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Translator’s introduction

By the middle of the nineteenth century, it had become clear to mathe-
maticians that the study of finite field extensions of the rational numbers is
indispensable to number theory, even if one’s ultimate goal is to understand
properties of diophantine expressions and equations in the ordinary integers.
It can happen, however, that the “integers” in such extensions fail to satisfy
unique factorization, a property that is central to reasoning about the or-
dinary integers. In 1844, Ernst Kummer observed that unique factorization
fails for the cyclotomic integers with exponent 23, i.e. the ring Z[ζ] of inte-
gers of the field Q(ζ), where ζ is a primitive twenty-third root of unity. In
1847, he published his theory of “ideal divisors” for cyclotomic integers with
prime exponent. This was to remedy the situation by introducing, for each
such ring of integers, an enlarged domain of divisors, and showing that each
integer factors uniquely as a product of these. He did not actually construct
these integers, but, rather, showed how one could characterize their behav-
ior qua divisibility in terms of ordinary operations on the associated ring of
integers.

Richard Dedekind and Leopold Kronecker later took up the task of ex-
tending the theory to the integers in arbitrary finite extensions of the ratio-
nals. Despite their common influences and goals, however, the theories they

∗Work on this translation has been supported by a New Directions fellowship from the
Andrew W. Mellon Foundation. As of March 2005, I have made a few minor corrections;
the most notable occurs in footnote 19.
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developed are strikingly different. Whereas Kronecker’s is explicitly com-
putational throughout, Dedekind’s stated goal was to avoid computational
reasoning:

Even if there were such a theory, based on calculation, it still
would not be of the highest degree of perfection, in my opinion.
It is preferable, as in the modern theory of functions, to seek
proofs based immediately on fundamental characteristics, rather
than on calculation, and indeed to construct the theory in such
a way that it is able to predict the results of calculation. . . 1

Dedekind, in fact, published four versions of his theory of ideals. Three
appeared in his “supplements,” or appendices, to the second, third, and
fourth editions of Dedekind’s transcription of Dirichlet’s Vorlesungen über
Zahlentheorie, or Lectures on Number Theory [8]. These editions appeared
in 1871, 1879, and 1894, respectively. The remaining version was written
at the request of Lipschitz, translated into French, and published in the
Bulletin des Sciences Mathématiques et Astronomiques in 1876-1877. It was
also published as an independent monograph in 1877, and is, in essence, an
expanded presentation of the version he published in 1879.

Whereas Dedekind’s first version remained fairly close to Kummer’s com-
putational style of presentation, the later versions became increasingly ab-
stract and algebraic. As a result, the development is an early and salient
example of a transition to types of reasoning (set-theoretic, algebraic, struc-
tural, infinitary, nonconstructive, and so on) that are characteristic of modern
mathematical thought. Thus, it is not surprising that Harold Edwards, who
laments mathematics’ departure from the explicitly computational styles of
Gauss, Kummer, and Kronecker, judges Dedekind’s first version of ideal the-
ory to be his best [10, 12]. In contrast, Emmy Noether, who inherited the
mantle of structuralism from Dedekind through Hilbert, expressed a clear
preference for the last. Tracing the development of Dedekind’s thinking can
therefore help us gain a better understanding of how it is that modern math-
ematics, for better or for worse, has come to be the way it is.

Of the four versions of ideal theory, the long, second version of 1877 has
been translated by John Stillwell [7], with a helpful introduction. What
appears below is a translation of the first, 1871 version. This comprises

1Dedekind [4, §12], quoted by Stein [18, page 245].

2



§§159–163 from Supplement X, “On the composition of binary quadratic
forms,” from the second edition of the Dedekind-Dirichlet Lectures.2

A good deal has been written about Dedekind’s work, from mathematical
and historical perspectives.3 Edwards’ detailed survey [10] provides an ex-
cellent overview of the development of the theory of ideals from Kummer to
Dedekind and Kronecker, and Stillwell’s introductory notes to [7, 9] provide
additional background.4 Since these provide excellent historical and math-
ematical context for appreciating the material below, I will add only a few
introductory remarks here.

From a methodological point of view, perhaps the most striking differ-
ence between Dedekind’s theory and Kummer’s is Dedekind’s use of the set-
theoretic notion of an ideal. Recall that Kummer reasoned about his ideal
divisors only indirectly, in terms of explicitly given predicates that express
what it means for an algebraic integer x of the field in question to be divisi-
ble by the ideal divisor α. In contrast, Dedekind chose to identify the ideal
divisor α with the set, or “system,” of all the integers x that it divides. It is
clear that this set is closed under addition, and under multiplication by any
integer. Thus, Dedekind, in fact, introduced the modern algebraic definition
of an ideal, and ultimately showed that every such ideal arises from an ideal
divisor in Kummer’s sense.

Dedekind went out of his way to explain why this tack is to be preferred.
At the end of §162 below, he notes that although Kummer’s approach is
perfectly rigorous, the fact that the indirect references to ideal divisors are
not references to actual objects may cast doubt on the validity of proofs.
In the introduction to the 1877 version, he is more emphatic in claiming
that the approach can lead to “hasty conclusions and incomplete proofs.”

2The German title of the supplement is Über die Komposition der binären quadratischen
Formen. Sections §§159–163 are found on pages 423–462 of the original version, and on
pages 223–261 of both [6] and [5]. Note that Dedekind’s entire Werke is available online
at [20]; a PDF version of the van der Waerden reprinting of this version of ideal theory is
available on my web page, http://www.andrew.cmu.edu/∼avigad.

The preceding sections in Supplement X develop a Gaussian theory of binary quadratic
forms, accounting for the title. The sections after the ones translated develop the theory
further, treating ideal classes, more general results for orders and modules, and applications
of the theory to the study of quadratic forms. More on these topics can be found in [7, 9]
and Stillwell’s introductory notes to these.

3See, for example, [2, 15] and the references there, or the online bibliography at [21].
4See also Edwards’ discussion of Kummer’s work in [13], and a modern presentation of

Kronecker’s theory in [11].
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Replacing talk of predicates by talk of sets may seem to be nothing more
than linguistic convenience, but this move has important methodological
consequences: treating sets (or predicates) as “objects” in their own right
allows one to define operations on them in a manner that is independent of
the way in which they are represented.

Thus, for example, in §161, Dedekind defines the least common multiple
of two modules to be their intersection, without worrying about how a finite
set of generators for this intersection can be computed from finite sets of
generators for the initial modules. We find a similar use of nonconstructivity
in §162, where Dedekind characterizes integral bases as those bases of inte-
gers whose discriminants have the least absolute value; he does this without
giving an algorithm for finding such a basis or determining this least discrim-
inant. In fact, in both examples just cited, algorithms can be obtained. But
Dedekind’s presentation sends the strong message that such algorithms are
not necessary, i.e. that one can have a fully satisfactory theory that fails to
provide them. This paves the way to more dramatic uses of nonconstructive
reasoning, in which one uses facts about infinitary functions, sets, and se-
quences that are false on an algorithmic interpretation. Such reasoning was
used, for example, by Hilbert, in proving his Basissatz in 1890.

There are at least two significant differences between the 1871 and 1877
versions of Dedekind’s ideal theory.5 The first has to do with the use of
“simple ideals” in 1871. In §163, Dedekind defines a simple ideal to be a prime
ideal that can be represented as the set of all solutions π to a congruence
νπ ≡ 0 (mod µ). As was the case with Kummer’s theory, this means that
there is an effective test for divisibility by these ideal prime divisors: an
algebraic integer π is divisible by the ideal divisor corresponding to µ and
ν if and only if it satisfies the associated congruence. This can be extended
to provide a test for divisibility by powers of these ideal divisors, cast in
§163 as a definition of the powers of the simple ideals. Dedekind shows that
the notion of divisibility by powers of the simple ideals has the requisite
properties; in particular, every element of the ring of integers is determined
(up to associates) by the powers of the simple ideals that divide it. This
implies that every prime ideal is a simple ideal, and that, in turn, implies
that every ideal (other than {0}) can be represented by an appropriate µ and
ν. Thus, every ideal in the new sense arises as the set of integers divisible by

5In comparing the two theories, I have benefited a good deal from discussions with
Steven Douglas White, who will expand on this analysis in an upcoming MS thesis.
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one of Kummer’s ideal divisors. This is what Dedekind has in mind when he
writes, in the 1877 introduction:

A fact of highest importance, which I was able to prove rigorously
only after numerous vain attempts, and after surmounting the
greatest difficulties, is that, conversely, each system enjoying [the
new definition of an ideal] is also an ideal [in Kummer’s sense].
That is, it is the set a of all numbers α of the domain o divisible by
a particular number; either an actual number or an ideal number
indispensable for the completion of the theory.

Relying on simple ideals, however, runs counter to Dedekind’s goal of
avoiding reasoning that is based on particular representations of ideals rather
than their “fundamental characteristics.” By 1877, he has therefore dropped
the term. That is not to say that he has avoided the use of such representa-
tions in his arguments: the ν and π above become κ and λ in a key argument
in §25, but they are deprived of the honored status that is accorded by a def-
inition, and the associated calculations are relegated to a pair of “auxiliary
propositions” in the preceding section.

Dedekind’s exposition and the mathematical context make it clear why
the calculations have been moved. Contemporary algebraic treatments of
the theory of ideals tend to identify the most general classes of structures
for which the various results of the theory hold; Dedekind’s 1877 treatment
is remarkably modern in this respect. Chapter 1 of that version, as well as
§161 below, develop general theorems that are true of arbitrary modules.6

In the 1877 version, he then, very self-consciously, develops the portion of
the theory of ideals that only presupposes that one is dealing with a ring of
integers whose rank as a module coincides with the degree of the extension.
Following Dedekind, these structures are still called orders today. With a
specific counterexample, Dedekind notes that not every order has a theory of

6In both presentations, Dedekind defines a module to be a system of complex numbers
that is closed under sums and differences. But at the end of [4, Chapter 1], he notes
that the “researches in this first chapter . . . do not cease to be true when the Greek
letters denote not only numbers, but any objects of study, any two of which α, β produce
a determinate third element γ = α + β of the same type, under a commutative and
uniformly invertible operation (composition), taking the place of addition. The module
a becomes a group of elements. . . .” In other words, Dedekind observes that the results
hold for any (torsion-free) abelian group, viewed (in modern terms) as a free module over
Z. Today we recognize that, in fact, they hold more generally for free modules over a
principal ideal domain.
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ideal divisors (see the discussion below and at the end of [10, Section 5]), and
then identifies the auxiliary propositions as being precisely the point at which
one needs to assume that the ring in question is integrally closed, that is,
consists of all the integers of the ambient number field. These propositions
are clearly necessary for the ring to have a theory of ideal divisors; the
subsequent development in 1877 shows that they are also sufficient. By
meticulously identifying the algebraic-axiomatic assumptions that are in play
at each stage of the development, Dedekind is clearly anticipating twentieth-
century structuralist thought.

The observations just described are also present in the 1871 version (see,
for example, footnote 31); the 1877 version simply makes them more promi-
nent. It is easy to sympathize with Edwards, who feels that the result-
ing reorganization makes the proof of unique factorization seem ad-hoc and
unmotivated. But in localizing and minimizing the role of representations
and calculations, and making them secondary to structural systematization,
Dedekind is exhibiting tendencies that have become hallmarks of modern
mathematics. In the 1871 version, after showing that every prime ideal is
simple, he remarks, in passing, that “we will therefore speak only of prime
ideals in the future, and no longer of simple ideals.” In light of the method-
ological overtones, this remark takes on greater significance than Dedekind
intended.

