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Abstract

In 1837, Dirichlet proved that there are infinitely many primes in any
arithmetic progression in which the terms do not all share a common
factor. Modern presentations of the proof are explicitly higher-order, in
that they involve quantifying over and summing over Dirichlet characters,
which are certain types of functions. The notion of a character is only
implicit in Dirichlet’s original proof, and the subsequent history shows a
very gradual transition to the modern mode of presentation.

In this essay, we describe an approach to the philosophy of math-
ematics in which it is an important task to understand the roles of our
ontological posits and assess the extent to which they enable us to achieve
our mathematical goals. We use the history of Dirichlet’s theorem to un-
derstand some of the reasons that functions are treated as ordinary objects
in contemporary mathematics, as well as some of the reasons one might
want to resist such treatment. We also use these considerations to illu-
minate the formal treatment of functions and objects in Frege’s logical
foundation, and we argue that his philosophical and logical decisions were
influenced by many of the same factors.
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1 Introduction

The philosophy of mathematics has long been concerned with the nature of
mathematical objects, and the proper methods for acquiring mathematical knowl-
edge. But as of late some philosophers of mathematics have begun to raise
questions of a broader epistemological character: What does it mean to prop-
erly understand a piece of mathematics? In what sense can a proof be said to
explain a mathematical fact? In what senses can one proof be viewed as better
than another one that establishes the same theorem? What makes a concept
fruitful, and what makes one definition more natural than another? Why are
certain historical developments viewed as important advances? Questions like
these are sometimes classified as pertaining to the methodology of mathematics,
in contrast to more traditional ontological concerns.

One of our goals in this essay is to argue that methodology and ontology
cannot be so cleanly separated. Certainly part of the justification for our on-
tological commitments stems from the positive effects those commitments have
on the practice, and, conversely, “internal” methodological shifts are influenced
by a broader conception as to what is permissible. In Section 2, we describe
a model for historical change that closely links ontological and methodological
considerations.

One of the hallmarks of the nineteenth century transition to modern mathe-
matics was the adoption of implicit or explicit set-theoretic language and meth-
ods. For Gauss [32], the number-theoretic relation of congruence modulo m was
a relation that was similar to equality, and addition and multiplication modulo
m were operations on integers that respect that relation. Today, however, we
can form the quotient structure of integers modulo m, which consists of classes
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of integers that are equivalent modulo m. Addition and multiplication then lift
to operations on these classes. This amounts to reifying the property of being
equivalent to an integer a modulo m to an object, [a], the equivalence class of
a. Similarly, to restore the property of unique factorization to the algebraic in-
tegers in a cyclotomic field, Kummer [42] introduced properties P (α) that were
meant to be interpreted as the assertion that α is divisible by a certain “ideal
divisor.” Dedekind [18] later reified the property P to the class of α that satisfy
it, thereby giving rise to the modern notion of an ideal in a ring of integers.
Other nineteenth century examples include the construction of quotient groups,
or the lifting of Gauss’ operation of “composition” of binary quadratic forms to
equivalence classes of such forms.

What these instances have in common is that they involve treating certain
higher-order entities — classes of integers, classes of algebraic integers, classes of
quadratic forms, or classes of elements in a group or a ring — as objects in their
own right. By this we mean that, in particular, one can quantify over them,
sum over them, and define operations on them. Moreover, one can consider
algebraic structures whose elements are such classes, much as one can consider
algebraic structures whose elements are integers or real or complex numbers.

Much of what can be said about the treatment of classes as objects in the
nineteenth century applies to the treatment of functions as objects as well.
In 1837, Dirichlet proved that there are infinitely many prime numbers in any
arithmetic progression in which the terms do not all share a common factor. Our
goal here is to study the role that certain types of functions, called Dirichlet
characters, play in contemporary presentations of Dirichlet’s proof, and the
historical process that has led to our contemporary understanding.

In Section 2, we present a framework for assessing the ontological commit-
ments of a body of mathematics, one which is informed by, and can inform,
the history of mathematics. In Section 3, we provide an overview of Dirichlet’s
proof, and in Section 4, we clarify the senses in which contemporary presenta-
tions treat characters as ordinary mathematical objects. Despite the name, the
notion of a Dirichlet character is not present in Dirichlet’s original presentation.
In Sections 5 and 6, we describe the history of presentations of Dirichlet’s the-
orem, which shows a fitful and gradual transition to modern terminology and
usage. In doing so, we draw on a detailed historical study that we have carried
out in another work [5], which we will refer to as “Concept” in the presentation
below.

In Section 7, we argue that, as per the model presented in Section 2, the
gradual adoption of the modern treatment of characters is best viewed as an
ontological response to pragmatic mathematical concerns, and we explore some
of the considerations that bear on the rationality of the outcome. Thus we
use the history to help us understand and assess some of the reasons that we
treat functions as objects in current mathematical practice. Complementing the
mathematical narrative, in Section 8, we consider Frege’s conflicted attitudes
towards the treatment of functions as objects, and in Section 9, we argue that
key choices in the design of his formal system were motivated by the same sorts
of considerations. This is not to say that Frege’s logico-philosophical concerns
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should be seen as properly mathematical, or vice versa. Rather, they both
stem from the need to balance two key desiderata: the desire, on the one hand,
for flexible and uniform ways of dealing with higher-order entities in the many
guises in which they appear, and the desire, on the other hand, to make sure
that the methods of doing so are clear, coherent, and meaningful.

2 From methodology to ontology

Let us start by distinguishing between two kinds of questions one can ask, having
to do with the existence of mathematical objects. On the one hand, we can ask
question such as:

• Is there a nontrivial zero of the Riemann zeta function whose real part is
not equal to 1/2?

• Are there noncyclic simple groups of odd order?

These are fundamentally mathematical questions. Answering them is not easy:
the Riemann hypothesis posits a negative answer to the first, while the Feit-
Thompson theorem, a landmark in finite group theory, provides a negative an-
swer to the second. But even in the first case, where we do not know the answer
to the question, we feel that we have a clear sense as to what kind of argument
would settle the issue one way or another. Put simply, questions like these can
be addressed using conventional mathematical methods. In contrast, there are
questions like these:

• Do the natural numbers (really) exist, and what sorts of things are they?

• Are there infinite totalities?

• What kinds of sets and functions exist (if any), and what properties do
they have?

• Are there infinitesimals, fluxions, fluents, and ultimate ratios?

These are questions as to the ultimate nature of mathematics and its objects of
study, and seem to call for a more general, open-ended philosophical analysis.
What is sought is not just an axiomatization of mathematics or an enumeration
of the mathematical objects that exist, but also explanation as to why we are
justified in asserting in their existence, with an overall account that squares
with broader epistemological and scientific concerns.

The distinction between the two types of questions may call to mind the log-
ical positivists’ distinction between questions that are “internal” to a linguistic
framework, and “external” or “pragmatic” questions pertaining to the choice
of a framework itself. Some take this distinction to be have been repudiated,
decisively, by the criticisms of W. V. O. Quine [54]. But keep in mind that
Quine’s arguments, which were directed against the claim that there is a sharp,
principled distinction between the two sorts of questions, were not meant to
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show that there is no difference between them at all. In locating both kinds of
questions on the common continuum of scientific inquiry, he did not deny that
different kinds of questions call for different sorts of answers; indeed, his influen-
tial Word and Object [57] is an extended exploration of the considerations that
he took to bear on “philosophical” questions of the latter sort. Nothing we say
below commits us to a sharp distinction, and it seems relatively uncontroversial
to say that insofar as any rational arguments can be brought to bear on the
second group of questions, these will look different from the kinds of arguments
that are brought to bear on the first.

Despite their different characterizations of the philosophical project, Carnap
and Quine shared the view that ontological questions come down to pragmatic
questions as to the choice of a conceptual framework. Here is what Carnap had
to say about our scientific commitments to abstract objects:

The acceptance cannot be judged as being either true or false because
it is not an assertion. It can only be judged as being more or less
expedient, fruitful, conducive to the aim for which the language is
intended. Judgments of this kind supply the motivation for the
decision of accepting or rejecting the kind of entities.1 [10, p. 250]

Quine offered the following amendment:

Consider the question whether to countenance classes as entities.
This, as I have argued elsewhere, is the question whether to quantify
with respect to variables which take classes as values. Now Carnap
has maintained that this is a question not of matters of fact but
of choosing a convenient language form, a convenient conceptual
scheme or framework for science. With this I agree, but only on the
proviso that the same be conceded regarding scientific hypotheses
generally. [54, p. 43]

We take these views seriously here, seeing it as an important philosophical
task to clarify the role of our ontological posits with respect to ordinary mathe-
matical activity, and evaluate their efficacy towards achieving our mathematical
goals. This amounts to something like the naturalist approaches to the philos-
ophy of mathematics advocated by Kitcher [39], Burgess [9], and Maddy [45],
focused on specific aspects of mathematical practice.

