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Abstract. Lean is a new open source theorem prover being developed
at Microsoft Research and Carnegie Mellon University, with a small
trusted kernel based on dependent type theory. It aims to bridge the
gap between interactive and automated theorem proving, by situating
automated tools and methods in a framework that supports user inter-
action and the construction of fully specified axiomatic proofs. Lean is an
ongoing and long-term effort, but it already provides many useful com-
ponents, integrated development environments, and a rich API which
can be used to embed it into other systems. It is currently being used to
formalize category theory, homotopy type theory, and abstract algebra.
We describe the project goals, system architecture, and main features,
and we discuss applications and continuing work.

1 Introduction

Formal verification involves the use of logical and computational methods to
establish claims that are expressed in precise mathematical terms. These can in-
clude ordinary mathematical theorems, as well as claims that pieces of hardware
or software, network protocols, and mechanical and hybrid systems meet their
specifications. In practice, there is not a sharp distinction between verifying a
piece of mathematics and verifying the correctness of a system: formal verifica-
tion requires describing hardware and software systems in mathematical terms,
at which point establishing claims as to their correctness becomes a form of the-
orem proving. Conversely, the proof of a mathematical theorem may require a
lengthy computation, in which case verifying the truth of the theorem requires
verifying that the computation does what it is supposed to do.

Automated theorem proving focuses on the “finding” aspect, and strives for
power and efficiency, often at the expense of guaranteed soundness. Such sys-
tems can have bugs, and typically there is little more than the author’s good
intentions to guarantee that the results they deliver are correct. In contrast, in-
teractive theorem proving focuses on the verification aspect of theorem proving,
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requiring that every claim is supporting by a proof in a suitable axiomatic foun-
dation. This sets a very high standard: every rule of inference and every step of
a calculation has to be justified by appealing to prior definitions and theorems,
all the way down to basic axioms and rules. In fact, most such systems provide
fully elaborated proof objects that can be communicated to other systems and
checked independently. Constructing such proofs typically requires much more
input and interaction from users, but it allows us to obtain deeper and more
complex proofs.

The Lean Theorem Prover3 aims to bridge the gap between interactive and
automated theorem proving, by situating automated tools and methods in a
framework that supports user interaction and the construction of fully speci-
fied axiomatic proofs. The goal is to support both mathematical reasoning and
reasoning about complex systems, and to verify claims in both domains. Lean
is released under the Apache 2.0 license, a permissive open source license that
permits others to use and extend the code and mathematical libraries freely.
At Carnegie Mellon University, Lean is already being used to formalize cate-
gory theory, homotopy type theory, and abstract algebra. Lean is an ongoing,
long-term effort, and much of the potential for automation will be realized only
gradually over time.

Lean’s small, trusted kernel is based on dependent type theory, with sev-
eral configuration options. It can be instantiated with an impredicative sort
or propositions, Prop, to provide a version of the Calculus of Inductive Con-
structions (CIC) [5,6]. Moreover, Prop can be marked proof-irrelevant if desired.
Without an impredicative Prop, the kernel implements a version of Martin-Löf
type theory [12,23]. In both cases, Lean provides a sequence of non-cumulative
type universes, with universe polymorphism.

Lean is meant to be used both as a standalone system and as a software
library. SMT solvers can use the Lean API to create proof terms that can be
independently checked. The API can be used to export Lean proofs to other
systems based on similar foundations (e.g., Coq [3] and Matita [1]). Lean can
also be used as an efficient proof checker, and definitions and theorems can be
checked in parallel using all available cores on the host machine. When used as a
proof assistant, Lean provides a powerful elaborator that can handle higher-order
unification, definitional reductions, coercions, overloading, and type classes, in
an integrated way. Lean allows users to provide definitions and theorems using a
declarative style resembling Mizar [20] and Isabelle/Isar [24]. Lean also provides
tactics as an alternative (more imperative) approach to constructing (proof)
terms as in Coq, HOL-Light [10], Isabelle [17] and PVS [19]. Moreover, the
declarative and tactic styles can be freely mixed together.