Another important difference between the 1871 and 1877 versions is the
treatment of multiplication of ideals. In 1871, unique factorization is ex-
pressed by the fundamental theorem that every ideal is the least common
multiple of all the powers of prime ideals that divide it, where the least
common multiple of any finite set ideals is defined to be their intersection.
Multiplication of ideals plays no role in the proof, and is, in fact, defined only
afterwards. In contrast, in 1877, multiplication of ideals is defined much ear-
lier, and plays a central role in the presentation of the theory.

Why the change? Dedekind’s frequent methodological comments show
that he is acutely aware of the role that definitions play in structuring a
theory. One finds him concerned with such issues of systematization as early
as 1854, in his Habilitationsrede [3]. There, he characterizes a process of
extending operations like addition and multiplication to extended domains,
whereby one identifies the laws they satisfy in a restricted domain, and stip-
ulates that these laws are to maintain their general validity (see also the
discussion in [17]). Now, it is natural to express the goal of the theory of
ideal divisors as being that of constructing a semigroup satisfying unique
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factorization, together with a suitable embedding of the integers of the field
in question (up to associates). This is, for example, the characterization
used in Weyl’s Princeton lectures on algebraic number theory from 1938–39
[19], as well as in more recent presentations, like Borevich and Shafarevich’s
textbook [1]. On this view, the goal is to define the collection of ideals with
an associated multiplication, and to show that the resulting structure meets
the specification. From that perspective, multiplication is naturally prior.

One might object that one can equally well characterize the goal of a
theory of divisors taking the notions of divisibility and “prime power” as
primitive. Kummer himself stated the requisite properties of the theory in
such a way (see [10, Section 3]), and Dedekind’s 1871 version shows, directly,
these these requirements are satisfied by the system of ideals. But this way
of proceeding runs against another one of Dedekind’s methodological dicta,
namely, that definitions and methods of proof used in an extended domain
should parallel the definitions and methods of proof that have been effective
in more restricted domains. In the presentation of ideal theory, he is care-
ful to point out where definitions, basic characteristics, theorems, and proofs
with respect to algebraic integers and ideals agree with their counterparts for
the ordinary integers, and he seems to enjoy citing parallel developments in
the Lectures wherever he can. This insistence on preservation of properties
as one passes from a restricted domain to a more general one accords well
with the guidelines he set in his 1854 lecture. The methodological benefits
are clear, since it is often easy and efficient to reuse, adapt, and extend famil-
iar modes of reasoning. In textbook presentations of the ordinary integers,
multiplication is almost always considered to be a basic operation, whereas
exponentiation, divisibility, and primality are defined from that. Dedekind
would likely have felt that the domain of ideals should be treated along sim-
ilar lines, insofar as possible.

Unfortunately, the theory of ideals diverges from the theory of integers
almost immediately. It would be natural to say that an ideal a divides an
ideal b if there is an ideal c such that ac = b. But, instead, Dedekind
adapts Kummer’s notion of divisibility, whereby “a divides c” means that a

includes c, i.e. a ⊇ c. In Kummer’s language of ideal divisors, this amounts to
saying that every integer divisible by c is divisible by a. The fact that there
are two natural notions of divisibility at hand is confusing, but the good
news is that, in the end, the two notions coincide. According to Dedekind’s
introduction to the 1877 version, this is something we come to see “only
after we have vanquished the deep difficulties characteristic of the nature
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of the subject.” Indeed, establishing the equivalence is almost tantamount
to establishing unique factorization itself. To see this, note that unique
factorization for the integers follows from the fact that the notions of “prime”
and “irreducible” coincide. Passing to the theory of ideals, it is easy to
show that every prime ideal is irreducible, and, further, that every prime
ideal is prime with respect to the Dedekind-Kummer notion of divisibility.
Demonstrating that the two notions of divisibility coincide therefore shows
that there is sufficient agreement with the theory of the integers to ensure
that unique factorization holds for ideals as well.

To sum up, making multiplication central to the development provides a
way of characterizing the goals of the theory of ideal divisors in a way that
highlights parallels with the theory of the integers, and helps make it clear
how one can attain these goals by resolving the apparent differences between
the two.

Let me close by commenting on the part of the text below that is likely to
cause the most difficulties for a contemporary audience, namely, Dedekind’s
analytic treatment of quadratic forms in §159. Given a choice of basis
ω1, ω2, . . . , ωn for a field Ω, viewed as a vector space over Q, one can specify
the multiplicative structure of the field by specifying each product of basis
elements in terms of that basis. In other words, it suffices to write each
product ωjωk as a sum

ωjωk =
∑

i

ai,j,kωi,

where each ai,j,k is a rational number. Not every choice of elements ai,j,k arises
in such a way, however. To get a handle on the ways they are constrained,
Dedekind defines, for each i, the quadratic form

Hi =
1

2

∑

j,k

ai,j,kωjωk,

where now ωj and ωk are viewed as variables. He then takes the surprising
step of treating the Hi as functions on the real numbers, and proceeds to
use various differential operators and Jacobian functional determinants to
derive what are, implicitly, identities in the coefficients ai,j,k. In other words,
Dedekind uses analytic techniques as a device for encoding and studying
arithmetic properties of the number field. This may strike the modern reader
as bizarre, but in doing so, Dedekind shows the influence of Jacobi, for whom
arithmetic determinants and functional determinants were flip-sides of the
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same coin.7 In any event, the reader may well wish to skip §159, and begin
with §160. The definition of the algebraic integers found there, and the
subsequent development of the theory, will be more reassuringly familiar.

My German reading ability is limited, so treat this translation with cau-
tion. I am grateful to Wilfried Sieg and Dirk Schlimm for help with the trans-
lation, and for comments on and corrections to these introductory notes. I
am also grateful to Steve Douglas White for helpful discussions and numerous
corrections.

All the footnotes below, except for the ones with text in square brackets,
are from the original. Note, however, that the original footnotes were not
numbered.
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Studies. Birkhäuser Verlag, Basel, 1999.

10



[16] Eberhard Knobloch. From Gauss to Weierstrass: determinant theory
and its historical evaluations. In The intersection of history and mathe-
matics, volume 15 of Sci. Networks Hist. Stud., pages 51–66. Birkhäuser,
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X. On the composition of binary
quadratic forms

§159.

The theory of binary quadratic forms, and the equivalence and composi-
tion thereof, constitutes only a special case of the theory of those nth-degree
homogeneous forms in n variables that can be decomposed into linear factors
with algebraic coefficients. These forms were first considered by Lagrange.8

Later, Dirichlet9 was often preoccupied with this subject, but of his general
investigations he only published those that deal with the transformation of
such forms into themselves (cf. §§61, 62) or, in other words, with the the-
ory of units for the corresponding algebraic numbers. Finally, Kummer,10

through the introduction [Schöpfung] of ideal numbers, introduced a new
method which not only allows for a more convenient manner of expression,
but also leads to a deeper insight into the true nature of algebraic numbers.
In striving to introduce the reader to these new ideas, we will establish for
ourselves a somewhat higher standpoint, and, from there, begin to intro-
duce concepts that seem to be well-suited to serve as a foundation for higher
algebra and related parts of number theory.

I. By a field [Körper] we mean an infinite system [System] of real or
complex numbers, which is closed and complete in itself, so that the addition,
subtraction, multiplication, and division of any two of these numbers always
yields yet another number of the same system. The simplest field consists of
all the rationals, and the largest field consists of all numbers. We call a field
A a divisor of field M , and the latter a multiple of the former, when all the
numbers in A are also found in M . One easily sees that the field of rational
numbers is a divisor of every other field. The totality [Inbegriff] of numbers
which are in two fields A and B at the same time form yet another field
D, which can be called the greatest [größte] common divisor of the pair of

8Sur la solution des problèmes indéterminés du second degré. §VI. Mém. de l’Ac. de
Berlin. T. XXIII, 1769. (Oeuvres de L. T. II, 1868, p. 375) — Additions aux Éléments
d’Algèbre par L. Euler. §IX.

9Cf. the notes to §141.
10Cf. the notes to §16.
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fields A,B, and clearly each divisor of both A and B is necessarily a divisor
of D. Likewise there is always a field M which should be called the least
[kleinste] common multiple of A and B, since it is a divisor of every other
common multiple of both fields. If furthermore there corresponds to each
number a in the field A a number b = ϕ(a), in such a way that ϕ(a + a′) =
ϕ(a) + ϕ(a′) and ϕ(aa′) = ϕ(a)ϕ(a′), then the numbers b (assuming they do
not all vanish) form a field B, which is conjugate to A, and arises from A
from the substitution ϕ; and conversely B = ψ(A) is conjugate to B. Two
fields that are conjugate to a third are also conjugate to one another, and
every field is conjugate to itself. Numbers in two conjugate fields A and B
that correspond as a and b = ϕ(a) are called conjugate numbers.

The simplest fields are those that have only a finite number of divisors.
Call m given numbers α1, α2, . . . , αm dependent on one another or indepen-
dent, depending on whether or not the equation x1α1 + x2α2 + · · ·+ xmαm is
solvable by rational numbers x1, x2, . . . , xm that do not all vanish. Via very
simple considerations that we will not go into here, one finds that in a field
Ω of the indicated type,11 it is possible to choose a finite number [Anzahl] n
of independent numbers ω1, ω2, . . . , ωn, so that every number ω of the field
can be represented in the form

ω = h1ω1 + h2ω2 + · · ·+ hnωn =
∑

hiωi (1)

in a unique way, where h1, h2, . . . , hn denote rational numbers. We call the
number n the degree, the system of n independent numbers ωi a basis of
the field Ω, and the n numbers hi the coordinates of the number ω corre-
sponding to this basis. Clearly any n numbers of the form (1) form such a
basis when the determinant from the corresponding n2 coefficients is nonzero.
Such a transformation of the basis by linear substitutions corresponds to a
transformation of the coordinates via the so-called transposed substitution.

The requirement that the numbers ω of the field Ω are closed [sich re-
produzieren] under addition and subtraction is already guaranteed by the
common form (1). For closure under multiplication it is further necessary
and sufficient that each product ωiωi′ can again be expressed in the form (1).
These conditions, of which there are 1

2
n(n+1), can be combined most simply

11If one replaces the rational numbers everywhere by numbers of a field R, then the
following observations also hold for a field Ω which has only a finite number of divisors
that are also multiples of R.
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by viewing the coordinates hi as variables and writing

ω2 = 2
∑

Hiωi, (2)

where now H1, H2, . . . , Hn are certain homogeneous quadratic functions of
the coordinates, with rational coefficients. The constitution of the field Ω is
entirely determined by these n functions Hi, whose analytic properties we
will come back to. First, it is possible to show that the numbers of the form
(1) are also closed under division. By total differentiation of (2) one has

ωdω =
∑

dHiωi. (3)

If one assigns arbitrary rational values to the coordinates and their deriva-
tives, then by the previous equality the product of any two numbers ω and
dω of the field Ω are reduced to the form (1). In particular, from (3) one has

ωωr =
∑ ∂Hi

∂hr

ωi. (4)

If one now assigns any rational values that do not all vanish to the coordinates
hi, the corresponding value of the functional determinant

H =
∑

±∂H1

∂h1

∂H2

∂h2

. . .
∂Hn

∂hn

(5)

does not vanish either. For, otherwise, as is well-known, there would be n
rational numbers dhi that do not all vanish, such that for each index r

dHr =
∑ ∂Hr

∂hi

dhi = 0.

But then it would also follow that ωdω = 0, whereas in fact neither ω nor dω
vanishes. From this it also follows, reversing the n equations (4), that the n
quotients ωi/ω are again numbers of the form (1).12 The same holds for any
quotients α/ω, where α is any number of the form (1). Thus all the numbers
of the form (1) really form a field.