How, then, should such an analysis proceed? It is instructive to consider
those historical situations in which the mathematical community faced possibil-
ities for methodological or ontological expansion and reacted accordingly. For
example, it is helpful to consider the ancient Greek idealizations of number and
magnitude, and the theory of proportion; the gradual acceptance of negative

1Here and below, when the bibliographic entry of a work includes a reprinted version, page
numbers in the references refer to the reprinted version. Similarly, when the bibliographic
entry includes an English translation, our translations are taken from that source, unless we
indicate otherwise. Where no translation is listed, the translations are our own. The original
versions of most of the mathematical sources quoted here can be found in “Concept,” so we
have not reproduced them here.
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numbers, and then complex numbers, in the Western tradition; the use of al-
gebraic methods in geometry, infinitesimals in the calculus, points at infinity
in projective geometry; the development of the function concept from Euler
to modern times; the gradual set-theoretic treatment of algebraic objects like
cosets, ideals, equivalence classes in the nineteenth century; and so on. By
studying the historical concerns regarding these expansions as well as the pres-
sures that led to their ultimate acceptance, we can hope to better understand
the factors that influence such developments.

Indeed, at junctures like these, historical developments tend to follow a
common pattern. First, expansions are met with resistance, or at least, ex-
treme caution. Sometimes, the expansions can be explained in terms of the
more conservative practice; for example, complex numbers can be interpreted
as ordered pairs, algebraic solutions to geometric problems can be reinterpreted
geometrically, and equations can be rewritten to avoid consideration of negative
quantities. In other cases, the expansions are not generally conservative, but,
at least, can be explained away in particular instances; for example, arguments
involving infinitesimals can sometimes be interpreted in terms of “ultimate ra-
tios” in a geometric diagram, and operations on abstract objects can sometimes
be understood as operations on explicit representations. This makes it possible
to adopt the expansions, tentatively, as convenient shorthand for more tedious
but conservative arguments. Over time, the rules and norms that govern the
expansions are clarified, and the expansions themselves prove to be convenient,
or even indispensable, while they do not cause serious problems. Over time, the
mathematical community grows used to them, to the point where they become
part of the usual business of mathematics.

Whiggish narratives tend to dismiss such historical hand-wringing and shilly-
shallying as short-sighted conservativism that stands in the way of mathematical
progress. We, however, prefer to view it as a rational response to the proposed
expansions, whereby the benefits are carefully weighed against the concerns. In
hindsight, we tend to make too little of the pitfalls associated with an ontolog-
ical or methodological expansion. To start with, there are concerns about the
consistency and coherence of the new methods, that is, worries as to whether
the changes will lead to mistakes, false results, or utter nonsense, perhaps when
employed in situations that have not even been imagined. Kenneth Manders
has also emphasized the importance of maintaining control of our mathematical
practices [47]. Mathematics requires us to be able to come to agreement as to
whether a proof is correct, or whether a given inference is valid or not. If new
objects come with rules of use that are not fully specified, or vague, or unclear,
the practice is in danger of breaking down. In a sense, this concern comes prior
to concerns of consistency: if it is not clear what properties abstract magni-
tudes, negative numbers, complex numbers, infinitesimals, sets, and “arbitrary”
functions have, it doesn’t even make sense to ask whether using them correctly
will lead to contradictions.2

2Mathematics, however, often gets by surprisingly well with concepts that are problematic,
incompletely specified, and not fully understood, something which has been emphasized by
Wilson [67] and Urquhart [66].
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And then there are further concerns as to whether the new methods are
meaningful and appropriate to mathematics. Even if a body of methods is
consistent and clearly specified, it may still fail to provide us with the results
we are after. If we expect an existence proof to yield certain kinds of information
about the object that is asserted to exist, methods that fail to provide that sort
of information do not constitute mathematics—or, at least, not the kind of
mathematics we should be doing. If you expect a mathematical theory to make
scientific predictions that we can act on rationally, it is a serious concern as to
whether the new methods can deliver.

In short, the concerns are not easily set aside. What, then, are the factors
that might sway a decision in favor of an expansion? Mathematicians tend to
wax poetic in their praise of conceptual advances, highlighting the power of new
methods, the elegance and naturality of the resulting theory, and the insight and
depth of the associated ideas. Part of our goal here is to de-romanticize these
virtues and gain clarity as to what might be achieved. In many instances, the
virtues in question have a lot to do with efficiency and economy of thought:3

we tend to value methods that make it possible to solve problems that were
previously unsolvable, or simplify proofs and calculations that were previously
tedious, complex, and error-prone. Below we will consider specific ways in
which ontological and methodological expansions help us manage complex tasks
by suppressing irrelevant detail, making key features of a problem salient, and
keeping key information ready-to-hand. We will also try to understand the way
they make it possible to generalize and extend results, and facilitate the transfer
of ideas to other domains.

To summarize our high-level historical model: when mathematics is faced
with methodological expansion, benefits such as simplicity, generality, and effi-
ciency are invariably weighed against concerns as to the consistency, cogency,
and appropriateness of the new methods. Sufficient benefit encourages us to
entertain the changes cautiously, while trying to minimize the dangers involved.
Cogency is obtained by working out the norms and conventions that govern the
new methods. Consistency may not be guaranteed, but our experiences over
time can bolster our faith that the new methods do not cause problems. In this
regard, initial checks that the new methods are partially conservative over the
old ones helps preserve mathematical meaning, and reassures us that even if
the new methods turn out to be problematic, one will be able to restrict their
scope in such a way that preserves their utility.4 The philosophy of mathemat-
ics should give us better means to evaluate such expansions: to talk about the
cogency of a mathematical argument and whether it delivers the desired result,
and to understand the ways in which our ontological posits and methodological
expansions improve our ability to reason effectively.

A salient feature of our approach is that we aim to take mathematics at
face value: when our best mathematical theories tell us that numbers and func-

3The phrase is borrowed from Ernst Mach’s The Science of Mechanics [44]; we are grateful
to Michael Detlefsen for bringing this to our attention.

4Wittgenstein’s discussion of contradiction is interesting in this regard; see [70, Lectures
XI–XII].
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tions exist, our best philosophical theories should not repudiate those claims.
This feature is common to other approaches to the philosophy of mathematics,
such as the platonism espoused by William Tait [63, §5], or the non-eliminative
structuralism proposed by Charles Parsons [51, §18]. On the other hand, we
recognize an ongoing need for sustained reflection on our mathematical goals
and methods, in order to better understand and improve that practice. Taking
mathematics at face value doesn’t mean viewing it as fixed and unchanging;
mathematics has evolved for centuries and will continue to do so, guided, we
hope, by thoughtful reflection of this sort.

At times, it may seem that our treatment of ontological questions verges on
a kind of formalist instrumentalism, for example, the view that there is nothing
more to mathematics than linguistic conventions, which are to be adjudicated
on the basis of “pragmatic” concerns. To be sure, we take pragmatic concerns to
be an important target of philosophical study, but insofar as there is anything
to be made of the realism/anti-realism debate with respect to mathematics,
nothing we say here should preclude a realist position. For example, Hilary
Putnam has argued that

. . . at least when it comes to the theories that scientists regard as
most fundamental. . . we should regard all of the rival theories as
candidates for truth or approximate truth, and that any philosophy
of mathematics that would be inconsistent with so regarding them
should be rejected. [52, p. 184]

Moreover:

. . . a prima facie attractive position—realism with respect to the
theoretical entities postulated by physics, combined with antirealism
with respect to mathematical entities and/or modalities—doesn’t
work. [ibid., p. 188]

Considering our mathematical and scientific theories as “candidates for truth or
approximate truth” does not preclude reflecting on those theories and bringing
pragmatic considerations to bear on the choices among them. Indeed, that is
an integral part of the scientific enterprise, and it is the kind of activity we hope
to support.

3 An overview of Dirichlet’s theorem

Two integers, m and k, are said to be relatively prime, or coprime, if they have
no common factor. In 1837, Dirichlet proved the following:

Theorem 3.1. If m and k are relatively prime, the arithmetic progression
m,m+ k,m+ 2k, . . . contains infinitely many primes.

In other words, if m and k are relatively prime, there are infinitely many
primes congruent to m modulo k.
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In 1798, Legendre had assumed this, without justification, in a purported
proof of the law of quadratic reciprocity. Gauss pointed out this gap, and
presented two proofs of quadratic reciprocity in his Disquisitiones Arithmeticae
of 1801, which do not rely on that fact. He ultimately published six proofs of
quadratic reciprocity, and left two more in his Nachlass, but he never proved
the theorem on primes in an arithmetic progression. Dirichlet’s proof is notable
not only for settling a longstanding open problem, but also for its sophisticated
use of analytic methods to prove a number-theoretic statement.