Lean includes two libraries of formally verified mathematics and basic data-
structures. The standard library uses a kernel instantiated with an impredicative
and proof-irrelevant Prop. This library supports constructive and classical users,
and the following axioms can be optionally used: propositional completeness,
function extensionality, and strong indefinite description. Lean also contains a
3 http://leanprover.github.io
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library tailored for Homotopy Type Theory (HoTT) [23], using a predicative and
proof relevant instantiation of the kernel. Future plans to support HoTT include
a higher inductive types (HITs) and sorts for fibrant type universes.

2 The Kernel

Lean’s trusted kernel is implemented in two layers. The first layer contains the
type checker and APIs for creating and manipulating terms, declarations, and
the environment. This layer consists of 6k lines of C++ code. The second layer
provides additional components such as inductive families (700 additional lines
of code). When the kernel is instantiated, one selects which of these components
should be used. We have tried to maintain the number of objects manipulated by
the kernel to a minimum: the list consists of terms, universe terms, declarations,
and environments. Identifiers are encoded as hierarchical names [14], i.e. lists of
strings/numbers, such as x.y.1.

Terms. The term language is a dependent λ-calculus. A term can be a free vari-
able (also called a local constant), a bound variable, a constant (parameterized
by universe terms), a function application f t, a lambda abstraction λx : A, t, a
function space Πx : A,B, a sort Type u (where u is a universe term), a metavari-
able, or a macro m[t1, . . . , tn].

Sorts. The sorts Type u are used to encode the infinite sequence of universes
Type0, Type1, Type2, . . . An explicit universe term is of the form sk z (for k ≥ 0),
where z denotes the base universe zero, and s denotes the successor universe
operator. We use Type z to represent Prop in kernel instantiations that support
it. To support universe polymorphism, we also have universe parameters (an
identifier), and the operators max u1 u2 and imax u1 u2. The universe term
max u1 u2 denotes the universe that is greater than or equal to u1 and u2, and
is equal to one of them. The universe term imax u1 u2 denotes the universe zero
if u2 denotes zero, and max u1 u2 otherwise. The operator imax is only needed
for kernel instantiations that have an impredicative Prop. In these kernels, given
A : Type u1 and B : Type u2, the type of Πx : A,B is Type (imax u1 u2).
The imax operator makes sure that Πx : A,B is a proposition when B is a
proposition.

Free and bound variables. Free variables have a unique identifier and a type,
and bound variables are just a number (a de Bruijn index). By storing the type
with each free variable, we do not need to carry around contexts in the type
checker and normalizer. As described in [14], this representation simplifies the
implementation considerably, and it also minimizes the number of places where
calculations with de Bruijn indices must be performed.

Metavariables. In Lean, users may provide partial constructions, i.e., construc-
tions containing “holes” that must be filled by the system. These holes (also
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known as placeholders) are internally represented as metavariables that must be
replaced by closed terms that are synthesized by the system. Since metavari-
ables can only be assigned closed terms, a metavariable that occurs in a context
records the parameters it must depend on. For example, we encode a hole in
the context (x : nat) (y : bool) as ?m x y, where ?m is a fresh metavariable.
As with free variables, every metavariable has a type. We also have universe
metavariables to represent “holes” in universe terms.

Macros. Macros, which can be viewed as procedural attachments, provide more
efficient ways of storing and working with terms. Each macro must provide
two procedures, namely, type inference and macro expansion. The type infer-
ence procedure minfer is responsible for computing the type of a macro ap-
plication m[t1, . . . , tn], and the macro expansion procedure mexpand must ex-
pand/eliminate the macro application. The point is that, given a term t of
the form m[t1, . . . , tn], minfer(t) may be able to infer the type of mexpand(t)
more efficiently than the kernel type checker, and t may be more compact than
mexpand(t).

We also use macros to store annotations and hints used by automation such
as rewriters and decision procedures. Each macro has a trust level represented
by a natural number. When the Lean kernel is initialized, the user must provide
a trust level ℓ, and the kernel then refuses any term that contains a macro with
trust level greater than or equal to ℓ. A kernel initialized with trust level zero
does not accept any macro, forcing any macro occurring in declarations to be
expanded. The idea is that macros are not part of the trusted code base, but
users may choose to trust them “most of the time” when formalizing a system
and/or theorem. Note that an independent type checker for Lean does not need
to implement support for metavariables or macros.