Eliminating the n numbers ωi from the n equations (4), we have the
equality ∣∣∣∣∣∣∣∣

∂H1

∂h1
− ω ∂H2

∂h1
· · · ∂Hn

∂h1
∂H1

∂h2

∂H2

∂h2
− ω · · · ∂Hn

∂h2· · · · · · · · · · · ·
∂H1

∂hn

∂H2

∂hn
· · · ∂Hn

∂hn
− ω

∣∣∣∣∣∣∣∣
= 0. (6)

12[Here and in the text below, I will use the notation a/b instead of Dedekind’s a : b.]
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Hence each number ω in the field Ω is the root of an equation of degree n
with rational coefficients (which is independent of the choice of basis), and
so an algebraic number. It can easily be shown that in the field Ω there also
exist numbers that do not satisfy any equation with rational coefficients of
degree less than n, for which the previous equation is irreducible.13 Let θ be
any such number, so that clearly the powers 1, θ, θ2, . . . , θn−1 likewise form a
basis of the field Ω, and Ω is the system of all numbers which can be obtained
from θ by any iteration of the four basic arithmetic operations. If one now

13The proof of this assertion can be based, for example, on the following lemma:
If a homogeneous linear function ω =

∑
hiωi in n variables hi satisfies an identity of

the form
Aωm + A1ω

m−1 + . . . + Am = 0, (1)

where A,A1, . . . , Am are whole functions in the variables hi with rational coefficients, that
do not vanish identically, and if the degree m is smaller than the number of variables n,
then the n quantities ωi are dependent on one another.

By total differentiation of the identity (1) we then have

Mdω + ωmdA + ωm−1dA1 + . . . + dAm−1 = 0 (2)

where for short we set

M = mAωm−1 + (m− 1)A1ω
m−2 + . . . + Am−1.

One can now clearly assume that there is no identity of the form (1) of degree less than m,
so that the product AM does not identically vanish. Now it is always possible to assign
rational values to the variables hi so that AM takes on a nonzero value. Then because
m < n one can assign to the n differentials dhi rational values that do not all vanish and
satisfy the m homogeneous linear equations

AdA1 = A1dA, AdA2 = A2dA, . . . , AdAm = AmdA.

One now multiplies (1) by dA, (2) by A, and subtracts, and AMdω = 0 follows, as well
as dω =

∑
dhiωi = 0, as was to be proved.

It follows next that if the values ωi and ω are given their old interpretation, the coor-
dinates of the n values 1, ω, ω2, . . . , ωn−1 form a determinant D, which is a homogeneous
function of the variables hi of degree 1

2n(n− 1). This cannot vanish, because otherwise ω
would satisfy an identity of the form (1) of degree lower than n, and then the values ωi

would be dependent on one another. If one now assigns the coordinates hi rational values
for which D takes a nonzero value, then it follows directly that the corresponding number
ω of the field Ω is an irreducible equation of degree n.

Every solution to the equation D = 0 in rational numbers hi corresponds to a number
ω which belongs to a divisor of the field Ω of degree less than n. The degree of any such
divisor is always a divisor of n.
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substitutes for θ the sequence of all roots of the same irreducible equation,
just as many corresponding equations arise, which are clearly conjugate to
Ω and to one another. It is easy to show that no fields other than these
are conjugate to Ω. To prevent any misunderstandings, however, we hereby
remark that some or even all of these n fields, and the totalities of numbers
that are contained therein, may well be the same, although they arise from
n different substitutions from one another.14

Since, now, by virtue of the notion of conjugate fields, equation (4) re-
mains valid if the numbers of the field Ω are replaced by the corresponding
numbers of a conjugate field, it easily follows that all the roots of equation
(6) are conjugate to ω. One thus uses N(ω) to denote the so-called norm of
the number ω, i.e. the product of all n conjugate roots, which can be equal
to each other in groups. Then as a consequence of (6) we have

N(ω) = H, (7)

i.e. the homogeneous function H is the product of n conjugate factors of
degree one with algebraic coefficients. From this definition we immediately
have the following theorem: the norm of a product is always equal to the
product of the norms of the factors. If, further, we write

N(ω) = ωω′ (8)

then ω′ is also a number of the field Ω, since N(ω) is a rational number
contained in Ω, a fact which also follows from (6). In particular we have

N(ω′) = N(ω)n−1; (9)

we call ω′ the number adjunct [adjungierte] to ω.15 So the number adjunct
to ω′ is = ωN(ω)n−2.

If α1, α2, . . . , αn are arbitrary numbers of the field Ω, and βi, γi, . . . , λi

denote the remaining (n − 1) numbers conjugate to αi, then we write for
short

(
∑

±α1β2 . . . λn)2 = ∆(α1, α2, . . . , αn) (10)

14By pursuing these topics further one arrives immediately at the principles introduced
to algebra by Galois (Sur les conditions de résoubilité des équations par radicaux ; Journ. de
Math., p. p. Liouville. T. XI. 1846). In this connection it is then appropriate to search
for the simple reciprocity laws which govern the greatest common divisors and the least
common multiple of any two fields like Ω.

15This expression was used in an entirely different sense by Galois.
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and we call this squared determinant the discriminant of the n numbers
α1, α2, . . . , αn. This is a symmetric function of the n numbers conjugate to
θ, and therefore a rational number. In particular,

∆(α1, α2, . . . , αn) = m2∆(ω1, ω2, . . . , ωn) (11)

where m is the determinant comprised of the coordinates of the numbers
α1, α2, . . . , αn. Since the discriminant ∆(1, θ, θ2, . . . , θn−1) is well-known to
be the product of all the differences between the numbers conjugate to θ, and
therefore nonzero (since an irreducible equation must have distinct roots),
∆(α1 . . . αn) is = 0 if and only if the numbers α1, α2, . . . , αn are independent
of one another. Finally, in general, we have

∆(ωα1, ωα2, . . . , ωαn) = N(ω)2∆(α1, α2, . . . , αn). (12)

II. All the concepts and theorems that we will need in the sequel have
been developed above. For elucidation, however, we further wish to disclose
here the important and subsequent results from the great riches of analytic
developments that consideration of the functions Hi touches upon. A fun-
damental relation holds of these n functions, which one obtains when one
forms products of three arbitrary numbers of the field Ω in all possible ways
(cf. §§1, 2). If d′ further denotes any variation, then, from (4), we have

d′ωωr =
∑

d′
(

∂Hi

∂hr

)
ωi.

If one now multiplies (3) by d′ω, and replaces the products d′ωωi accordingly
in the sum in the previous equation, we have

ωdωd′ω =
∑

dHid
′
(

∂Hi′

∂hi

)
ωi′ .

Since the left side is symmetric with respect to d and d′, and since the n
numbers ωi′ are independent, it follows that the functions Hi satisfy the n
differential equations

∑
dHid

′
(

∂Hr

∂hi

)
=

∑
d′Hid

(
∂Hr

∂hi

)
, (13)

where r is any of the indices 1, 2, . . . , n. To bring the significance of these
relations more to the fore, we shall ground the subsequent developments on
them, without using the relationship between Hi and the field Ω.
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First we would like to note that the functional determinant H, which, as
a consequence of its definition (5) is a whole homogeneous function of degree
n with rational coefficients, is reproduced under multiplication; if K and L
are formed from H in such a way that the coordinates hi are replaced by dhi

and dHi respectively, then
L = HK. (14)

For, if one replaces the coordinates hi by dhi, then each homogeneous linear
function16

∂Hr

∂hs

becomes d

(
∂Hr

∂hs

)
,

and therefore H becomes

K =
∑

±d

(
∂H1

∂h1

)
d

(
∂H2

∂h2

)
. . . d

(
∂Hn

∂hn

)
.

If, however, the coordinates hi are substituted in the bilinear functions dHi,
then from (13)

∂Hr

∂hs

becomes
∑ ∂

∂hs

(
∂Hr

∂hi

)
dHi =

∑ ∂Hi

∂hs

d

(
∂Hr

∂hi

)
,

and therefore H in L = HK, as was to be proved. This is the theorem on
the norm of a product that has already been introduced above.

If ϕ is an arbitrary function of the coordinates hi, and one defines the
variation δ in such a way that

δϕ =
∑ ∂ϕ

∂Hi

hi, and thus δHi = hi, (15)

then it follows from (13), if one replaces d′ by δ,

∑
dHiδ

(
∂Hr

∂hi

)
=

∑
hid

(
∂Hi

∂hi

)
= dHr,

since Hr is a homogeneous function of degree two. Hence

δ

(
∂Hr

∂hs

)
= 1 or = 0, (16)

16[The next term is incorrectly given as ∂Hr

∂hs
in Dedekind’s Werke.]
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depending on whether r and s are equal or not. From this it follows that the
n variations δhi are constant rational numbers. If further the variation δ′ is
defined by

δ′ϕ = H
∑ ∂ϕ

∂Hi

δhi, and thus δ′Hi = Hδhi, (17)

it follows, if one substitutes d′ by δ′ in (13), that

∑
dHiδ

′
(

∂Hr

∂hi

)
= H

∑
δhid

(
∂Hr

∂hi

)
= Hd

∑
∂Hr

∂hi
δhi

= HdδHr = Hdhr,

and therefore

δ′
(

∂Hr

∂hs

)
= H

∂hr

∂Hs

. (18)

Now, the expression on the right side is the coefficient of the element

∂Hs

∂hr

in the determinant H, and is therefore a whole homogeneous function of
degree (n − 1) in the coordinates hi with rational coefficients. So the same
holds of the quantities

h′r = δ′hr = H
∑ ∂hr

∂Hi

δhi, (19)

and conversely it follows from (18) that the coefficients of each and every one
of the n2 elements in the determinant H can be represented as a homogeneous
linear function of the n quantities h′i just defined. If ϕ is any function of the
coordinates hi, we will use ϕ′ to denote the same function of the quantities
h′i. Then equation (18) reads

∂H ′
r

∂h′s
= H

∂hr

∂Hs

, (20)

and from this

H ′ = Hn−1; H
∂h′s
∂H ′

r

=
∂Hs

∂hr

(21)

follows as well.
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Since H is a functional determinant, it is well-known17

d log H =
∑ ∂dHi

∂Hi

−
∑ ∂dhi

∂hi

.

Therefore, taking (13) into consideration, it follows that

∑ ∂ log H

∂hi

dHi =
∑ ∂

∂Hi′

(
∂Hi′

∂hi

)
dHi =

∑
d

(
∂Hi′

∂hi

)
∂Hi

∂Hi′
= d

∑ ∂Hi

∂hi

.

If one then introduces the homogeneous linear function

S =
∑ ∂Hi

∂hi

, (22)

then ∑ ∂ log H

∂hi

dHi = dS;
∂ log H

∂hr

=
∂S

∂Hr

. (23)

Then, taking (20) into consideration,

∂H

∂hr

= H
∑ ∂S

∂hi

∂hi

∂Hr

=
∑ ∂S

∂hi

∂H ′
i

∂h′r
.

If one then considers the second degree homogeneous linear function

T =
∑ ∂S

∂hi

Hi, (24)

one has
∂H

∂hr

=
∂T ′

∂h′r
; dH =

∑ ∂T ′

∂h′i
dhi. (25)

17Jacobi: De determinantibus functionalibus §9 (Crelles Journal XXII). The formula
above takes into the consideration the case that the differentials dhi are functions of the
variables hi. If one replaces d by δ′,

∑ ∂h′i
∂hi

= 0

follows immediately from (17) and (19).
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Hence the derivatives of the form H can also be represented as homogeneous
linear functions in the quantities h′ defined in (19); and, conversely, the latter
in terms of the former. A further consequence of (20) is

∑ ∂H ′
i

∂h′s

∂Hr

∂hi

= H or = 0,

depending on whether or not r and s are equal. Multiplying by h′s or dh′s
and summing with respect to s, we have

2
∑

H ′
i

∂Hr

∂hi

= Hh′r;
∑

dH ′
i

∂Hr

∂hi

= Hdh′r,

and hence, differentiating,

h′rdH −Hdh′r = 2
∑

H ′
id

(
∂Hr

∂hi

)
. (26)

With the help of (25) and (26) one is also capable of forming higher-order
differentials of H. In this way one finds

Hdd′H − dHd′H = 2H
∑ ∂H

∂hi

dd′hi − 2
∑ ∂2T

∂hi∂hi′
H ′

idd′Hi′ . (27)

From the equation (26), with the help of (13), one can also obtain

h′rdH −Hdh′r =
∑ ∂H ′

i

∂h′i′

∂H ′
r

∂h′i
dhi′ .