3.1 Euler’s proof that there are infinitely many primes

As Dirichlet himself made clear, the conceptual starting point for his proof lies
in the work of Euler. In the Elements, Euclid proved that there are infinitely
many primes, but his proof does not provide much information about how they
are distributed. Euler, in his Introductio in Analysin Infinitorum [22], proved
the following:

Theorem 3.2. The series
∑
q

1
q diverges, where the sum is over all primes q.

This implies that there are infinitely many primes, but also says something
more about their density. For example, since we know that the series

∑
n

1
n2 is

convergent, it tells us that, in a sense, there are “more” primes than there are
squares.

Euler’s proof of Theorem 3.2 centers around his famous zeta function,

ζ(s) =

∞∑
n=1

n−s = 1 +
1

2s
+

1

3s
+ . . . ,

defined for a real variable s. (The zeta function was later extended by Riemann
to the entire complex plane via analytic continuation.) It is not hard to show
that the series ζ(s) converges whenever s > 1. In that case, the infinite sum
can also be expressed as an infinite product:

∞∑
n=1

n−s =
∏
q

(
1− 1

qs

)−1
, (1)

where the product is over all primes q. This is known as the Euler product
formula. Roughly, this holds because we can write each term of the product as
the sum of a geometric series,(

1− 1

qs

)−1
= 1 + q−s + q−2s + . . .

and then expand the product into a sum. The unique factorization theorem tells
us that every integer n > 1 can be written uniquely as a product qi11 · q

i2
2 · · · q

ik
k .

This means that the term n−s = q−i1s1 · q−i2s2 · · · q−iksk will occur exactly once in
the expansion, corresponding to the choice of the ijth element of the sum for each
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qj , and the choice of 1 in every other sum. Since we are dealing with infinite
sums and products, the Euler product formula implicitly makes a statement
about limits, and some care is necessary to make the argument precise; but this
is not hard to do.

If we take the logarithm of each side of the product formula and appeal to
properties of the logarithm function, we obtain

log

∞∑
n=1

n−s =
∑
q

− log

(
1− 1

qs

)
.

Using the Taylor series expansion

log(1− x) = −x− x2/2− x3/3− . . .

and changing the order of summations yields

log

∞∑
n=1

n−s =
∑
q

1

qs
+

∞∑
n=2

1

n

∑
q

1

qns
.

Remember that we want to show that
∑
q

1
q diverges. Notice that the first term

on the right-hand side of the above equation is
∑
q

1
qs . Thus we should consider

what happens as s tends to 1 from above. One can show that the second term
on the right-hand side is bounded by a constant that is independent of s, a fact
that can be expressed using “big O” notation as follows:

log

∞∑
n=1

1

ns
=
∑
q

1

qs
+O(1). (2)

As s approaches 1 from above, the left-hand side clearly tends to infinity. Thus,
the right-hand side,

∑
q

1
qs , must also tend to infinity, which implies that

∑
q

1
q

diverges.

3.2 Dirichlet’s approach

To make the ideas more perspicuous, Dirichlet first considered Theorem 3.1 in
the special case where the common difference is a prime number p. Any prime
q other than p leaves a remainder of 1, . . . , p − 1 when divided by p. Splitting
up the sum in (2) we then have

log

∞∑
n=1

1

ns
=

∑
q≡1 mod p

1

qs
+

∑
q≡2 mod p

1

qs
+ . . .+

∑
q≡p−1 mod p

1

qs
+O(1). (3)

This shows that (2) is too crude to prove Theorem 3.1: to show that there are
infinitely many primes congruent to m modulo p, we need to show that the mth
term on the right-hand side tends to infinity, not just the sum of all such terms.
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More work is therefore needed to tease apart the contribution of the primes
modulo m, for each nonzero residue m modulo p.

Dirichlet sketched his proof in a three-page note announcing the result in
1837 [16], before spelling out the details in a later publication [17]. The method
relies on a trick that seems to come out of nowhere. We describe the trick here,
and in the Appendix offer an explanation as to how Dirichlet may have come
upon this approach.

It is a fact from number theory that for any prime number p, there is a
number g, such that the powers g0, g1, g2, . . . , gp−2 modulo p are exactly the
nonzero residues 1, 2, 3, . . . , p − 1 modulo p in some order. Such an element g
is called a primitive root modulo p. For example, when p = 11, we can choose
g = 2. In that case, the powers of g modulo 11 are

1, 2, 4, 8, 5, 10, 9, 7, 3, 6,

which are just the numbers from 1 to 10 listed in a different order. Notice that
the next element on the list would be 1 again, and the list cycles. In general, if
g is a primitive root modulo p, then gp−1 is equal to 1 modulo p.

The statement that g is a primitive root modulo p means that for each
nonzero residue m modulo p, there is an exponent γ between 0 and p− 2, with
the property that gγ is equal to m modulo p. We will denote this exponent γm
and call it the index of m modulo p with respect to g, as Dirichlet did. For
example, consulting the list above, we see that the index of 10 is 5, because 25

is equal to 10 modulo 11. The function n 7→ γn behaves like a logarithm, in the
sense that if m and n are nonzero residues modulo p, γmn is equal to γm + γn
modulo p− 1. This is because we have

gγm+γn = gγmgγn = mn mod p,

and so γm + γn modulo p− 1 is the exponent corresponding to mn.
We now turn our attention from integer roots modulo a prime to the notion

of a complex root of unity. In general, if n is any integer, the equation xn = 1
will have n distinct roots in the complex numbers. Moreover, we can choose
such a root, ω, that is primitive in the sense that ω0, ω1, ω2, . . . , ωn−1 are all
such roots; taking ω = e2πi/n will do.

Notice that we are now using the phrase “primitive root” in two distinct,
but related, senses: to refer to primitive roots modulo a prime, and to refer to
primitive roots of unity. For future reference, notice also that the expression
xn − 1 factors as (x− 1)(xn−1 + . . .+ x2 + x+ 1). So, for any complex number
x, if x is a solution to xn = 1 other than 1, we have xn−1 + . . .+x2 +x+ 1 = 0.

Returning to Dirichlet’s theorem, let p be any prime, fix a primitive root g
modulo p, and let ω be any (p − 1)st root of 1, primitive or not. Consider the
function χ(n) which maps any nonzero residue n to the value ωγn . The function
χ is multiplicative, which is to say, χ(mn) = χ(m)χ(n) for any two nonzero
residues m and n. This holds because

χ(mn) = ωγmn = ωγm+γn = ωγnωγn = χ(m)χ(n).
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In the next section, we will see the functions χ are exactly the characters on
the group of nonzero residues modulo p. Here, following Dirichlet, we will avoid
writing χ(n) and stick with the notation ωγn .

A crucial ingredient in Dirichlet’s proof is the observation that the Euler
product formula can be generalized. What makes Euler’s argument work is the
fact that (1/ms) · (1/ns) = 1/(mn)s, that is, the fact that the function which
maps n to 1/ns is multiplicative. The same argument goes through if we replace
the quantity 1/ns by the function

ψ(n) =

{
ωγn/ns if n is not divisible by p
0 otherwise.

Thus, generalizing (1), we obtain

∑
p-n

ωγn

ns
=
∏
p 6=q

(
1− ωγq

qs

)−1
.

The sum on the left-hand side ranges over numbers n that are not divisible by p,
and the product on the right ranges over prime numbers q other than p. Euler’s
calculation then shows that we have

log
∑
n

ωγn

ns
=
∑
q

ωγq

qs
+O(1),

in place of (2). Here the first sum ranges over the same values of n, and the
second sum ranges over the same values of p as before. Now decompose the
sum on the right in terms of the remainder that q leaves when divided by p, and
notice that, by definition, γq only depends on this remainder. In other words,
we have

log
∑
n

ωγn

ns
=

( ∑
q≡1 mod p

1

qs

)
ωγ1 +

( ∑
q≡2 mod p

1

qs

)
ωγ2 + . . .+

( ∑
q≡p−1 mod p

1

qs

)
ωγp−1 +O(1). (4)

The next step involves the trick we alluded to above. Remember, to show
that there are infinitely many primes congruent to m modulo p, we want to show
that the coefficient of the mth term in the preceding equation,

∑
q≡m mod p

1
qs ,

approaches infinity as s approaches 1. If we let ω be a primitive (p− 1)st root
of 1, then all the roots are given by ω0, ω1, ω2, . . . , ωp−2. The idea is to plug in
all these roots into the preceding equation, and use that to solve for the mth
coefficient.
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Replacing ω by ωi in the last equation yields

log
∑
n

ωiγn

ns
=

( ∑
q≡1 mod p

1

qs

)
ωiγ1 +

( ∑
q≡2 mod p

1

qs

)
ωiγ2 + . . .+

( ∑
q≡p−1 mod p

1

qs

)
ωiγp−1 +O(1).

This yields p− 1 many equations, as i ranges from 0 to p− 2. To solve for the
mth coefficient, for each i, multiply the ith equation by ω−iγm , and add them.