Environments. An environment stores a sequence of declarations. The kernel
currently supports three different kinds of declarations: axioms, definitions and
inductive families. Each has a unique identifier, and can be parameterized by a
sequence of universe parameters. Every axiom has a type, and every definition
has a type and a value.

A constant in Lean is just a reference to a declaration. The main task of
the kernel is to type check these declarations and refuse type incorrect ones. The
kernel does not allow declarations containing metavariables and/or free variables
to be added to an environment. Environments are never destructively updated,
and are implemented using pure red-black trees.

Inductive families. Inductive families [8] are a form of simultaneously defined
collection of algebraic data-structures which can be parameterized over values
as well as types. Each inductive family definitions produces introduction rules,
elimination rules, and computational rules as described in [8]. As in the CIC,
the instances of an inductive family can be in Prop, and special rules are used
to make sure the eliminator is compatible with proof irrelevance. Finally, when
proof irrelevance is enabled in the kernel, axiom K [22] “computes” in Lean (a
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similar feature is available in Agda [18]). In contrast to Coq, Lean does not have
fix-point expressions, match expressions, or a termination checker in the kernel.
Instead, recursive definitions and pattern matching are compiled into eliminators
outside of the kernel.

The type checker. To minimize the amount of code duplication, the type checker
plays two roles. First, it is used to validate any declaration sent to the kernel
before adding it to an environment. Second, it is used by elaboration procedures
that try to synthesize holes in terms provided by the user. Consequently, the type
checker is capable of processing terms containing metavariables. When a term
contains metavariables, the type checker may produce unification constraints, in
which case the resultant type is correct only if the unification constraints can be
resolved.

3 Elaboration

The task of the elaborator is to convert a partially specified expression into a fully
specified, type-correct term. When typing in a term, users can leave arguments
implicit by entering them with an underscore (i.e., a “hole”), leaving it to the
elaborator to infer a suitable value. One can also mark arguments implicit by
putting them in curly brackets when defining a function, to indicate that they
should generally be inferred rather than entered explicitly. For example, the
standard library defines the identity function as:

definition id {A : Type} (a : A) : A := a

As a result, the user can write id a rather than id A a. It is fairly routine to
infer the type A given a : A. Often the elaborator needs to infer an element of
a Π-type, which constitutes a higher-order problem. For example, if e : a = b
is a proof of the equality of two terms of some type A, and H : P is a proof of
some expression involving a, the term subst e H denotes a proof of the result
of replacing some or all the occurrences of a in P with b. Here not just the type
A is inferred, but also an expression C : A → Prop denoting the context for the
substitution, that is, the expression with the property that C a “reduces” to P.
Such expressions can be ambiguous. For example, if H has type R (f a a) a,
then with subst e H the user may have in mind R (f b b) b or R (f a b)
a among other interpretations, and the elaborator has to rely on context and a
backtracking search to find an interpretation that fits. Similar issues arise with
proofs by induction, which require the system to infer an induction predicate.

The elaborator should also respect the computational interpretation of terms.
It should recognize the equivalence of terms (λx, t)s and t[s/x] under beta
reduction, as well as (s, t).1 and s under the reduction rule for pairs. (Terms
that are equivalent modulo such reductions are said to be definitionally equal.)
Unfolding definitions and reducing projections is especially crucial when working
with algebraic structures, where many basic expressions cannot even be seen to
be type correct without carrying out such reductions.



6 L. de Moura, S. Kong, J. Avigad, F. van Doorn, J. von Raumer

Lean’s elaborator also supports ad-hoc overloading; for example, we can use
notation a + b for addition on the natural numbers, integers, and additive
groups simultaneously. Each possible interpretation becomes a choice-point in
the elaboration process. The elaborator can also detect the need to insert a
coercion, say, from nat to int, or from the class of rings to the class of additive
groups.

Lean also supports the use of Haskell-style type classes. For example, we can
define a class has_mul A of types A with an associated multiplication operator,
and a class semigroup A of types A with semigroup structure, as follows:

structure has_mul [class] (A : Type) :=
(mul : A → A → A)

structure semigroup [class] (A : Type) extends has_mul A :=
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))

We can then declare appropriate instances of these classes, and instruct the
elaborator to synthesize such instances when processing the notation a * b or
the generic theorem mul.assoc.