Then (26) also yields the functional determinant

∑
±∂h′1

∂h1

∂h′2
∂h2

· · · ∂h′n
∂hn

= (−1)n−1(n− 1)Hn−2 (28)

and therefore from (25) the Hessian determinant of the form H, namely

∑
±∂2H

∂h2
1

· · · ∂
2H

∂h2
n

= (−1)n−1(n− 1)Hn−2
∑

±∂2H

∂h2
1

· · · ∂
2T

∂h2
n

. (29)

Equations (16), (22), (24), (25), (26), (27) immediately yield the following
results concerning the variation δ:

δS = n; δT = S; h′rδH −Hδh′r = 2H ′
r;

δH = S ′; δ′H = δH2 −Hδ2H = 2T ′.
(30)
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III. All these theorems are deduced from the assumption that the system
of n whole homogeneous functions Hi of degree two satisfy condition (13),
and that its functional determinant does not identically vanish. If one further
introduces the assumption that the coefficients of these functions are rational
numbers, and that the form H is irreducible, i.e. cannot be decomposed into
factors of lower degree whose coefficients are also rational numbers, it can be
proved that, conversely, that there is an algebraic number field Ω of the type
considered above that belongs to this function system. For brevity we will
introduce a symbol [Charakteristik] ε, which has the following meaning: if ϕ
is any function of the coordinates hi, and one replaces the latter by hi−ωδhi,
where ω for the moment is an arbitrary function, then ϕ is transformed into
a new function, which will be denoted ε(ϕ). From this definition

dε(ϕ) = ε(dϕ)− ε(δϕ)dω (31)

follows at once, under the assumption that the differential dhi is constant.
Hence one can define the function ω as the root of an equation of degree n

ε(H) = 0, (32)

which, as a consequence of (16), agrees completely with equation (6). Thus
one can prove that ω is a whole (homogeneous) function of the first degree,
i.e. that dd′ω = 0, if the differentials dhi, d

′hi are taken to be constant. In
fact, by successive differentiation of identity (32) according to the rule given
by (31), one has

ε(δH)dω = ε(dH) (33)

and
ε(δH)3dd′ω = ε(R), (34)

where for brevity we set
{

δH2dd′H + δ2HdHd′H
−δHdHd′δH − δHd′HdδH

}
= R,

a homogeneous function of degree (3n− 4). That this function R is divisible
by H, or, in symbols, that R ≡ 0,18 is obtained in the following way.

18This applies generally to the expression

d′Hd′′′Hdd′′H + dHd′′Hd′d′′′H − d′′′HdHd′d′′H − d′Hd′′Hdd′′′H.
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From (30) it follows that

h′rδH = 2H ′
r + Hδh′r ≡ 2H ′

r,

and, further, that

h′rδ
2H = 2δH ′

r + Hδ2h′3 ≡ 2δH ′
r.

Hence, eliminating h′r,
δ2HH ′

r − δHδH ′
r ≡ 0.

Since now, as a consequence of (27), dHd′H−Hdd′H is a homogeneous linear
function of the n quantities H ′

i, it also follows that

δ2H(dHd′H −Hdd′H)− δHδ(dHd′H −Hdd′H) ≡ 0.

But the left side differs from R only in components that are divisible by
H. Hence R = PH, where P is a whole function, and therefore ε(R) =
ε(P )ε(H) = 0. Since, now, from the assumptions on H it is possible to prove
that ε(δH) does not identically vanish, from (34) the equation dd′ω = 0
follows, i.e. the root ω of the equality (32) is a whole function of degree one.
It goes without saying that it is homogeneous as well, since H, δH, . . . , δn−1H
and therefore also ω vanish concurrently with the coordinates hi. If one now
sets

δω

δhi

= ωi, ω =
∑

hiωi, (1)

then one obtains from (33) that

∑
δhiωi = δω = 1, (35)

and

ε

(
∂H

∂hi

)
= ε(δH)ωi. (36)

Since, as a further consequence of (23), we have

∑ ∂H

∂hi

dHi = HdS ≡ 0

and
ε(dHi) = dHi − ωdδHi = dHi − ωdhi,
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it follows that

0 = ε(H)dS =
∑

ε

(
δH

δhi

)
ε(dHi)

= ε(δH)
∑

ωi(dHi − ωdhi).

Hence
ωdω =

∑
dHiωi, (3)

and thus also
ω2 = 2

∑
Hiωi, (2)

whereby we have returned to our original assumptions. One can also prove
— though we will not go into it here — that from the assumptions on H the
independence of the n numbers ωi follows.

Finally, we add to these developments the following easily proved remarks.
The expanded form of the equality (32) or (6) is as follows:

0 = H − δH
ω

1
+ δ2H

ω2

1 · 2 − δ3H
ω3

1 · 2 · 3 + . . . . (37)

Furthermore, we have

H =
∏

ω = N(ω) (7)

where the product symbol
∏

includes all n roots ω. One finds as well (if one
substitutes δ′ for d in (3)) that

H = ωω′, (8)

where
ω′ = δ′ω −

∑
h′iωi (38)

is adjunct to ω, and

S =
∑

ω, 2T =
∑

ω2, (39)

where the summation symbol includes all n roots as well. The quadratic
form T is characteristic of the number of real roots; if one further forms the
Hessian determinant of the product H =

∏
ω, then, in combination with

(29), one obtains the discriminant

∆(ω1, ω2, . . . , ωn) =
∑

±∂2T

∂h2
1

· · · ∂
2T

∂h2
n

, (40)

which also follows immediately from (39).
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§160

The totality of all algebraic numbers also clearly constitutes a field.19

In approaching the subject at hand, we now define a number α to be an
algebraic integer [ganze algbraische Zahl] when it is the root of an equation
with rational integer coefficients. Here we remark once and for all that by
the coefficients of a function of degree m

F (x) = cxm + c1x
m−1 + c2x

m−2 + · · ·+ cm,

or of an equation F (x) = 0, we invariably mean the m quotients

−c1

c
, +

c2

c
, . . . , (−1)m cm

c
.

From this definition it follows first that a rational number is a rational integer
if and only if it is an integer in the usual sense of the word (cf.§5, 4.). From
now on we will call these rational integers, whereas we will call algebraic
integers integers for short. With this assumed, we now turn to the proof of
the following fundamental theorems.

1. The sum, difference, and product of two integers α, β are again inte-
gers.

If a and b are, respectively, the degrees of equations ϕ(α) = 0, ψ(β) =
0, whose coefficients are rational integers, let ω1, ω2, . . . , ωn denote all ab
products of the form αa′βb′ , where a′ is any of the numbers 0, 1, 2, . . . , (a−1),
and b′ is any of the numbers 0, 1, 2, . . . , (b − 1). Then if ω = α + β, or
= α − β, or = αβ, then with the help of the equations ϕ(α) = 0, ψ(β) = 0,
each of the products ωω1, ωω2, . . . ωωn can be brought into the form r1ω1 +
r2ω2 + . . .+rnωn, where r1, r2, . . . , rn are rational integers. Eliminating the n
quantities ω1, ω2, . . . , ωn from these equations, we obtain an equality of degree
n involving ω (like (6) in §159) whose coefficients are rational integers, as was
to be proved (cf. §139).

19To my knowledge it was Liouville who first proved that there are so-called transcen-
dental numbers in addition to the algebraic ones (Sur des classes très-étendues de quan-
tités dont la valeur n’est ni algebrique, ni même réductible à des irrationelles algébrique,
Journ. de Math. T. XVI, 1851). It is conjectured that Ludolph’s number π is such a tran-
scendental number, but even just the special case that it is impossible to square the circle
has to this day not yet been established. (Cf. Euler: De relatione inter ternas pluresve
quantitates instituenda. §10, Opusc. anal. T. II, 1785.)
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2. The integer α is said to be divisible by the integer β, or a multiple of
β, if the quotient α/β is also an integer. Conversely, β is said to be a divisor
[Divisor oder Teiler] of α (cf. §3). Similarly we write α ≡ β (mod γ) when
α − β is divisible by γ, and say that α and β are congruent with respect to
the modulus γ (cf. §17). One sees immediately (by 1.) that the theorems of
§3 as well as those of §17 remain valid (for the moment, with the exception
of 6. and 8.; cf. §164, 3).

3. Each root ω of an equation whose coefficients are integers is again an
integer.

If ω is the root of an equation F (ω) = 0 of degree m whose coefficients
α, β, . . . are integers, and, further, a, b, . . . are, respectively, the degrees of
the equations ϕ(α) = 0, ψ(β) = 0, . . . with rational coefficients, one forms
all products of the form ωm′

αa′βb′ , in which the integer exponents satisfy
the conditions 0 ≤ m′ < m, 0 ≤ α′ < a, 0 ≤ β′ < b, . . .. Then, by virtue
of the equations F (ω) = 0, ϕ(α) = 0, ψ(β) = 0, . . . each of the n products
ωω1, ωω2, . . . , ωωn can be brought into the form r1ω1 + r2ω2 + . . . + rnωn,
where r1, r2, . . . , rn are rational integers. The theorem follows immediately
from this.

Thus, e.g., if α is an integer, and r is any (whole or fractional) positive
rational number, then αr is an integer (cf. §5, 4.).

4. It is well-known that the concepts of divisibility and multiplicity of
the rational integers transfer directly to rational integer functions, and there
is an algorithm for finding the greatest common divisor ϕ(x) of two given
functions F (x), f(x) which is fully analogous to the number-theoretic one
(§4). If the coefficients of F (x) and f(x) are all contained in a field K, then
the coefficients of ϕ(x) will also be in K, since they are obtained by addition,
multiplication, subtraction, and division of the coefficients of F (x) and f(x).
From this it easily follows that if α is a root of such an equation F (α) = 0
whose coefficients are numbers in the field K, then there must be such an
equation ϕ(α) = 0 of lowest degree, which is called irreducible in K and which
clearly can have no roots that are not also roots of the equation F (α) = 0.
From this we have the theorem:

If α is an integer, and K is any given field, and ϕ(α) = 0 is its irreducible
equation in K, then all the coefficients of ϕ are integers.

For because α is an integer, it is the root of an equation F (α) = 0 whose
coefficients are rational integers, and therefore also numbers of the field K
(§159). So the equation ϕ(α) = 0, which is irreducible in K, and which is
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satisfied by α, can only have integer roots. But the coefficients of such an
equation are obtained from its roots via addition and multiplication, so (by
1.) the coefficients of the equation ϕ(α) = 0 are also integers, as was to be
proved.

The simplest case, in which K is the field of rational numbers, is found
in Gauss.20

5. If ρ is any algebraic number, there are always infinitely many (nonzero)
rational integers h with the property that hρ is an integer. In fact, these
numbers h are all rational multiples of the smallest such one.

If ρ is an algebraic number, then it is the root of an equation of the form

cρm + c1ρ
m−1 + c2ρ

m−2 + . . . + cm = 0

where c, c1, c2, . . . , cm are rational integers. Multiplying by cm−1, we have
that cρ is an integer. If furthermore aρ, bρ are integers, where a, b are rational
integers whose greatest common divisor is = h, it follows easily (from 1. and
§4) that hρ is also an integer. The theorem to be proved follows immediately
from this.