This is where the magic occurs. If we write Li for the expression
∑∞
n=1

ωiγn

ns

that occurs on the left, then the left-hand side of the sum can be written

logL0 + logL1 · ω−γm + logL2 · ω−2γm + . . .+ logLp−2 · ω−(p−2)γm .

On the right-hand side, the mth term is exactly

(p− 1) ·

( ∑
q≡m mod p

1

qs

)
,

because ωiγm ·ω−iγm = 1 for each i, and we are simply summing the same value,∑
q≡m mod p 1/qs, p − 1 times. When j is different from m, however, the jth

term will be

(ω0(γj−γm) + ω1(γj−γm) + . . .+ ω(p−2)·(γj−γm)) ·

( ∑
q≡j mod p

1

qs

)
.

If we write η = ωγj−γm , then the coefficient in the last expression is

1 + η + η2 + . . .+ ηp−2.

But since ω is a (p − 1)st root of 1, so is η, and since γj 6= γm, η is not equal
to 1. By the observation above, this sum is equal to 0. In other words, all the
other terms magically disappear.

Thus we have shown that

logL0 + ω−γm logL1 + ω−2γm logL2 + . . .+ ω−(p−2)γm logLp−2 =

(p− 1) ·
∑

q≡m mod p

1

qs
+O(1). (5)

Solving for
∑
q≡m mod p 1/qs yields

∑
q≡m mod p

1

qs
=

1

p− 1

(
logL0 + ω−γm logL1 + ω−2γm logL2 + . . .+

ω−(p−2)γm logLp−2

)
+O(1). (6)
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As a result, we have managed to “extricate” the expression
∑
q≡m mod p 1/qs

from (3). The goal is now to show that the this expression approaches infinity
as s approaches 1. We now come to the analytic part of Dirichlet’s proof: he
showed that as s approaches 1, L0 approaches infinity, but each of the other Li’s
approaches a nonzero limit as s approaches 1. This implies that the right-hand
side approaches infinity as s approaches 1. Thus the left-hand side approaches
infinity as well, which is only possible if there are infinitely many primes con-
gruent to m modulo p.

The presentation here follows Dirichlet’s short 1837 presentation fairly closely,
though Dirichlet is more terse. As Dirichlet pointed out in that note, the ar-
gument can be pushed through for an arbitrary modulus k. But, as we will
see in Section 5, the details become unwieldy, and subsequent authors found
more convenient ways to express the ideas. In the next section, we explain how
the argument above can be described in terms of group characters, and then
generalized to the case of an arbitrary modulus.

3.3 Group characters

Let G be a finite abelian group. In contemporary terms, a character on G is
a function χ from G to the set of nonzero complex numbers with the property
that, for every g1, g2 ∈ G, χ(g1g2) = χ(g1)χ(g2). If g is an element of any finite
abelian group, then there is an integer n > 0 such that gn is equal to the identity
element of G. This implies that χ(g)n = χ(gn) = χ(1) = 1. This means that for
every g, χ(g) is a complex root of 1. The notion of “character” introduced in
the last section corresponds to the special case where G is the group of nonzero
residues modulo p, with the operation of multiplication.

The point is that the key properties of the expressions ωγn that came into
play in the last section hold more generally of the set of characters on any finite
abelian group. In particular, for any such group G, one can show that there
are exactly |G| many distinct characters on G, where |G| denotes the number
of elements of G. In the case where G is the group of nonzero residues modulo
p, |G| = p − 1, so the characters correspond to the p − 1 choices of ω in the
previous section. More generally, for any k ≥ 1, the set of residues m modulo
k that have no common factor with k form a group under multiplication. The
cardinality of this group is commonly denoted ϕ(k), and ϕ is known as the Euler
phi function. Thus, for every k, there are ϕ(k) many characters on the group
of residues modulo k.

In fact, the set of characters itself has the structure of a group Ĝ, where
the identity is the character χ1 that always returns 1, and the product of two
characters is given pointwise, (χ · χ′)(g) = χ(g)χ′(g) for every g. The follow-
ing theorem expresses two important properties, known as the “orthogonality
relations” for group characters.

Theorem 3.3. Let G be a finite abelian group. Then for any character χ in

14



Ĝ, we have ∑
g∈G

χ(g) =

{
|G| if χ = χ0

0 if χ 6= χ0,

and for any element g of G, we have∑
χ∈Ĝ

χ(g) =

{
|G| if g = 1G

0 if g 6= 1G.

The remarkable fact is that it is no harder to prove these facts in the general
case than in the specific case where G is a group of residues modulo p. For
example, the second equation clearly holds when g is the identity of G, since,
in this case, each term of the sum is equal to 1. Otherwise, choose a character
ψ such that ψ(g) 6= 1 and note

ψ(g)
∑
χ∈Ĝ

χ(g) =
∑
χ∈Ĝ

ψ(g)χ(g) =
∑
χ∈Ĝ

χ(g),

since multiplying each character χ in Ĝ by ψ simply permutes the elements
of Ĝ. Subtracting the right side of the equation from the left, we see that
(ψ(g) − 1) ·

∑
χ∈Ĝ ψ(g) = 0, and since ψ(g) is not equal to 1, we have that∑

χ∈Ĝ ψ(g) = 0. The first equation can be established in a similar way.
The second orthogonality relation gives rise to the “cancellation trick” used

in the last section, where we multiplied each identity by ω−iγm and added them,
to isolate a particular coefficient. The general phenomenon can be expressed as
follows:

Corollary 3.4. For any g, h ∈ G we have the following:∑
χ∈Ĝ

χ(g)χ(h) =

{
|G| if g = h

0 if g 6= h.

Here z̄ denotes the complex conjugate of z, which is in fact equal to 1/z
when z is a root of unity. The corollary follows from the fact that we have∑

χ∈Ĝ

χ(g)χ(h) =
∑
χ∈Ĝ

χ(g)χ(h)−1 =
∑
χ∈Ĝ

χ(gh−1) =

{
|G| if g = h

0 if g 6= h.

Notice that the abstract algebraic formulation simplifies matters by elimi-
nating clutter. For example, the presentation in the last section depended on
choices of a primitive element g modulo p, and a primitive (p − 1)st root of
unity ω. Although these played a role in the computations, any choice of g and
ω works just as well. The abstract version “factors these out” of the presen-
tation. Recall also that the calculation in the last section required facts such
as γmn = γm + γn. Once again, the abstract version factors this out of the
computation; the requisite property of γ subsumed by the more general fact
that Ĝ is a group, and only the latter fact enters into the proof.
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3.4 A modern formulation of Dirichlet’s proof

With the notion of a group character in mind, we can now describe Dirichlet’s
original proof of Theorem 3.1 in modern terms. Let k be an integer greater than
or equal to 1. It is a fundamental theorem of number theory that an integer n
is relatively prime to k if and only if n has a multiplicative inverse modulo k;
in other words, if and only if there is some n′ such that nn′ ≡ 1 mod k. This
implies that the residues of integers modulo k that are relatively prime to k
form a group, denoted (Z/kZ)∗, with multiplication modulo k. As noted above,
the cardinality of (Z/kZ)∗, that is, the number of residues relatively prime to
k, is denoted ϕ(k).

A character χ on the group of residues modulo k can be viewed as a function
defined on all integers by

X(n) =

{
χ(n mod k) if n is relatively prime to k

0 otherwise.

Such a function is called a Dirichlet character modulo k. Dirichlet characters are
completely multiplicative, which is to say, X(1) = 1 and X(mn) = X(m)X(n)
for every m and n in Z. Mathematicians typically use the symbol χ to range
over Dirichlet characters, blurring the distinction between such functions and
their group-character counterparts. This is harmless, since there is a one-to-one
correspondence between the two, and so we will adopt this practice as well.

Recall that in the case where k is a prime number p, Dirichlet considered
certain expressions Li(s), analogues of Euler’s zeta function, where i is an integer
between 0 and p−2. Each such i corresponds to a choice of a character χ modulo
p. In the modern formulation, then, we define

L(s, χ) =

∞∑
n=1

χ(n)

ns
,

where χ is such a character. The function L(s, χ) is called the Dirichlet L-
function, or L-series.

The calculation in Section 3.2 can be generalized to show:

logL(s, χ) =
∑
q-k

χ(q)

qs
+ O(1).