Finally, definitions and proofs can invoke tactics, that is, user-defined or
built-in procedures that construct various subterms. The elaborator needs to
call these procedures at appropriate times during the elaboration process to fill
in the corresponding components of a term.

The interactions between these components are subtle, and the main difficulty
is that the elaborator has to deal with them all at the same time. A definition
or proof may give rise to thousands of constraints requiring a mixture of higher-
order unification, disambiguation of overloaded symbols, insertion of coercions,
type class inference, and computational reduction. To solve these, the elaborator
uses nonchronological backtracking and a carefully tuned algorithm [7].

Recursive equations. Lean provides natural ways of defining recursive functions,
performing pattern matching, and writing inductive proofs. Behind the scenes,
these are “compiled” down into eliminators and auxiliary definitions automati-
cally generated by Lean whenever we declare an inductive family. This compiler
is based on ideas from [13,9,21,4]. The default compilation method supports
structural recursion, i.e. recursive applications where one of the arguments is a
subterm of the corresponding term on the left-hand-side. Lean can also compile
recursive equations using well-founded recursion. The main advantage of the
default compilation method is that the recursive equations hold definitionally.

The compiler also supports dependent pattern matching for indexed inductive
families. For example, we can define the type vector A n of vectors of type A
and length n as follows:

inductive vector (A : Type) : nat → Type :=
nil {} : vector A zero,
cons : Π {n : nat}, A → vector A n → vector A (succ n)
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We can then define a function map that applies a binary function f to elements
of vectors of type A and B, to produce a vector of elements of type C:

definition map {A B C : Type} (f : A → B → C) :
Π {n : nat}, vector A n → vector B n → vector C n,

map nil nil := nil,
map (a::va) (b::vb) := f a b :: map va vb

Note that we can omit “unreachable” cases such as map nil (a :: va) because
the input vectors have the same length. Behind the scenes, a lot of boilerplate
code is needed to reduce these definitions to eliminators for the inductive family.

Type classes. Any family of inductive types can be marked as a type class. Then
we can declare particular elements of a type class to be instances. These provide
hints to the elaborator: any time the elaborator is looking for an element of a
type class, it can consult a table of declared instances to find a suitable element.
What makes type class inference powerful is that one can chain instances, that is,
an instance declaration can in turn depend on other instances. This causes class
inference to chain through instances recursively, backtracking when necessary.
The Lean type class resolution procedure can be viewed as a simple λ-Prolog
interpreter [15], where the Horn clauses are the user declared instances.

For example, the standard library defines a type class inhabited to enable
type class inference to infer a “default” or “arbitrary” element of types that
contain at least one element.

inductive inhabited [class] (A : Type) : Type :=
mk : A → inhabited A

Element of the class inhabited A are of the form inhabited.mk a, for some
element a : A. The following function extracts the corresponding element:

definition default (A : Type) [H : inhabited A] : A :=
inhabited.rec (λa, a) H

The annotation [H : inhabited A] indicates that H should be synthesized from
instance declarations using type class resolution. We can then declare suitable
instances for types like nat and Prop. The following declaration shows that if
two types A and B are inhabited, then so is their product:

definition prod.is_inhabited [instance] {A B : Type}
(H1 : inhabited A) (H2 : inhabited B) : inhabited (A × B) :=

inhabited.mk (default A, default B)

Declarative Proofs. Lean provides a rich notation declaration system [2], and it
is used to support human readable proofs similar to the ones found in Mizar and
Isabelle/Isar. For example, the have construct introduces an auxiliary subgoal in
a longer proof. Internally, the notation have H : p, from s, t produces the
term (λ(H : p), t) s. Similarly, show p, from t does nothing more than
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annotate t with its expected type p. Lean also provides alternative Mizar/Isar-
inspired syntax for lambda abstractions: assume H : p, t and take x : A, t.
Calculational proofs, which begin with the keyword calc, are a convenient no-
tation for chaining intermediate results that are meant to be composed by basic
principles such as the transitivity of equality. The set of binary relation predi-
cates supported in calculational proofs can be freely extended by users. In the
following example, we demonstrate some of these features:

theorem dvd_of_dvd_add_left {m n1 n2 : nat} :
m | n1 + n2 → m | n1 → m | n2 :=

by_cases_zero_pos m
(assume (H1 : 0 | n1 + n2) (H2 : 0 | n1),
have H3 : n1 + n2 = 0, from eq_zero_of_zero_dvd H1,
have H4 : n1 = 0, from eq_zero_of_zero_dvd H2,
have H5 : n2 = 0, from calc

n2 = 0 + n2 : zero_add
... = n1 + n2 : H4
... = 0 : H3,

show 0 | n2, from subst H5 (dvd.refl n2))
... -- branch omitted due to space limitations