6. By a unit we mean an integer ε which divides every integer. In
particular it also divides 1, so 1 = εε′, where ε′ is an integer. If now ε
satisfies the irreducible equation

εm + c1ε
m−1 + . . . + cm = 0

in the field of rational numbers, then (by 4.) cm must be ±1, since ε′ satisfies
the irreducible equation

cmε′m + cm−1ε
′m−1 + . . . + c1ε

′ + 1 = 0.

Conversely, if this is the case, then ε divides 1 and therefore every integer,
and so it is a unit. Clearly there are infinitely many units.

If α is divisible by α′, and ε, ε′ are any units, then clearly εα divides
ε′α′. With respect to divisibility the numbers εα, where ε ranges over units,
behave just like α. We will call two integers whose quotient is not a unit
essentially different [wesentlich verschieden].

7. If one tries to formulate the concept of a prime number by saying that
it has no divisors essentially different from it and a unit, and is also not a unit

20D. A. [Disquisitiones Arithmeticae] art. 42
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itself, one realizes at once that no such number exists. For, if α is an integer
but not a unit, then α has infinitely many essentially different divisors, e.g.
the numbers

√
α, 3
√

α, 4
√

α and so forth, which (by 3.) are integers.
In contrast, the concept of relative primality can be completely defined,

and this question will actually show us the right path to take to drive forward
in our investigation. Since for the moment we cannot speak of the greatest
common divisor of two numbers (cf. §164, 3), it is impossible to formulate the
definition of relative primality as it is put forward in the theory of rational
numbers (§5). But several theorems followed from this definition, each of
which, conversely, completely characterized the behavior of relatively prime
numbers, without assuming knowledge of their divisors. One such theorem is
e.g. the following (§7): if a, b are relatively prime numbers, then any number
that is divisible by both a and b is divisible by ab. This theorem can in
fact be turned around: if every number that is divisible by both a and b is
divisible by ab as well, then a, b are relatively prime. For if the two numbers
a = ha′, b = hb′ had the common factor h > 1, then ha′b′ would be divisible
by a and b, but not by ab.

These considerations lead us to put forward the following more general
definition for the domain of algebraic integers:

Two nonzero integers α, β are said to be relatively prime if every number
that is divisible by α and β is also divisible by αβ.

Right away we remark that two relatively prime numbers in the old sense
of the phrase, i.e. two rational integers a, b whose greatest common divisor
is equal to 1, remain relatively prime in the new sense. For if an algebraic
integer γ is divisible by a and b, then the quotient ρ = γ/ab is an algebraic
number with the property that aρ and bρ are integers; thus (by 5.) ρ must
also be an integer as well, and so γ is divisible by ab, as was to be proved.
From the new definition it also goes without saying that two relatively prime
numbers in the new sense of the word are also relatively prime numbers in
the old sense.

We will further call the integers α, β, γ, δ, . . . relatively prime for short if
each of them is relatively prime to each of the others (cf. §6). If then an
integer ω is divisible by each of them, it is divisible by their product (cf. §7)
because, as one easily sees, the following theorem (§5, 3.) also remains valid:
if each of the numbers α′, β′, γ′, . . . is relatively prime to each of the numbers
α′′, β′′, γ′′, δ′′, . . . then the products α′β′γ′ . . . and α′′β′′γ′′δ′′ . . . are relatively
prime, and conversely.
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But how should one determine whether or not two given integers α, β are
relatively prime? One might attempt the following. Since α−1 and β−1 are
algebraic numbers, there are always (by 5.) two smallest positive rational
numbers a, b with the property that aα−1 and bβ−1 are integers, i.e. such
that a, b are divisible, respectively, by α, β. If it turns out that a and b are
relatively prime, then we know that α and β are relatively prime numbers.
But one should not think that the converse holds, so that the smallest ratio-
nal multiples a, b of two relatively prime numbers α, β must themselves be
relatively prime. For example, the two conjugate numbers α = 2 + i and
β = 2− i are relatively prime, and yet a = b = 5. An essential reduction in
our task is, however, effected by the following theorem:

If two integers α, β satisfy the test for relative primality with respect to
a field K to which they belong, i.e. if each number in K that is divisible by
both α and β is also divisible by αβ, then α, β are in fact relatively prime.

For, if ω is any integer divisible by α and β, and if

ωm + γ1ω
m−1 + γ2ω

m−2 + . . . + γm = 0

is the equation satisfied by ω that is irreducible in K, then (by 4.) the
numbers γ1, γ2, . . . , γm are integers of K. Furthermore the integers α′ = ω/α
and β′ = ω/β respectively satisfy equations

(αα′)m + γ1(αα′)m−1 + . . . + γm = 0

(ββ′)m + γ1(ββ′)m−1 + . . . + γm = 0,

it follows (by 4.) that the quotients γn/α
n and γn/βn are also integers of

the field K. Since, furthermore, by assumption, every number in K that is
divisible by α and β is divisible by γ, it easily follows that each number γn in
K, which is divisible by both αn and βn is also divisible by αnβn, and so is
of the form αnβnγ′n, where γ′n is an integer. If one now sets ω = αβω′, then
ω′ satisfies the equation

ω′m + γ′1ω
′m−1 + . . . + γ′m = 0,

in which the coefficients are integers. Hence (by 3.) ω′ is an integer, i.e. ω is
also divisible by αβ, as was to be proved.

From this it follows that in order to understand the behavior of two
integers α, β with respect to each other, it suffices to consider the smallest
field K to which they both belong. And it is easy to see that these fields are
always of the kind we considered in the preceding section.

29



§161

So as not to interrupt the presentation later on, we now interpose some
very general observations. This separate inquiry will be of great use to us in
our subsequent topic of study, as well as for many others.

1. A system a of real or complex numbers α, whose sums and differences
themselves belong to a, will be called a module. When the difference of two
numbers ω, ω′ is contained in a, we will call them congruent with respect to
a, and denote this with the congruence

ω ≡ ω′ (mod a).

Such congruences can be added and subtracted, and therefore also multiplied
by an arbitrary rational integer, like equalities. Since any two numbers that
are congruent to a third are congruent to one another, one can divide all the
existing numbers into classes (mod a), such that any two congruent numbers
are taken to be in the same class, and any two incongruent numbers are taken
to be in different classes.

2. If all the numbers of a module a are also numbers of a module d, then
a is called a multiple of d, and d a divisor of a. Alternatively, we say d divides
a [gehe in a auf], or a is divisible by d. From any congruence ω ≡ ω′ (mod a)
it follows that also ω ≡ ω′ (mod d). Clearly d is comprised of either finitely
or infinitely many classes (mod a).

If a, b are any two modules, then all the numbers that are contained
in both a and in b form the least common multiple m of a and b, since
every common multiple of a and b is also divisible by the module m. If α
runs through all the numbers of the module a, and β runs through all the
numbers of the module b, then the numbers α + β form greatest common
divisor of a and b, since any common divisor of a and b divides the module
d.

3. If the numbers ω1, ω2, . . . , ωn are given, then all the numbers of the
form

ω = h1ω1 + h2ω2 + . . . + hnωn, (1)

where h1, h2, . . . , hn run through all the rational integers, comprise a finite
module o. We will call the system [Komplex] of n numbers ω1, ω2, . . . , ωn a
basis of the module o, whether they are dependent or independent from one
another. Then the following theorem holds:
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If all numbers ω of a finite module o can be transformed into numbers of
a finite module m through multiplication by nonzero rational numbers, then
o contains only a finite number of incongruent numbers (mod m).

For, if we are given n nonzero rational numbers r1, r2, . . . , rn with the
property that the products r1ω1, r2ω2, . . . , rnωn are contained in m, then there
is also a rational nonzero integer, s, with the property that all products sω ≡
0 (mod m). If one therefore lets each of the n rational integers h1, h2, . . . , hn

run through a complete residue system (mod s), then sn numbers of the
form (1) arise, and each number of the module o is itself congruent to at
least one of these (mod m). Hence the number of elements of o that are
incongruent with respect to m is not more than sn, as was to be proved.

It is, however, important to determine the number of incongruent ele-
ments exactly. To that end we consider the smallest common multiple a of
the two modules o and m. Since any two numbers ω, ω′ of the module o

that are congruent with respect to m are also congruent with respect to a,
and conversely, then our task is that of determining the number of classes
(mod a), of which o is comprised. Hence we initially try to determine the
general form of all the numbers

α = k1ω1 + k2ω2 + . . . + knωn (2)

in a, where k1, k2, . . . , kn are all rational integers. If now r is any given
index from the sequence 1, 2, . . . , n, then among all numbers α = θr in which
kr+1 = 0, kr+2 = 0, . . . , kn = 0, there are some in which kr is nonzero (e.g.,
sωr). Among these, let

αr = α
(r)
1 ω1 + α

(r)
2 ω2 + . . . + a(r)

r ωr (3)

be one in which kr has the smallest positive value a
(r)
r . Then it is clear that

the value of kr in each number θr is divisible by a
(r)
r , and so of the form a

(r)
r xr,

where xr is a rational integer. It is therefore clear that θr − xrαr = θr−1 is a
number α, in which kr, kr+1, . . . , kn vanish. From this it follows immediately
that after one has determined for each index r a particular such αr of the
module a,21 we know that each number α can be brought to the form

α = x1α1 + x2α2 + . . . + xnαn, (4)

21The system of these n particular numbers is completely determined if one adds the
conditions that 0 ≤ a

(r′)
r < a

(r)
r should hold, when r′ > r.
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where x1, x2, . . . , xn are rational integers. The numbers k1, k2, . . . , kn appear-
ing in expression (2) are obtained from these using the equations

kr = a(r)
r xr + a(r+1)

r xr+1 + . . . + a(n)
r xn. (5)

Conversely, all numbers α of the form (4) are contained in a.
If now a number ω of the form (1) is given, so h1, h2, . . . , hn are given

rational integers, then all numbers ω′ of the module o that are congruent to
it with respect to m, and which thus form a class (mod a), are of the form

ω′ = ω + α = h′1ω1 + h′2ω2 + . . . + h′nωn, (6)

where, as a consequence of (5),

h′r = h1 + a(r)
r xr + a(r+1)

r xr+1 + . . . a(n)
r xn.

From this it follows that one can always successively determine the arbi-
trary rational integers xn, xn−1, . . . , x2, x1, and in a unique way, so that the
n numbers h′r satisfy the conditions

0 ≤ h′r < a(r)
r . (7)

Hence in each class there exists one and only one representative ω′ of the form
(6) which satisfies this condition (7). Hence the number of different classes

(mod a) of which the module o consists is equal to the product a′1a
′′
2 . . . a

(n)
n ,

i.e. equal to the determinant of the system of coefficients of the n particular
numbers αr of the form (3), which form a basis of a.22

§162

From now on we will restrict our attention to the study of integers con-
tained in a finite field Ω (§159).

1. Since each algebraic number (by §160, 5.) can be transformed into an
integer through multiplication by a nonzero rational integer, we may assume

22The further development of the general theory of modules would lead us too far astray
here (cf. §163). We mention only the following theorem: if the basis numbers of a finite
module are dependent on one another, then there is always a basis of the same module
consisting of independent numbers. The most elegant method of finding the new basis
consists of a generalization of the method of handling partial determinants applied by
Gauss (D.A. art. 234, 236, 279).
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that the numbers ω1, ω2, . . . , ωn which form a basis of the field Ω are all
integers. Then we know (by §160, 1.) that each number

ω =
∑

hiωi (1)

is an integer, assuming all the coordinates hi are rational integers. But the
converse does not hold in general, i.e. ω may well be an integer even if some
or all of its coordinates are fractions. This is one of the most important
points of the theory, and must therefore be clarified from the start.