Now comes the crucial use of Corollary 3.4 to pick out the primes in the relevant
residue class. We multiply each side of the above equation by χ(m) and then
take the sum of these over all the Dirichlet characters modulo k. (Recall that we
can identify each Dirichlet character with the corresponding group character,

that is, the corresponding element of ̂(Z/kZ)∗.) Thus we have:∑
χ∈ ̂(Z/kZ)∗

χ(m) logL(s, χ) =
∑

χ∈ ̂(Z/kZ)∗

χ(m)
∑
q-k

χ(q)

qs
+ O(1).
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To simplify this expression, we exchange the summations on the right-hand side,
and appeal to Corollary 3.4. Since the cardinality of the group (Z/kZ)∗ is ϕ(k),
we obtain ∑

χ∈ ̂(Z/kZ)∗

χ(m) logL(s, χ) = ϕ(k)
∑

q≡m (mod k)

1

qs
+ O(1). (7)

This is analogous to the equation (2) in Euler’s proof, and equation (5) in
Section 3.2. Our goal is once again to show that the left-hand side tends to
infinity as s approaches 1 from above. This implies that the right-hand side
tends to infinity, which, in turn, implies that there infinitely many primes q
that are congruent to m modulo k.

To show that
∑
χ∈ ̂(Z/kZ)∗ χ(m) logL(s, χ) tends to infinity as s approaches

1, we divide the characters into three classes, as follows:

1. The first class contains only the principal character χ0, which takes the
value of 1 for all arguments that are relatively prime to k, and 0 otherwise.

2. The second class consists of all those characters which take only real values
(i.e. 0 or ±1), other than the principal character.

3. The third class consists of those characters which take at least one complex
value.

It is not difficult to show that L(s, χ0) has a simple pole at s = 1, which implies
that the term χ0(m) logL(s, χ0) approaches infinity as s approaches 1. The real
work involves showing that for all the other characters χ, L(s, χ) has a finite
nonzero limit. This implies that the other terms in the sum approach a finite
limit, and so the entire sum approaches infinity.

For characters in the third class, that is, the characters that take on at least
one complex value, the result is not difficult. For characters in the second class,
the result is much harder, and Dirichlet used deep techniques from the theory of
quadratic forms to obtain it. In the years that followed, other mathematicians
found alternative, and simpler, ways of handling this case. But even in modern
presentations, this case remains the most substantial and technically involved
part of the proof.

4 Functions as objects

In Section 5 below, we will discuss, in greater detail, the implicit treatment of
characters in Dirichlet’s original proof, and in Section 6, we will summarize the
gradual historical transition to the modern formulation. The general theme will
be that, over time, characters came to be treated as objects in their own right.
Before surveying the history, however, it will be helpful for us to provide some
general background information on the nineteenth century concept of “func-
tion,” and begin to spell out what it means to treat functions like characters as
“objects.”
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In “Concept,” we discussed a number of nineteenth-century methodological
changes that are clustered around the function concept. These include what we
termed the “unification” or “generalization” of the function concept, whereby
particular instances (including real- and complex-valued functions, number-
theoretic functions, sequences, permutations, transformations, automorphisms,
and so on) gradually came to be subsumed under a general notion; the “lib-
eralization” of the function concept, whereby mathematicians adopted novel
means of defining particular functions, such as Dirichlet’s 1827 example of a
real-valued function that takes one value on the rationals, and another value on
the irrationals; the “extensionalization” of the function concept, whereby func-
tions gradually came to be viewed less as syntactic or algebraic expressions, and
more as the abstract entities denoted by such expressions; and the “reification”
of the function concept, whereby functions were gradually treated as bona fide
mathematical objects.

The notion of “reification” is vague. The claim that over the course of the
century characters gradually become treated as new sorts of objects supports
our contention that the transformation has ontological overtones, but it raises
serious questions as to what, exactly, it means to treat certain entities as objects.

To start with, consider the fact that in our presentation of Dirichlet’s the-
orem we identified the concept of a “character,” reasoned about the entities
falling under this concept, and ascribed various properties to them. This seems
to be a bare-minimum requirement to support the claim that a mathematical
text sanctions certain entities as objects, namely, that it recognizes them as be-
ing entities of a certain sort, capable of bearing predicates and being the target
of certain operations. It does not matter whether we take this sort as funda-
mental (for example, as we take the notion of “integer” in most contexts) or as
derived from a broader sort (for example, when we view characters as functions
of a certain kind). What is important is that the entities belong to a grammati-
cally recognized category, and this category helps determine the predicates and
operations that can be meaningfully ascribed to it. For example, one can talk
about one integer being larger than another, but not one character as being
larger than another. In sum, our first criterion of objecthood is whether the
entities in question have a recognizable role in the grammar of the language.

The fact that we took characters to be “represented” by certain symbolic
expression provides another clue, insofar as we generally speak of a representa-
tion of something or other. For example, we think of expressions like “6” and
“2 × 3” as representing an integer. As Michael Detlefsen has pointed out to
us, one common view is that an “object” is what remains invariant under all
its representations; in other words, what is left over when one has “squeezed
out” all the features that are contingent on particular representations. When
it comes to the notion of a function, what is the underlying invariant? There
may be lots of ways of describing a particular function, but what makes them
representations of the same function is surely that they take the same values
on any given input. Thus treating function expressions extensionally is a sign
that one is reasoning about functions as objects, rather than reasoning about
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the expressions themselves.5

A third hallmark of object-hood that is present in our list is evidenced by
the fact that we can sum over characters, just as we can sum over natural
numbers. Notice that in an expression

∑
χ . . . χ . . ., the variable χ is a bound

variable that ranges over the entities in question. Similar considerations hold
for the universal and existential quantifiers. Viewing the natural numbers as
quintessential mathematical objects, a sign that an entity has attained the status
of object-hood is that it is possible to quantify over them in theorems and
definitions, just as one quantifies over the natural numbers.6 The consideration
admits of degrees: whereas the bare-minimum requirement discussed above may
allow us to state theorems about, and define operations on, “arbitrary” entities
of the sort, a more full-blown notion of object-hood will give us more latitude
in the kinds of quantification and binding that are allowed.

A fourth criterion for object-hood is evidenced by the fact that characters
are allowed to appear as arguments to the L-functions, for example, in the
expression L(s, χ). To avoid making this consideration depend on the modern
notion of a function, let us note that what is essential here is that an expression
denoting a recognized mathematical object (in this case, a complex number) is
allowed to depend on a character, much the way that a real number (s)i in a
sequence depends on the value of the index i, or a value ϕ(n) of the phi function
depends on n. What makes this more potent than the mere ability to define
operations on characters is that the dependent expressions are treated as objects
in their own right. L(s, χ) is not just an operation on s and χ: fixing χ, the
function s 7→ L(s, χ) is an object that one can integrate and differentiate, and
fixing s, we can sum over the values obtained by varying χ.

It is also notable that the characters can be components in the construction of
other mathematical objects and structures. For example, one can form sets and
sequences of characters, in much the same way that one forms sets and sequences
of numbers, and one can define a group whose elements are characters, in much
that same way that one can form a group whose elements are residues modulo
some number m.

To summarize, here are some of the various senses in which one might say
that characters are treated “as objects” in our presentation of Dirichlet’s proof:

1. Characters fall under a recognized grammatic category, which allows us
to state things about them and define operations and predicates on them.

2. There is a clear understanding of what it means for two expressions to
represent the same character, and conventions ensure that the expressions
occurring in a proof respect this “sameness.”

3. One can quantify and sum over characters; in short, they can fall under
the range of a bound variable.

5Recall Quine’s dictum that “there is no entity without identity,” for example in [56].
6This echoes another Quine dictum, “to be is to be the value of a bound variable” [53,

p. 15].
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4. One can define functions which take characters as arguments.

5. One can construct new mathematical entities, like sets and sequences,
whose elements are characters. In particular, characters can be elements
of an algebraic structure like a group.

We recognize that determining the “ontological commitments” of a practice
may not be as clear-cut as Quine’s writings suggest. Our goal here is not to
explicate what it means to say that a certain manner of discourse is committed
to treating some entity as an object. In particular, we do not claim to have given
a precise sense to the question as to whether a particular mathematical proof
is committed to functions as objects. We do claim, however, to have identified
various important senses in which contemporary proofs of Dirichlet’s theorem
treat functions as ordinary mathematical objects, whereas Dirichlet’s original
proof did not.

It may be helpful to compare the way we treat functions today to the way
we treat natural numbers today. For example, the expressions “2 + 2” and “4”
both denote integers, but we think of the number as the object denoted, rather
than the expression. Thus we can send numbers as arguments to functions, and
when we write f(2 + 2) and f(4), it is understood that the function f cannot
distinguish the mode of presentation. We can form sets of numbers, like the
set of even number or the set of prime numbers, and we can consider algebraic
structures on these sets; for example, the ring of integers, or the field of integers
modulo 7. We can quantify over numbers in definitions, such as when we say n
divides m if there is some k such that nk = m, and in theorems, such as when
we assert that every integer greater than one has a prime divisor. If S is a finite
set of integers and f is a function from the integers to the integers or the reals,
we can readily form the sum

∑
x∈S f(x).