Namespaces. Lean provides the ability to group definitions, as well as meta-
objects such as notation declarations, coercions, rewrite rules and type classes,
into nested, hierarchical namespaces. The open command brings the shorter
names and all meta-objects into the current context.

The tactic framework. Tactics provide an alternative approach to constructing
terms. We can view a term as a representation of a construction or mathematical
proof; tactics are commands, or instructions, that describe how to build such a
term. Most automation available in Lean is integrated into the system as tactics.
For example, Lean contains a rewrite tactic that provides a basic mechanism
for performing rewriting. The tactic framework provides a general mechanism for
synthesizing metavariables. In this framework, we say a metavariable is a goal.
A proof state contains a sequence of goals; postponed unification constraints;
and a substitution which stores already assigned metavariables. A tactic is a
function that maps a proof state into a stream of proof states, implemented as a
lazy list [16]. This is important because some tactics may produce a unbounded
stream of proof states. Lean provides all usual combinators (also known as tac-
ticals) available in other interactive theorem provers, such as andthen, orelse,
and try. Lean also provides the tacticals par (for executing tactics concurrently
in multiple cores), and tryfor T n that fails if tactic T does not terminate in n
milliseconds. Lean also comes equipped with basic tactics such as apply, intro,
generalize, rewrite, etc. The complete list of tactics is described in [2]. Wher-
ever a term is expected, Lean allows us to insert instead a begin . . . end block,
composed of a sequence of tactics separated by commas.
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Here is a small example using tactics:
theorem test (p q : Prop) (Hp : p) (Hq : q) : p ∧ q ∧ p :=
begin

apply and.intro, exact Hp, apply and.intro,
exact Hq, exact Hp

end

4 The User Interface
Lean’s standard integrated development environment (IDE) [11] is based on
the Emacs editor, and provides continuous elaboration and checking. In the
background, the source text is continuously analyzed and annotated with se-
mantic information as it is being edited by the user. The interaction between
editor and prover is performed by an asynchronous protocol which exploits par-
allelism, multi-core hardware, and incremental compilation. The native inter-
face provides all standard features found in advanced IDEs, such as hyperlinks,
auto-completion, syntax highlighting, error highlighting, etc. Users can view au-
tomatically synthesized terms, implicit coercions, and overloading resolution. If
a user makes changes to a file higher in the dependency chain, everything is
recompiled in the background, and with caching the changes are propagated
almost immediately.

The Javascript bindings for Lean do not contain any native code, and can be
used in any modern web browser. They are intended for web applications such as
web IDEs4, “live” tutorial/documentation5 and online exercises. We have used
this infrastructure to develop course material for an interactive theorem proving
course6 being offered in the spring of 2015 at CMU.

5 Conclusion
Lean has been designed with the goal of obtaining a theorem proving system
which has all of the following features: an expressive logical foundation for writ-
ing mathematical specifications and proofs; an interactive and supportive user
interface and environment; a flexible framework for supporting automation; and
a rich API that can be used to embed this functionality into other systems. Lean
already provides a novel elaboration procedure that can handle higher-order uni-
fication, definitional reductions, coercions, overloading, and type classes, in an
integrated way. It has a relatively small trusted kernel, making the task of im-
plementing a reference/independent type checker for Lean much simpler. It is
also quite fast, with support for multi-core machines and coarse and fine grain
parallelism. Lean is an ongoing and long-term effort, and future plans include
extensive search procedures, decision procedures, better support for homotopy
type theory, and an independent type checker.
4 http://leanprover.github.io/live
5 http://leanprover.github.io/tutorial
6 http://www.cs.cmu.edu/~emc/15815-s15
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