First, we make the evident remark that the discriminant [§159, (10)] of
any system of n independent integers is known to be a nonzero rational num-
ber. In fact it is an integer, since it is obtained from the addition, subtraction,
and multiplication of other integers. Suppose now there is actually an integer

β =

∑
kiωi

s
, (2)

in Ω, where s, k1, k2, . . . , kn are rational integers with no common divisor; in
particular, s > 1. We assert that s2 divides the discriminant ∆(ω1, ω2, . . . , ωn),
and that one can find a new basis of integers β1, β2, . . . , βn, whose discrimi-
nant is less than ∆(ω1, ω2, . . . , ωn) in absolute value.

To prove this, we let m denote the module consisting of all integers that
are divisible by s, and we let o denote the system of all numbers ω of the form
(1), whose coordinates are integers. Since each product sω is an element of
m, we can apply the general investigation of the preceding section to the case
at hand. All the numbers α in o that are divisible by s are thus of the form

α =
∑

xiαi = s
∑

xiβi,

where the n numbers αi = sβi are particular numbers α, the βi are thus
integers of the field Ω, and the xi are arbitrary rational integers.

Since now every number sω is such a number α, one can set

ωr =
∑

b
(r)
i βi, ∆(ω1, ω2, . . . , ωm) = b2∆(β1, β2, . . . , βn),

where the coefficients b
(r)
i are rational integers, and b is the determinant they

comprise. Conversely it follows that the n products bβi are numbers of the
system o, and hence all the quotients bα/s.

We now apply this result to assumption (2), that β is an integer, and
so its numerator

∑
kiωi is a number of the form α, although the numbers
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s, k1, k2, . . . , kn have no common divisor. It follows directly that b is divisible
by s, whereby at the same time the above assertion is proved.

Now since the discriminant of each system of n independent integers of
the field Ω is a nonzero rational integer, there is one of these discriminants
whose value — disregarding the sign — is minimum. From the previous in-
vestigation it follows directly that if a basis consists of numbers ω1, ω2, . . . , ωn

for which the discriminant takes on this minimum value, the corresponding
coordinates hi of each integer ω of the field must necessarily be a rational
integer. We will call such a basis ω1, ω2, . . . , ωn an integral basis [Grundreihe]
of the field Ω. Other integral bases of the same field are obtained from it if
one chooses n integers ω of the form (1) in such a way that the n2 associated
coordinates form a determinant = ±1.

The minimal discriminant itself plays an important role, both with re-
spect to the inner23 constitution of the field Ω, as well as with respect to its
relationship to other fields.24 We will therefore call this positive or negative
rational integer the ground number [Grundzahl ] or the discriminant of the
field Ω, and denote it by ∆(Ω). Clearly it is identical to the ground number
of each of the fields conjugate with Ω.25

The numbers of a quadratic field, e.g., are of the form t + u
√

D, where
t, u run through the rational integers and D is a rational integer which is
neither square nor divisible by a square other than 1. If D ≡ 1 (mod 4)
then the numbers 1 and 1

2
(1 +

√
D) form an integral basis of the field, and

its discriminant is = D. If on the other hand D ≡ 2 or ≡ 3 (mod 4) the
numbers 1 and

√
D form an integral basis of the field, and its discriminant

is = 4D.
If, furthermore, θ is a primitive root of the equation θm = 1 (§139), where

m > 2, then the numbers 1, θ, θ2, . . . , θn−1 form an integral basis of the field

23Cf. Kronecker: Über die algebraisch auflösbaren Gleichungen (Monatsbericht der
Berliner Ak. 14. April 1856).

24The first hint of this relationship can be seen in an elegant inquiry by Kronecker
(Mémoir sur les facteurs irréductibles de l’expression xn− 1; Journ. de Math., p. p. Liou-
ville; T. XIX, 1854). In order to indicate the character of these laws, whose development
I will save for another occasion, I will put forth only the simplest example: the least com-
mon multiple of two distinct quadratic fields A,B is a biquadratic field K, which has yet
a third quadratic C as a divisor; the ground number of K is exactly the product of the
ground numbers of A,B, C, and therefore a perfect square.

25[To conform with modern usage, I will henceforth use the terms discriminant and
integral basis wherever Dedekind uses Grundzahl and Grundreihe, respectively.]
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of degree n = ϕ(m), whose discriminant is

(
m
√−1

a−1
√

a b−1
√

b c−1
√

c . . .

)n

where a, b, c . . . are all the different prime numbers that divide m. If m = 3
(or = 6), then this field is a quadratic field, with discriminant = −3. If
m = 4, the discriminant of the quadratic field is = −4.

2. From the preceding principles we easily have the following fundamental
theorem:

If µ is a nonzero integer of the field Ω, then the number of integers of the
field that are incongruent with respect to µ is equal to the absolute value of
the norm of the modulus µ.

Let m be the system of all integers that are divisible by µ (so m is closed
under addition and subtraction). Let o be the system of all integers of the
field Ω, i.e. all numbers ω of the form (1), where the numbers ωi form an
integral basis of the field and the coordinates hi are any rational integers.
Since each quotient ω/µ (by §160, 5.) can be transformed into an integer
through multiplication by a nonzero rational integer, the investigations of
the preceding section apply to the case at hand. Hence all the numbers α of
the system o that are divisible by µ are of the form

α =
∑

xiαi = µ
∑

xiβi,

where the n numbers αi = µβi are particular such numbers α, and so the
numbers βi are in o; and the quantities xi can take on any rational integer
value. The number of classes into which the system decomposes with respect
to the modulus µ is further equal to the determinant a consisting of the
coordinates of the n numbers α1, α2, . . . , αn. This is equal (from §159, (11),
(12)) to

∆(α1 . . . αn) = a2∆(Ω) = N(µ)2∆(β1 . . . βn).

Since each of number α of the system o that is divisible by µ is of the form
α = µω, and thus of the form µ

∑
xiβi, each number ω of the system o is

also of the form
∑

xiβi. Hence the numbers βi also form an integral basis of
the field, and it follows that ∆(β1 . . . βn) = ∆(Ω). So a = ±N(µ), as was to
be proved.
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At the same time it is clear that, by the methods of the preceding section,
one can establish a system of a incongruent representatives of the different
classes, which is therefore a complete residue system for the module µ.26

3. If one now wants to test whether two given integers θ, µ are relatively
prime, one clearly only has to run through a complete system of residues
(mod µ), and determine how often θω ≡ 0 (mod µ). If it turns out that this
happens only when ω ≡ 0 (mod µ), then each integer θω that is divisible by
θ and µ is also divisible by θµ, whereby θ, µ are relatively prime. If, however,
the congruence θω ≡ 0 (mod µ) also has a root ω which is not ≡ 0 (mod µ),
then the corresponding number θω is divisible by θ and µ, but not by θµ,
whereby θ, µ are not relatively prime.

If θ is relatively prime to µ (e.g. θ = 1), then θω runs through a complete
residue system (mod µ) concurrently with ω. It follows that each congruence
θω = θ′ (mod µ) always has exactly one root ω (cf. §22). If furthermore ψ(µ)
is the number of classes whose numbers are relatively prime to the modulus
µ, then θω runs through the representatives of these classes concurrently with
ω. Since the product of these numbers ω are also relatively prime to µ, we
have the theorem

θψ(µ) ≡ 1 (mod µ),

to which Fermat ’s theorem corresponds (§19).
4. If one pursues this analogy with the theory of rational numbers further,

then the question as to the composition of numbers of the system o (that is,
the integers of the field Ω) from factors that again belong to o forces itself
upon us again and again. Right away it becomes clear that the unlimited
factorizability of integers which is possible in the infinite field of all algebraic
numbers (§160, 7.) disappears in finite fields Ω. But a very peculiar property
crops up for infinitely many such fields Ω, one that has already (§16) been
remarked upon in passing.27 A number in o is called decomposable when it

26If the n numbers ωi are any basis of the field Ω, and if o is the system of all numbers ω of
the form (1) whose coordinates are integers, then the system of numbers of o is closed under
addition and subtraction. If one further requires that it is closed under multiplication, it
follows at the same time that they are integers. If one calls two numbers ω, ω′ congruent
with respect to a third such number µ if and only if the quotient (ω − ω′)/µ is again a
number of the system o, then the the number of elements of o that are incongruent with
respect to µ is always = ±N(µ). Cf. §165, 4.

27The example there does not fit here exactly, insofar as the integers of the quadratic
field corresponding to the equation ρ2 = −1 are not of exhausted by those of the form
t+uρ, but, rather, by the form t+uθ, where 2θ = 1+ρ. The numbers 3, 5, 2+ρ, 2−ρ are in
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is the product of two numbers in o, neither of which is a unit; and indecom-
posable when this is not the case. Clearly every decomposable number µ is
representable as a product of a finite number of indecomposable elements
(cf. §8), since the norm of µ is equal to the product of the norms of the
individual factors (§159). But it frequently occurs that this decomposition
is not totally determined, but rather there exist several essentially different
compositions of the same number into indecomposable factors (§160, 6). This
contradicts so many notions governing the character of prime numbers (§8)
that we therefore can no longer recognize indecomposable numbers as prime.
In order to preserve the character of primes we therefore search for a criterion
to characterize them that is more robust that the inadequate criterion of in-
decomposability. Just as we did earlier with the concept of relative primality
(§160, 7), rather than decomposing the number µ under consideration, we
will consider its behavior as a modulus :

An integer µ, which is not a unit, will be called a prime number if every
product ηρ that is divisible by µ, has at least one factor η or ρ that is divisible
by µ.

It then follows immediately that the highest power of a prime number
µ that divides a product is the product of the highest powers of µ that
divide the individual factors, and that any number that is not divisible by
µ is relatively prime to µ. One easily sees further that the smallest rational
integer p divisible by µ is necessarily a prime number (in the field of rational
numbers), and therefore the norm of µ is a power of p, since it must be a
rational divisor of N(p) = pn. We will therefore know that we have discovered
all the prime numbers of a field Ω when we have considered the divisors of
all rational prime numbers p.

5. If however µ is not a prime number (and is also not a unit), there
exist two numbers η, ρ which are not divisible by µ, whose product ηρ is
divisible by µ. So, we will aim for a factorization of µ into actual or ideal,
i.e. fictional factors. If, in particular, there is in o a greatest common divisor
of the pair of numbers η and µ = νµ′, with the property that the quotients
η/ν and µ/ν are relatively prime, then µ decomposes into the factors ν and
µ′, neither of which is a unit, because neither ρ nor η is divisible by µ. The

fact decomposable: 3 = θ(1−θ), 5 = (1+θ)(2−θ), 2−ρ = −θ(1+θ), 2+ρ = −(1−θ)(2−θ).
The four numbers θ, 1− θ, 1 + θ, 2− θ are prime numbers in this field. The phenomenon
under consideration, however, really does occur in the quadratic field corresponding to the
equation κ2 = −5, in the example 3 · 5 = (1 + 2κ)(1 − 2κ) (cf. §21; the pair of numbers
3, 7 are not representable by the principal form of determinant −5).
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factor µ′ is essentially determined by the property that all the roots α′ of the
congruence ηα′ ≡ 0 (mod µ) are divisible by µ′ (e.g. also α′ = ρ), and that
moreover each number α′ that is divisible by µ′ also satisfies the preceding
congruence. Conversely, if there is in o a number µ′ which divides all the
roots α′ of the congruence ηα′ ≡ 0 (mod µ), and only these, then µ is also
divisible by µ′, and the quotient ν = µ/µ′ is the greatest common divisor of
the pair of numbers η and µ.