In contemporary mathematics, nothing goes awry if you replace integers with
functions in the examples in the last paragraph. In other words, one can define
functionals F (f) that depend only on the extension of f , and not its manner of
presentation. We can consider sets of functions, rings of functions, and spaces of
functions. We quantify over functions in definitions and theorems, and, if S is a
finite set of functions, we think nothing of considering a sum

∑
f∈S F (f). In the

proof of Dirichlet’s theorem, these “higher order” operations are manifest when
we consider the group of characters χ, define the Dirichlet L series L(s, χ), and
form the sum

∑
χ χ(m) logL(s, χ).

In “Concept,” we argued in detail that these very features of the modern
treatment of functions were alien to early nineteenth century mathematics, and
that the history of presentations of Dirichlet’s theorem shows a very gradual
evolution, in fits and starts, towards the contemporary manner of thought. We
will highlight some of the key features of the historical development in Sections 5
and 6, and, in Section 7, explore what the history tells us about the nature of
mathematics.
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5 Dirichlet’s treatment of characters

Contemporary mathematicians are often surprised to hear that there is no ex-
plicit notion of “character” in Dirichlet’s 1837 proof. After all, the expressions
X(n) defined in Section 3.4 are known as “Dirichlet characters” precisely be-
cause of their implicit use in that proof. But Dirichlet did not introduce notation
for the characters or refer to them as such. When we speak of the “characters”
in his proof, we are projecting a modern interpretation onto the symbolic ex-
pressions that appear there.

Remember how it works in the case where the common difference is a prime,
p. Let g be a primitive element modulo p, and for every n coprime to p, let
γn denote the index of n with respect to g, so that gγn ≡ n mod p. Then each
character χ corresponds to a (p − 1)st root of unity ω, with defining equation
χ(n) = ωγn . In that case, Dirichlet wrote ωγn where we would write χ(n).

We obtain all the characters by picking a primitive (p−1)st root of unity, Ω,
so that all the (p− 1)st roots of unity are given by the sequence Ω0, . . . ,Ωp−2.
This provides a convenient numbering scheme for the characters and L-series:
Dirichlet used Lm to denote the L-series based on the character χ that corre-
sponds to Ωm, where we would write instead L(s, χ). And where we would form
a summation over the set of all characters, Dirichlet instead took a summation
over the values 0, . . . , p−2. For example, after demonstrating the Euler product
formula, ∏ 1

1− ωγ 1
qs

=
∑

ωγ
1

ns
= L,

Dirichlet wrote:

The equation just found represents p − 1 different equations that
result if we put for ω its p − 1 values. It is known that these p − 1
different values can be written using powers of the same Ω when it
is chosen correctly, to wit:

Ω0, Ω1, Ω2, . . . , Ωp−2

According to this notation, we will write the different values L of
the series or product as:

L0, L1, L2, . . . , Lp−2

In the case where the modulus k is not prime, the procedure is more com-
plicated. It is a fundamental theorem of group theory that every finite abelian
group can be represented as a product of cyclic groups, but that theorem was
first proved by Kronecker in 1870 [40]. Dirichlet instead used the particular in-
stance of this fact for the group (Z/kZ)∗ of residues modulo k that are relatively
prime with k (these are sometimes called the “units” modulo k). The structure
of that group was known to Gauss. First, write k as a product of primes,

k = 2λpπ1
1 pπ2

2 · · · p
πj
j
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where each pi is an odd prime and πi is greater than or equal to 1. Then the
group of units modulo k is isomorphic to the product of the groups of units
modulo each term in the factor. If p is an odd prime and π is an integer greater
than or equal to 1, then one can more generally find a primitive element cmodulo
pπ. This means that the residue class of c generates the cyclic group (Z/pπZ)∗,
or, equivalently, for every n relatively prime to p there is a γn such that cγn ≡
n mod pπ. Thus we can choose primitive elements c1, . . . , cj corresponding to
pπ1
1 , pπ2

2 , . . . , p
πj
j . If λ ≥ 3, however, there is no primitive element modulo 2λ.

Rather, (Z/2λ)∗ is a product of two cyclic groups, and for every n relatively
prime to 2λ there are an αn and βn such that (−1)αn5βn ≡ n mod 2λ. Thus for
any n relatively prime to k, we can write

n ≡ (−1)αn5βnc
γ1,m
1 c

γ2,m
2 . . . c

γj,m
j mod k

where each γi,n is the index n relative to pπii . As above, if we choose appropriate
roots of unity θ, ϕ, ω1, ω2, . . . , ωj , we obtain a character

χ(n) = θαnϕβnω
γ1,n
1 ω

γ2,n
2 · · ·ωγj,nj .

And, once again, every character is obtained in this way. We should note that
Dirichlet used the notation p, p′, . . . rather than p1, . . . , pj to denote the sequence
of odd primes. Moreover, he used the notation α, β, γ, γ′, . . . to denote the
indices, suppressing the dependence on n. Thus, Dirichlet wrote θαϕβωγω′γ

′
. . .

for the expression we have denoted χ(n) above, leaving it up to us to keep in
mind that α, β, . . . depend on n.

To summarize, in the simple case of a prime modulus p, Dirichlet fixed
a primitive element modulo c, and represented each character χ in terms of
a (p − 1)st root of unity, ω. In that case, the value χ(n) is given by ωγn .
In the more general case of a composite modulus k, Dirichlet fixed primitive
elements modulo the terms of the prime factorization of k, and represented
each character χ in terms of a sequence θ, ϕ, π, π′ of roots of unity. In that
case, the value χ(n) was written θαϕβωγω′γ

′
. . ., suppressing the information

that the exponents α, β, γ, γ′, . . . depend on n. For example, he described the
Euler product formula as follows:

∏ 1

1− θαϕβωγω′γ′ . . . 1
qs

=
∑

θαϕβωγω′γ
′
. . .

1

ns
= L, (8)

where the multiplication sign ranges over all primes, with the ex-
clusion of 2, p, p′, . . ., and the summation ranges over all the posi-
tive integers that are not divisible by any of the primes 2, p, p′, . . ..
The system of indices α, β, γ, γ′, . . . on the left side corresponds to
the number q, and on the right side to the number n. The gen-
eral equation (8), in which the different roots θ, φ, ω, ω′, . . . can be
combined with one another arbitrarily, clearly contains K-many par-
ticular equations. [17, p. 17; equation number changed]
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Note, again, Dirichlet’s characterization of the general equation as “containing”
the particular instances. Here, K is what we have called ϕ(k), the cardinality
of the group (Z/kZ)∗.

Dirichlet went on to observe that we can choose primitive roots of unity
Θ,Φ,Ω,Ω′, . . . so that all choices of θ, ϕ, ω, ω′, . . . can be expressed as powers of
these,

θ = Θa, ϕ = Φb, ω = Ωc, ω′ = Ωc′ , . . . ,

just as in the simpler case. He wrote that we can thus refer to the L-series in a
“convenient” (bequem) way, as La,b,c,c′,..., where a, b, c, c′, . . . are the exponents
of the chosen primitive roots. Notice that the representations just described
depend on fixed, but arbitrary, choices of the primitive roots of unity, as well
as fixed but arbitrary generators of the cyclic groups. Modulo those choices,
we have parameters a, b, c, c′, . . . that vary to give us all the characters; and for
each choice of a, b, c, c′, . . . we have an explicit expression that tells us the value
of the character at n.

For Dirichlet, summing over characters therefore amounted to summing over
all possible choices of this representing data. In the special case of where the
common difference is a prime, p, Dirichlet ran through calculations similar to
those described in Section 3.4 to obtain the following identity:

∑ 1

q1+ρ
+

1

2

∑ 1

q2+2ρ
+

1

3

∑ 1

q3+3ρ
+ . . .

=
1

p− 1
(logL0 + Ω−γm logL1 + Ω−2γm logL2 + . . .+ Ω−(p−1)γm logLp−2).

This is exactly equation (6) above, with Ω in place of our ω, and 1+ρ in place of
s, and the “O(1)” expression left explicit. In the more general case, he arrived
at the analogous result:

∑ 1

q1+ρ
+

1

2

∑ 1

q2+2ρ
+

1

3

∑ 1

q3+3ρ
+ . . .

=
1

K

∑
Θ−αma Φ−βmbΩ−γmcΩ−γ

′
mc′ · · · logLa,b,c,c′,....

Here the summation on the right-hand side of the equation is over the possible
values of a, b, c, c′, . . .. This corresponds to equation (7) in Section 3.4.

Finally, recall from the sketch in Section 3.4 that Dirichlet divided the L
functions into three classes, depending on whether the corresponding charac-
ter was trivial (identically equal to 1), real-valued, or complex-valued. But in
Dirichlet’s presentation, the categorization was made in terms of the roots used
to describe the character. Thus the three classes of L functions were character-
ized as follows:

1. the one in which all the roots contained in the expression are 1

2. those, among the ones that remain, in which all the roots are real (±1)
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3. those in which at least one of the roots is not real

Dirichlet showed that the first approaches infinity as ρ approach 0, while the
others approach finite limits, which establishes the desired conclusion.

