linear functions are added to a
running list. There are two things to understand about this list: (1) If you want to expand a
definition D that depends on a prior definition C, then you need to run SymbolCounter on C before
you can run it on D, so that the linear function for C will be available when it is needed. (2) If you
have already run SymbolCounter on a definition B and then later make a change to B, then you
need to change the linear function stored for B, or else subsequent data will be inaccurate.

This is where the -c switch comes in. If you add it to the command line, then all prior stored
linear functions will be cleared from memory, and you will start fresh.

5

2.2.2 Qcounter

The Qcounter program takes the same command line parameters as does SymbolCounter, but
instead of counting symbols it counts quantifier depth, both alternating and non-alternating.

An example command line would be:

java expandDG/Qcounter -b dFiles/MunkTop12.d -l expandDG/leaves -d data/QCounts

The only difference between Qcounter and SymbolCounter then, is the output. Like SymbolCounter,
Qcounter yields two output files: one giving a formatted LATEX table; the other giving a simple
comma-delimited presentation of the same data, saved in the file named in the -d field in the
command line.

As for the formatted output, it is saved (continuing with our example) in the tex directory, in
a file named MunkTop12 QData.tex. The columns of the table give the maximum quantifier nesting
depth occurring in the definitions in MunkTop12.d in the following ways:

1. in the original LPT definition

2. in the translation into DZFC

3. in the total expansion thereof

4. in the partial expansion thereof, with respect to the leaves named in the command line

5. in the original LPT definition, but only counting alternations

6. in the translation into DZFC, but only counting alternations

7. in the total expansion thereof, but only counting alternations

8. in the partial expansion thereof, with respect to the leaves named in the command line; but
only counting alternations.

Note that the -c switch for Qcounter clears just its internal functions, not those of SymbolCounter.

2.3 DAGs

2.3.1 DagMaker

The DagMaker program takes a simpler command line than the programs discussed in the last section.
Like those, it takes a -b field, giving the batch file; and a -d field naming a file in which to store the
computed data. But it has no -l field, and there is no -c switch.

An example command line is:

java dags/DagMaker -b dFiles/MunkTop12.d -d data/DagData

The -d field works just as it does with the SymbolCounter and Qcounter programs. If the file
named there does not yet exist, it is created, and the data computed are stored there; if it does
already exist then the data computed are appended there.

Output:

6

1. A file named MunkTop12 DAG.tex is saved in the tex directory, containing, for each definition
named in MunkTop12.d, LATEX code which will plot the DAG for this definition, using the
dcpic LATEX package (which I have included in the tex directory, for convenience).

2. A file named MunkTop12 DAGdata.tex is also saved in the tex directory, containing a formatted
table listing the depth and size of each DAG plotted by the previous file.

3. According to the -d field in the command line, a file named DagData is saved in the data
directory, with a simple comma-delimited version of the data presented in the formatted table
in the previous file.

Options:
The -d field is optional. If it is omitted, then only the first two output files will be created.

2.3.2 GraphViewer

The final program gives a graphical user interface with which to view visual representations of the
DAGs for the definitions that have been entered into the database using lptparse and lpt2dzfc
(or just using partran).

To run it, type

java graphs/GraphViewer kmap

at the command prompt.
A window opens. In the textbox at the top, type the name of a defined concept, in the same

format in which they appear in .d files. This consists of the name of the defined concept, a colon,
and the arity of the defined concept. For example, you might type GROUP:3, or TOPOLOGY:2, or
Galoisgp:2.

Hit enter, and you are asked whether or not to begin a new graph. Say yes. Now you may move
the nodes of the graph by left-clicking on them and dragging. And you may expand and collapse
the DAG by right-clicking on the nodes appearing in it, and selecting the appropriate option.

7