But it can well be the case that there is no such number µ′ to be found in o.
This is the phenomenon that Kummer confronted (with respect to numbers
formed from roots of unity). He came upon the fortunate idea of nonetheless
feigning [fingieren] such numbers µ′ and introducing them as ideal numbers.
The divisibility of a number α′ by these ideal numbers µ′ depends entirely on
whether α′ is a root of the congruence ηα′ ≡ 0 (mod µ), and consequently
these ideal numbers are only treated as moduli; so there are absolutely no
problems with this manner of introducing them. The only misgiving is that
the immediate transfer of the usual concepts of the actual numbers can,
initially, easily evoke mistrust of the certainty of the proof. This has caused
us to inquire after a means of clothing the theory in a different garb, so that
we always consider systems of actual numbers.

§163

We ground the theory of the numbers of o, i.e. all the integers of the field
Ω, on the following new concept.

1. A system a of infinitely many numbers contained in o will be called
an ideal if it satisfies the following pair of conditions:

I. The sum and difference of any two numbers in a is again a number in
a.

II. Each product of a number in a and a number in o is again a number
in a.

If α is contained in a, we will say that α is divisible by a, and that a

divides α, since this manner of expression will prove convenient. We further
call two numbers ω, ω′ contained in o whose difference is in a congruent with
respect to a (cf. §161), and denote this with the congruence ω ≡ ω′ (mod a).
These congruences can be added and subtracted (by I), and multiplied (by
II), as equations. Since each of two numbers congruent to a third are also
congruent to one another, one can divide all numbers into classes (mod a) in
such a way that any two congruent numbers are put in the same class and any
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two incongruent numbers are put in different classes. Now, if µ is a nonzero
number in a, any two numbers that are congruent with respect to µ are also
congruent with respect to a (by II). It thereby follows immediately that a

consists of one or more classes (mod µ), and so (by §162, 2) o decomposes
into finitely many classes (mod a).28 If one chooses a representative from
each class, these form a complete system of residues (mod a); the number of
such classes or incongruent numbers will be called the norm of a and will be
denoted N(a).

If η is a nonzero number in o, then the numbers in o that are divisible
by η form an ideal, which will be denoted i(η). Such ideals are distinguished
especially and are called principal ideals [Hauptideale]; the norm of i(η) is
= ±N(η). If η is a unit, then i(η) = o, and conversely.

2. If every number of an ideal a is also in an ideal d, then clearly d consists
of one or more classes a, and we will say that a is a multiple of d or is divisible
by d; and that d is a divisor of a, or d divides a.

If d consists of r classes (mod a), then N(a) = rN(d). In particular,
if δ runs through the representatives of these r classes and γ is a complete
system of residues (mod d), then the rN(d) numbers γ + δ form a complete
system of residues (mod a). For, first of all, each number in o is congruent
to a number γ (mod d), and so ≡ γ + δ (mod a); and second, if γ′, δ′ have
denotations similar to those of γ, δ, from γ + δ = γ′ + δ′ (mod a) it follows
successively that γ + δ ≡ γ′ + δ′ (mod d), γ ≡ γ′ (mod d), γ = γ′, and
so δ ≡ δ′, δ = δ′. In other words, the numbers γ + δ are all incongruent
(mod a).

It follows that each ideal has only finitely many divisors. If m is divisible
by a, and a by d, then m is also divisible by d. The principal ideal o itself
divides each ideal, and is at the same time the unit ideal, which contains 1
and more generally every unit, and whose norm is = 1.

The system of those numbers that are contained in each of two ideals a, b
is the least common multiple m of a, b, insofar as every common multiple of
a, b is divisible by the ideal m. If α runs through all the numbers of a, and β
runs through all the numbers of b, then the system of all numbers α + β is
the greatest common divisor d of the ideals a, b, since each common divisor
of a, b divides the ideal d.29

28This follows immediately from §161; if, in particular, ω is any number in o, then one
can multiply the quotient ω/µ by a nonzero rational integer to obtain an integer, so that
ω (by II) is transformed into a number of the ideal a.

29The extension of these definitions of m and d to more than two ideals a, b, . . . is
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If r is the number of elements of b which are incongruent (mod a), then
b consists of r classes (mod m), and d consists of r classes (mod a). So
N(m) = rN(b), N(a) = rN(d), and N(m)N(d) = N(a)N(b).

If b is a principal ideal i(η), then there are r numbers β = ηω in b that
are incongruent (mod a). At the same time, r is also the norm of the ideal
r consisting of all roots ρ of the congruence ηρ ≡ 0 (mod a), because two
numbers ω, ω′ are congruent (mod r) if and only if ηω ≡ ηω′ (mod a). Hence,
in this case N(a) = N(r)N(d).

3. An ideal p distinct from o which has no divisor other than o and p is
called a prime ideal. We have the following theorem:

If ηρ ≡ 0 (mod p), then at least one of the two numbers η, ρ is divisible by
p. In particular, if η is not ≡ 0 (mod p), then the roots ρ of the congruence
ηρ ≡ 0 (mod p) clearly form an ideal which divides p, and which, since it
does not contain the number 1, is distinct from o. It follows that this ideal
is equal to p, as was to be proved.

This theorem characterizes the prime ideals, since the following converse
holds: If every product which is divisible by an ideal p (which is distinct from
o) has at least one factor that is divisible by p, then p is a prime ideal. For,
if q is a divisor of p that is different from p, then there is a number ω in
q that is not in p; then (by assumption) no power ω2, ω3, . . . is divisible by
p. Since there exist only finitely many incongruent numbers (mod p), there
must in particular be two distinct exponents m and m + s > m satisfying
ωm+s ≡ ωm (mod p), so the product ωm(ωs − 1) is divisible by p. Since now
ωm is not divisible by p, then (by the assumption) the other factor ωs − 1
must be divisible by p, and therefore is also divisible by q. Then ω, and,
since s > 0, also ωs, are ≡ 0 (mod q). Thus the number 1 is also in q, and
so q = o, as was to be proved.

If we call an ideal distinct from o composite [zusammengesezt] when it
is not a prime ideal, we can also express this theorem in the following way:
If a is a composite ideal, then there are two numbers η, ρ, not divisible by
a, whose product ηρ is divisible by a. We prove it for a second time in the
following manner. Let e be a divisor of a which is distinct from o. Then there
is in e a number η that is not divisible by a, and the greatest common divisor
d of a and i(η) is divisible by e. So it is distinct from o, whereby N(d) > 1.
The ideal r consisting of all of the roots ρ of the congruence ηρ ≡ 0 (mod a)
is a divisor of a, and so (by 2.) N(a) = N(r)N(d) > N(r). So r is distinct

immediate.
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from a and therefore has a number ρ that is not divisible by a, as was to be
proved.

It is now clear that the smallest (nonzero) rational number p, which is
contained in the prime ideal p, is necessarily a prime number (in the field of
rationals); and further p divides i(p), so N(p) is a divisor of N(p) = pn, and
so also a power pf of the prime p. One easily finds (cf. §162, 3.) that every
number ω in o satisfies the congruence30

ωpf ≡ ω (mod p).

The general theorems of §§26, 27, 29, 30, 31 on congruences with respect to
the modulus p also carry over without difficulty.

If the least common multiple m of ideals a, b, c, . . . is divisible by the prime
ideal p, then p divides at least one of the ideals a, b, c, . . .. For if none of these
ideals is divisible by p, there are numbers α, β, γ, . . . in a, b, c, . . . respectively

30This is the basis of the overlap with the theory of higher congruences(cf. §26), which
serves in determining the prime ideals. This was first carried out in the study of fields of
degree n = ϕ(m) which arise from a primitive root of the equation θm = 1, indeed by Kum-
mer, the creator of the theory of ideal numbers. A complete account of the portion of his
inquiry that is relevant here can be found in the works Mémoire sur la théorie des nombres
complexes composés de racines de l’unité et de nombres entiers (Journ. de Math. p. p. Li-
ouville, T. XVI, 1851). – Theorie der idealen Primfaktoren der komplexen Zahlen, welche
aus den Wurzel der Gleichung ωn = 1 gebildet sind, wenn n eine zusammengesetzte Zahl
ist (Abh. der Berliner Ak. 1856). The main result follows more easily from our theory
and in our manner of presentation is expressed as follows: if p is a rational prime number
and m′ is the largest divisor of m = p′m′ that is not divisible by p, p further belongs to
the exponent f (mod m′), where ϕ(m′) = ef (§28). So i(p) = (p1p2 . . . pe)ϕ(p′), where
p1, p2, . . . , pe are prime ideals distinct from one another, whose norms are = pf . If p′ > 1,
then i(1− θm′

) = p1p2 . . . pe.
For complex numbers of higher degree cf. Kummer: Über die allgemeinen

Reziprozitätsgesetze unter den Resten und Nichtresten der Potenzen, deren Grad eine
Primzahl ist (Abh. der Berliner Ak. 1859).

For those fields Ω, whose conjugate fields are equal to to Ω, and which I call Galois fields,
cf. Selling: Über die idealen Primfaktoren der komplexen Zahlen, welche aus den Wurzeln
einer beliebigen irreduktibelen Gleichung rational gebildet sind (Schlömlichs Zeitschrift für
Math. u. Phys, Bd. 10. 1865).

The special case of biquadratic fields is completely carried out by Bachmann: Die
Theorie der komplexen Zahlen, welche aus zwei Quadratwurzeln zusammengesetzt sind.
1867.

For a certain class of cubic fields cf. Eisenstein: Allgemeine Untersuchungen über die
Formen dritten Grades mit drei Variabeln, welche der Kreisteilung ihre Entstehung ver-
danken (Crelles Journ. XXVIII).
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that are not divisible by p. Then the product αβγ . . . is in a, b, c, . . . and
therefore also in m, and is not divisible by the prime ideal p. It follows that
p does not divide m, as was to be proved.

If the number η is not divisible by the ideal a, then there is always a
number ν that is divisible by η, with the property that all the roots π of the
congruence νπ ≡ 0 (mod a) form a prime ideal. All the roots β of the
congruence ηβ ≡ 0 (mod a) form an ideal b that divides a, and which is
distinct from o, since it does not contain the number 1. If b is a prime ideal,
the theorem is proved. If b is not a prime ideal, there are then two numbers
η′, ρ′, not divisible by b, whose product η′ρ′ ≡ 0 (mod b). So all the roots γ
of the congruence η′γ ≡ 0 (mod b), that is, the congruence ηη′γ ≡ 0 (mod a),
form an ideal c that divides b. Indeed we have (from 2.) N(c) < N(b), since
ρ′ is contained in c but not in b. Furthermore, c is distinct from o, since η′

is not contained in b and so the number 1 is not contained in c. If c is a
prime ideal, the theorem is proved. If, however, c is not a prime ideal, one
can carry on in the same way. Ultimately the sequence of ideals b, c, d, . . .,
whose norms decrease but remain > 1, must yield a prime ideal p, in which
all roots π of the congruence νπ ≡ 0 (mod a) remain, where ν = ηη′η′′ . . . is
divisible by η.

4. If µ is a nonzero number in o and not a unit, then by these last
theorems (in which one can set η = 1) there exists in any case a number ν
with the property that all roots π of the congruence νπ ≡ 0 (mod µ) form a
prime ideal p. We will henceforth call prime ideals which arise as the roots
of such a congruence simple ideals. If now r is any non-negative rational
integer exponent, then all the roots ρ of the congruence ρνr ≡ 0 (mod µr)
form an ideal, which will be called the rth power of p and will be denoted
pr. This definition is independent of the pair of numbers µ, ν used in the
definition of p; for if µ′ is any nonzero number divisible by p, then νµ′ = µν ′,
and multiplying the congruence ρνr ≡ 0 (mod µr) by µ′r and dividing by
µr we have ρν ′r ≡ 0 (mod µ′r), and conversely. The following theorems on
simple ideals p are of the utmost importance:

If s ≥ r, then ps is divisible by pr. For if σ is contained in ps, then
σνs = τµs, and it follows that

(
σνr

µr

)s

= τ rσs−r

is an integer. Hence (from §160, 3.) the relevant quotient σνr/µr is always an
integer in the field Ω, and therefore contained in o, since o comprises all the
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integers of the field Ω.31 So each number σ of the ideal ps is also contained
in pr.