Let us summarize the features of Dirichlet’s presentation we wish to high-
light. First, he did not name or identify the characters, and simply used the
corresponding algebraic expressions. The corresponding L functions were then
characterized by the data that appeared in the expression, rather than in terms
of a functional dependence on the character. In other words, Dirichlet wrote
Lm or La,b,c,c′,... where we would write L(s, χ). As a result, where we would
sum an expression over all values of the characters

∑
χ . . ., he summed over

the representing data
∑
m . . . or

∑
a,b,c,c′,... . . .. Finally, in preparation for the

analytic part of the proof, he sorted the L functions in terms of this data, rather
than in terms of the values of the corresponding characters.

In the next section, we will see that, over time, all of these features were
gradually eliminated from later expositions.

6 The transition to the modern treatment of
characters

In “Concept,” we studied the treatment of characters in subsequent work by
Dirichlet (1840, 1841), Dedekind (1863, 1879), Kronecker (1870’s), Weber (1883),
Hadamard (1896), de la Vallée Poussin (1897), and Landau (1909, 1927). We
will not review all the details here, but, rather, summarize the salient features
of the history.

6.1 Reification

We have seen that in Dirichlet’s original proof, characters are present only in
the form of the algebraic expressions ωγn in the simple case, and in the form
θαnϕβnωγnω′γ

′
n . . . in the case of an arbitrary modulus. In 1841, however, Dirich-

let considered expressions

Ωn = ϕαnϕ
′α′n × . . .× ψβnχγnψ

′β′nχ
′γ′n × . . .× θδnηεn

analogous to the characters in his 1837 proof. In this case, however, he intro-
duced the explicit notation Ωn, and isolated four key properties of these values:

1. Ωnn′ = ΩnΩn′ for every n and n′.

2. Ωn′ = Ωn whenever n′ ≡ n (mod k).

3.
∑

Ωl = 0 or
∑

Ωl = 1
4ψ(k) depending on whether there is at least one

root among the roots in Ωl that is different to 1, or whether they are all
equal.
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4. SΩn = 1
4ψ(k) or SΩn = 0 depending on whether n ≡ 1 (mod k) or n 6≡ 1

(mod k), where the sign “S” indicates a sum over all combinations of the
roots that can occur in Ω.

In modern terms, the first clause asserts that the function n 7→ Ωn is a mul-
tiplicative function from the integers to the complex numbers, and the second
asserts that the value Ωn only depends on the value of n modulo p. If you add
the constraints that Ωn is nonzero when n is relatively prime to k and zero
otherwise, this is exactly the algebraic definition of character we presented in
Section 3.3. The third and fourth properties correspond to the two orthogo-
nality relations we presented in Section 3.3. The article provided only a short
sketch of a generalization of his 1837 proof, but it is notable that there Dirich-
let went out of his way to flag these expressions as playing a key role, and to
abstract away the general properties that are common to both proofs.

In 1863, Dedekind gave an exposition of Dirichlet’s proofs in one of the ap-
pendices, or “supplements,” to the first edition of his presentation of Dirichlet’s
lectures on number theory [18]. When presenting the generalization of the Euler
product formula, he went out of his way to point out that the function

ψ(n) =
θαηβωγω′γ

′
. . .

ns

is multiplicative, and that this is what makes the generalization hold. In a
later 1871 edition of the work, he added a footnote, in which he singled out the
numerator of this expression, and introduced the notation χ(n):

The numerator [of ψ(n)] χ(n) = θαηβωγω′γ
′
. . . has the characteris-

tic property χ(n)χ(n′) = χ(nn′) . . .[18, §133, footnote]

It is notable that he went out of his way to add this footnote, calling attention
to the importance of these expressions.7

In 1879, in the third edition of the lectures, Dedekind introduced the notion
of a character in an entirely different context: his theory of ideals in an algebraic
number field. Rather than considering characters on the multiplicative group of
residues modulo an integer, he considered characters defined on another finite
abelian group, namely, on the class group in an algebraic number field:

. . . the function χ(a) also possesses the property that it takes the
same value on all ideals a belonging to the same class A; this value is
therefore appropriately denoted by χ(A) and is clearly always an hth
root of unity. Such functions χ, which in an extended sense can be
termed characters, always exist; and indeed it follows easily from the
theorems mentioned at the conclusion of §149 that the class number
h is also the number of all distinct characters χ1, χ2, . . . , χh and that

7In “Concept,” we mistakenly asserted that Dedekind did not alter the text of this sup-
plement in later editions. He made very few such changes, however, making this particular
addition especially interesting.
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every class A is completely characterized, i.e. is distinguished from
all other classes, by the h values χ1(A), χ2(A), . . . , χh(A).8

As we emphasize in “Concept,” this was not only the first use of the term
“character” in its modern sense, but also, as far as we know, the earliest instance
of the use of the term “function” for something defined on a domain other than
the integers, real numbers, or complex numbers. (A similarly broad use of
the term occurs in Frege’s Begriffsschrift, which was published in the same
year.) We will discuss Frege’s notion of function in detail in Sections 8 and 9.)
Within three years, in an 1882 publication, Weber gave the general definition
of a character of an abelian group and provided a thorough analysis of their
properties.

Thus, over time, the symbolic expressions appearing in Dirichlet’s proof
were named and flagged as entities worthy of attention. Their properties were
stated abstractly, and developed in a manner that were independent of the
original formulation. This, in turn, made it possible to apply the notion in
other settings. As we have argued in Section 4, this provides at least a minimal
sense in which characters can be viewed as objects, namely, as entities which
can bear properties and be a target of assertions.

6.2 Functional dependence and summation

In Section 4, we also flagged it as notable that, in the modern view, functions
can depend on characters, and we can form the sum of an expression with a
variable ranging over the characters. Let us consider the way these features of
the treatment of characters play out in the various presentations of Dirichlet’s
theorem.

We have noted that one benefit of identifying the characters as such is that
it facilitates extracting the central properties that play a role in the proof, such
as the identity ∑

χ∈Ĝ

χ(g) =

{
|G| if g = 1G

0 if g 6= 1G

in Theorem 3.3, and the consequence expressed by Corollary 3.4 that for every
g and h in an abelian group G,

∑
χ ∈ Ĝ

χ(g)χ(h) =

{
|G| if g = h

0 if g 6= h.

In the case where G is the group of nonzero residues modulo p, Dirichlet ex-
pressed the latter by saying that we have

1 + Ωhγ−γm + Ω2(hγ−γm) + . . .+ Ω(p−2)(hγ−γm) = 0

8The quotation appears in §178 in the 1879 edition of the Vorlesungen [18], and in §184 of
the 1894 edition, which is reproduced in Dedekind’s Werke [15]. The translation above is by
Hawkins [36, p. 149].
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except when hγ − γm ≡ 0 mod p− 1, in which case the sum is equal to p −
1. In the case of an arbitrary modulus, Dirichlet did not even extract the
conclusion explicitly. Rather, it is implicitly contained in an argument in which
he considered the sum 1

h

∑
W 1

qh+hρ
,

. . . where the symbol
∑

ranges over all primes q and W denotes the
product of the sums taken over a, b, c, c′, . . . or respectively over∑

Θ(hα−αm)a,
∑

Φ(hβ−βm)b,
∑

Ω(hγ−γm)c,
∑

Ω′(hγ
′−γ′m)c′ , . . . .

[17, p. 340]

This makes it harder to appreciate the nature of the cancellation trick. More-
over, although values Θ,Φ,Ω,Ω′, . . . can be used to define the individual char-
acters, these tuples and the corresponding representation play no role in the
subsequent proof, which depends only on the orthogonality relations and the
multiplicative nature of the characters. It seems reasonable, then, to seek a
manner of expression that abstracts away the details of the representation. We
saw that in his 1841 paper on arithmetic progressions in the quadratic integers,
Dirichlet briefly used the expression SΩn to denote the result of summing the
values of Ωn over all possible combinations of roots that occur in Ω. Kronecker
maintained the dependence of the characters on the defining tuples of data, but
found a much more elegant notation for expressing the dependence. He denoted
the character corresponding to the tuple of parameters (k) by Ω(k), and in the
case of a modulus m, he expressed the second orthogonality relation by writing∑

(k)

Ω(k)(r0) = ϕ(m),

when r0 is congruent to 1 modulo m, and∑
(k)

Ω(k)(r) = 0

otherwise. In his 1883 paper on general characters, Weber adopted a curious
means of abstracting the representation of the characters: he simply assigned
arbitrary indices to the characters, listing them as χ1, . . . , χh. He then expressed
the second orthogonality principle without summation notation, as

χ1(Θ) + χ2(Θ) + . . .+ χh(Θ) = 0,

for each group element Θ. In 1896, however, de la Vallée-Poussin adopted
notation Sχ for summation over characters:

Consider . . . the sum extending over all the characters, that is to say
over all the systems of roots

Sχχ(n) = Sωω
ν1
1 ω

ν2
2 . . .
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. . . For every number n, the sum extending over the totality of char-
acters satisfies

Sχχ(n) = 0,

the only exception being the case where

n ≡ 1 (mod M),

because then all the indices are zero and one has

Sχχ(n) = ϕ(M).