If ρ is a nonzero number in o, then there is always a highest power of p

that divides ρ. For if there were infinitely many exponents r such that the
product ρνr were divisible by µr, then, since there are only finitely many
incongruent numbers (mod ρ), there would necessarily be two distinct such
exponents r satisfying

ρνr

µr
≡ ρνs

µs
(mod ρ),

(
ν

µ

)r

=

(
ν

µ

)s

+ ω,

where ω is an integer. Hence, from this it would follow (from §160, 3.) that
ν is divisible by µ, which is not the case, since otherwise p would be = o.

If pr, ps are the highest powers of p dividing ρ, σ, respectively, then pr+s

is the highest power of p dividing ρσ. For, since ρνr = ρ′µr, σνs = σ′µs, and
neither of the products νρ′, νσ′ is divisible by µ, it follows that ρσνr+s =
ρ′σ′µr+s, and νρ′σ′ cannot be divisible by µ, since p is a prime ideal.

If e ≥ 1 is the exponent of the highest power of p that divides µ itself,
then µνe = κµe, where νκ is not divisible by µ. So it follows that νe = κµe−1,
i.e. the exponent of the highest power of p that divides ν is = e − 1. The
ideal pe consists of all the roots θ of the congruence κθ ≡ 0 (mod µ). The
integer λ = κµ/ν = e

√
µκe−1 is divisible by p but not by p2. Hence λr is

divisible by pr but not by pr+1, whereby it follows, parenthetically, that the
ideals pr and pr+1 are really distinct. Finally, the following theorem is clear:

Each power pr of a simple ideal p is not divisible by any prime ideal other
than p. For if π is any number in p, then any prime ideal that divides pr

must also divide πr, and so (by 3.) divide π itself; i.e. it must divide p itself,
and so must be equal to p.

5. The importance of the simple ideals and their analogy with the rational
primes comes immediately to the fore in the following main theorem:

If all the powers of simple ideals that divide a nonzero number µ also
divide a number η, then η is divisible by µ. If η is not divisible by µ, then
(by 3.) there is a number ν divisible by η with the property that all roots
π of the congruence νπ ≡ 0 (mod µ) form a simple ideal p that divides µ.
If pe is the highest power that divides µ, then (from 4.) pe−1 is the highest
power that divides ν. Since ν is divisible by η, then η cannot be divisible

31When this condition is not satisfied, the above theorem loses its general validity; this
is important for the generalization of the definition of an ideal (cf. §165, 4).
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by pe, as was to be proved. Clearly the same theorem can also be expressed
as follows: Every principal ideal i(µ) is the least common multiple of all the
powers of simple ideals that divide µ. At once we have the corollary:

Every prime ideal p is a simple ideal. If µ is any nonzero number in
p, then p (by 3.) must divide powers of simple ideals whose least common
multiple is i(µ); thus p itself (by 4.) is a simple ideal. — We will therefore
speak only of prime ideals in the future, and no longer of simple ideals.

If all the powers of prime ideals that divide an ideal m also divide a number
η, then η is divisible by m. If η is not divisible by m, then (from 3.) there
is a number ν divisible by η with the property that all the roots π of the
congruence νπ ≡ 0 (mod m) form a prime ideal p. If pe is the highest power
of p that divides m, then in m there is a number µ that is not divisible by pe+1,
and such that the ideal r consisting of all the roots ρ of the congruence νρ ≡
0 (mod µ) is divisible by p, since νρ ≡ 0 (mod m). If now pe, p′e

′
, p′′e

′′
, . . . are

all the highest powers of prime ideals p, p′, p′′, . . . that divide µ, then, as a
consequence of the main theorem above, r consists of all the common roots
ρ of the congruences νρ ≡ 0 (mod pe), νρ ≡ 0 (mod p′e

′
), νρ ≡ 0 (mod p′′e

′′
)

etc., i.e. r is the least common multiple of ideals q, q′, q′′, . . . which consist,
respectively, of the roots of each of these congruences. Since now the ideals
q′, q′′, . . ., as divisors of p′e

′
, p′′e

′′
, . . ., are not divisible by p, and since r is

divisible by p, q must also (by 4.) be divisible by p. Consequently pe can not
divide ν (since otherwise q would be = o, and so not divisible by p). Then ν
is divisible by η, and so pe cannot divide η, as was to be proved.

Clearly this fundamental theorem can also be expressed as follows: Every
ideal is the least common multiple of all the powers of prime ideals that
divide it. This corresponds to the fundamental theorem of rational number
theory on the composition of numbers from primes (§8). It follows that every
ideal m is completely determined once the highest powers pe, p′e

′
, p′′e

′′
, . . . of

prime ideals that divide it are given. Without further work we also have the
following theorem: An ideal m is divisible by an ideal d if and only if all the
powers of prime ideals that divide d also divide m. This follows immediately
from the concept of the least common multiple.

If m is the least common multiple of pe, p′e
′
, p′′e

′′
, . . ., where p, p′, p′′ are

distinct prime ideals, then N(m) = N(p)eN(p′)e′N(p′′)e′′ . . .. There is always
(by 4.) a number η that is divisible by pe−1 but not by a = pe. The ideal r

consisting of all roots ρ of the congruence ηρ ≡ 0 (mod a) is distinct from o

(because it does not contain the number 1) and is a divisor of p (by 4.), and
is therefore equal to p. Since, furthermore, the greatest common divisor d of
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the ideals a = pe and i(η) are equal to pe−1 by the fundamental theorem we
have just proved, it follows (from 2.) that N(a) = N(r)N(d), i.e. N(pe) =
N(p)N(pe−1), and hence, in general, N(pe) = N(p)e. — Now (by Definition
2.) the least common multiple m of the ideals pe, p′e

′
, p′′e

′′
. . . is at the same

time that of the ideals a = pe and b, where b is the least common multiple
of the ideals p′e

′
, p′′e

′′
. . .. Since, further (by the fundamental theorem), o

is the greatest common divisor of a and b, it follows (by 2.) that N(m) =
N(a)N(b), i.e. N(m) = N(p)eN(b). The theorem to be proved clearly follows
from this.

6. If one multiplies all the numbers of an ideal a with all the numbers of
an ideal b, these products and their sums form an ideal that is divisible by
a and b, which will be called the product of a and b and denoted ab. From
this definition it is immediately clear that ao = a, ab = ba, and further
(ab)c = a(bc) (cf. §§1, 2, 147). We also obtain the following theorem:

If pa, pb are the highest powers of a prime ideal p that divide a, b respec-
tively, then pa+b is the highest power of p that divides ab. Also, N(ab) =
N(a)N(b).

For, from the definition it follows immediately (considering 4.) that ab

is divisible by pa+b. Since, furthermore, there exists a number α in a that is
not divisible by pa+1, and a number β in b that is not divisible by pb+1, there
is a number αβ in ab that is not divisible by pa+b+1, whereby the first part
of the theorem is proved. If a is the least common multiple of the powers
pa, p′a

′
, p′′a

′′
, . . . of distinct prime ideals p, p′, p′′, . . ., and b is the least common

multiple of the powers pb, p′b
′
, p′′b

′′
, . . ., then ab is the least common multiple

of the powers pa+b, p′a
′+b′ , p′′a

′′+b′′ , . . ., whereby (considering 5.) the second
part of the theorem follows as well.

Since the equation papb = pa+b also follows from this theorem, the ter-
minology and notation we chose above (in 4.) is justified. If furthermore
p, p′, p′′, . . . are distinct prime ideals, then pap′a

′
p′′a

′′
. . . is the least common

multiple of the powers pa, p′a
′
, p′′a

′′
, . . .. It is also clear that the concept of

exponentiation can be extended to any ideal a by the definition ar+1 = aar.
Finally, if a is divisible by d, there is always exactly one ideal r with the
property that a = rd; for if pa, pd are the highest powers of p that divide
a, d respectively, then d ≤ a, and d is the product of all the powers pa−d.
Considering this, we easily see that the previous theorems (in 2.) can now
be expressed more simply.

7. We now call a and b relatively prime ideals when their greatest common
divisor is = o. Likewise, a number η will also be called relatively prime to
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the ideal a when a and i(η) are relatively prime ideals. It is then clear that
the theorems of rational number theory on relative primality can easily be
carried over to the theory of ideals. However, here we will rest content to
prove the following important theorem (cf. §25):

If a, b are relatively prime ideals, and µ, ν are two given numbers, then
there is always exactly one class of numbers η (mod ab) that satisfy the
conditions η ≡ µ (mod a), η ≡ ν (mod b). For if µ, ν, η run through com-
plete residue systems for the three modules a, b, ab respectively, then each
number η corresponds to exactly one combination µ, ν in such a way that
µ ≡ η (mod a), ν ≡ η (mod b). If further two different numbers η, η′ of
the residue system for the module ab corresponded to the same combination
µ, ν, then η − η′ would be divisible by a as well as by b, and so also by ab

(since a, b are relatively prime ideals); but then η ≡ η′ (mod ab), contrary to
our assumption. Hence as η runs through all its values, of which there are
N(ab) = N(a)N(b), it gives rise to just as many different combinations µ, ν.
Since there are in fact exactly this many different combinations µ, ν, every
combination µ, ν must in turn correspond to some number η, as was to be
proved.

If ψ(a) is the number of incongruent relatively prime numbers (mod a)
that are relatively prime to a, and a, b are relatively prime, then ψ(ab) =
ψ(a)ψ(b). If further p is a prime ideal and e ≥ 1, then ψ(pe) = N(pe) −
N(pe−1) = N(p)e−1(N(p)− 1). For, if δ runs through all r numbers that are
divisible by p and incongruent with respect to pe, and further γ runs through
a complete system of residues (mod p), then the numbers γ + δ form (by 2.)
a complete residue system (mod pe); then N(pe) = rN(p), and r = N(pe−1).
Now, such a number γ + δ is relatively prime to pe if and only if γ is not
≡ 0 (mod p). Therefore there are r(N(p)− 1) such numbers γ + δ relatively
prime to pe, as was to be proved.

If p is a prime ideal, there is always (by 4.) a number λ which is divisible
by p but not by p2, and hence a number λe which is divisible by pe but not
by pe+1. If not p, p′, p′′, . . . are distinct prime ideals, and λ′, λ′′, . . . bears the
same relationship to p′, p′′, . . . as λ bears to p, then there always exists, for
given exponents e, e′, e′′, . . ., a number η, which satisfies the congruences

η ≡ λe (mod pe+1), η ≡ λ′e
′
(mod p′e

′+1),

η ≡ λ′′e
′′

(mod p′′e
′′+1) . . .

since the moduli are relatively prime ideals. Then clearly i(η) = mpep′e
′
p′′e

′′
. . .,
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and the ideal m is not divisible by any of the prime ideals p, p′, p′′, . . .. Hence,
the next theorem follows immediately:

If a, b are any two ideals, then there is always an ideal m relatively prime
to b, such that am is a principal ideal. For if p, p′, p′′, . . . are all the different
prime ideals that divide ab, and a = pep′e

′
p′′e

′′
. . . (where the exponents can

also be = 0), then, as we have just shown, there is a principal ideal i(η) = am,
divisible by a, with the property that b and m are relatively prime.

From this it also follows that each ideal a which is not a principal ideal
can always be seen as the greatest common divisor of two principal ideals.
For, one can choose a principal ideal i(η′) = ab at will, and one can always
choose a second i(η) = am so that b and m are relatively prime ideals. All
the numbers of the ideal a are then of the form ηω + η′ω′, where ω, ω′ run
through all the numbers in o.
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