[13, pp. 14–15]

It is notable that he chose a symbol distinct from the usual summation symbol,∑
, which he used for sums ranging over natural numbers. Nonetheless, he

seems to be the only nineteenth century author to have taken summation over
characters at face value.

Setting aside the orthogonality relation, let us consider the subsequent cal-
culation, involving the L-series, where those identities are put to use. We have
observed that the modern notation L(s, χ) allows us to express the dependence
of an L-series on the character χ, and that the notation

∑
χ χ(m) logL(s, χ) al-

lows us to sum over characters, but these means of expression were not available
to Dirichlet. In the case of a prime modulus p, Dirichlet defined the L series

L0, L1, . . . , Lp−2,

where the index corresponds to a particular numeric parameter occurring in the
algebraic expression that we now recognize as the value of the corresponding
character, and

logL0 + Ω−γm logL1 + Ω−2γm logL2 + . . .+ Ω−(p−1)γm logLp−2

to sum over the p− 1 many L series in the case of a prime modulus. In the case
of a general modulus k, each L series has a similar denotation

La,b,c,c′,...

where a, b, c, c′, . . . are a sequence of numeric parameters that appear in the
algebraic expression for the general character, and the summation is denoted∑

Θ−αmaΦ−βmbΩ−γmcΩ−γ
′
mc′ · · · logLa,b,c,c′,...

where the summation ranges over the ϕ(k) many choices of values of a, b, c, c′, . . ..
Thus Dirichlet took the L series to depend on particular tuples of numeric
parameters involved in the definition of the characters, and took summations to
range over these parameters. Dedekind’s 1863 presentation followed Dirichlet
in this respect, as did de la Vallée-Poussin’s 1897 presentation. Hadamard in
1896 and Landau in 1909 adopted a tack similar to Weber’s, assigning arbitrary
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indices to the characters, and then letting the L-series depend on those indices.
For example, Hadamard wrote ψ1, ψ2, . . . , ψϕ(k) for the list of characters modulo
k, and defined the L-functions as follows:

Lv(s) =

∞∑
n=1

ψv(n)

ns
.

The key summation over the characters is then written
∑
v

logLv(s)
ψv(m) .

To the modern eye, it seems strange to assign otherwise meaningless indices
to the characters in order to express the functional dependence of the L series
on a character and to sum over them, when one can just write L(s, χ) and∑
χ. But while it was perfectly natural in the nineteenth century to sum over

integers, summing over the functions themselves may not even have occurred
to these authors. It is not until 1897 that we first see L series expressed as a
functional dependence on characters, when de la Vallée Poussin introduced the
notation Z(s, χ). Subsequent authors adopted the notation L(s, χ), reverting
back to Dirichlet’s use of the letter L. By 1927, for example, Landau was using
L(s, χ) and

∑
χ just as we do today, and from then on the usage seems to have

stuck.

6.3 Extensionalization

Let f(x) be the function on the real numbers defined by f(x) = 3x2+1. In logical
parlance, the intension of this last expression is the manner of presentation, in
some sense — if not the purely syntactic string of symbols, something close
to it. In contrast, the extension is the abstract object denoted, that is, the
abstract input-output relation. Today, when we refer to functions, we generally
have their extensions in mind. A note of intensionality creeps in when we say
things like “the leading coefficient of f” or “the constant term of f ,” but when
called on to explain what we mean, we are generally able to clarify the fact that
by “f” we really mean the expression for f rather than the object itself. The
extensional nature of the function concept is embodied in the fact that when we
define a functional F (f) on a collection of functions, we ensure the definition
does not depend on the manner of presentation of f , since F is supposed to
“act” on the extension, not the intension.

In “Concept,” we argued that this distinction was not as clearly drawn in
the nineteenth century treatment of functions. Early instances of functions
— not just functions on the real and complex numbers, but also objects like
permutations, automorphisms, and so on — were more tightly associated with a
manner of expression. The history of the treatment of characters in Dirichlet’s
theorem shows exactly this sort of ambiguity, and a gradual move towards an
extensional treatment.9

9A referee has suggested that “abstraction” and “abstract treatment” may be more apt
than “extensionalization” and “extensional treatment,” since “extensionality” is often associ-
ated with a set-theoretic interpretation of functions. As the referee concedes, however, that
the word “abstract” has multiple connotations, and so we have stuck with the more focused
terminology.
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Consider, for example, the definition of the concept of character itself. For
each k, the set of characters modulo k can be defined extensionally, as the set
of nonzero homomorphisms from (Z/kZ)∗ to the complex numbers, or inten-
sionally, as functions defined by certain algebraic expressions involving certain
primitive elements modulo the prime powers occurring in the factorization of k,
and certain complex roots of unity. Even though the two definitions give rise to
the same set of characters, proofs can differ in the extent to which they rely on
the specific representations or the abstract characterizing property. Dirichlet’s
proof relied only on the symbolic representations, but we have seen that later
proofs emphasized the key properties of the characters, which were extensional
in nature.

Recall also that Dirichlet divided the L series into three classes, depending
on a corresponding division of the characters on which they depend. Dirichlet
described the division in terms of the tuples of roots appearing in the algebraic
expressions, whereas a modern characterization describes the three kinds of
characters as follows:

1. the character with constant value 1

2. the (other) real-valued characters

3. the (other) complex-valued characters

What is perhaps surprising is that even as later authors introduced notation
like χ or ψi to range over characters, they still carried out the classification
in terms of the roots. For example, both Dedekind’s and Hadamard’s division
of the characters into the trivial, real, and complex cases was also described in
terms of the characters’ representations, even though the distinction is naturally
expressed in terms of the values they take. Kronecker and de la Vallée-Poussin
provided both descriptions, and even though Kronecker made it clear that all
operations and classifications can be carried out, algorithmically, in terms of
the canonical representations, his careful choice of notation and organization
made the extensional properties salient. By 1927, Landau clearly favored the
extensional characterization in his textbook.

As yet another means of highlighting the difference between intensional and
extensional ways of thinking about functions, we will close this section by noting
that a number of the authors we considered adopted a strikingly similar means of
describing identities parameterized by the characters. Recall that after stating
the generalized version of the Euler product identity (8), Dirichlet wrote:

The general equation, in which the different roots θ, ϕ, ω, ω′, . . . can
be combined with one another arbitrarily, clearly contains K-many
particular equations.

The notion of a single identity “containing” K-many particular equations sounds
strange to us today. In contrast to thinking of an identity like ex+y = ex +
ey as a single equation in which x and y are taken to range over the real or
complex numbers, it is almost as though Dirichlet conceived of the generalized
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Euler product formula as a template, or a schema, for the particular assertions
obtained by instantiating the variables θ, ϕ, ω, ω′, . . . with the particular data
representing each character. In a similar way, when Dedekind defined the L
series in 1863, he wrote:

Since these roots can have a, b, c, c′, . . . values, respectively, the form
L contains altogether abcc′ . . . = ϕ(k) different particular series. . .

This manner of speaking persisted even after authors began using a single sym-
bol χ to stand for an arbitrary character. For example, in 1882, Weber, after
deriving a pair of identities involving an arbitrary character χ, wrote:

Each of the formulas . . . represents h different formulas, correspond-
ing to the h different characters χ1, χ2, . . . , χh.

And in a very similar situation, de la Vallée Poussin wrote in 1897:

. . . this equation (E) represents in reality ϕ(M) distinct ones, which
result from exchanging the characters amongst themselves.

Such language suggests that, to some extent, authors thought of the act of
“instantiating” a general identity involving characters at a particular character
as somewhat different from instantiating a general identity over numbers at a
particular number.

7 Methodology and ontology revisited

Let us review some of the general historical trends we have discerned in the
treatment of characters. Over time, authors isolated certain symbolic expres-
sions appearing in Dirichlet’s proof, viewed them as functions of an integer
parameter (or equivalence class) n, and baptized them “characters.” They iso-
lated important properties of the characters and articulated them in a way that
renders them independent from the rest of the proof. Collaterally, this made
it possible to generalize the notion of a character on a multiplicative group of
residues to the notion of a character on any abelian group.

Initially, each character was seen to be represented by a bundle of defining
data, so what we now characterize as a functional dependence on the character
was expressed as a dependence on the bundle of data, and a summation over
the characters was expressed as a summation of a range of values of the bun-
dle of data. But, over time, the role that the representing data had to play
in the proof was diminished. Authors began to adopt notation and patterns
of argumentation that suppressed that information, for example, by assigning
arbitrary indices to the characters and letting expressions depend on those in-
dices. Ultimately, authors simply began expressing functional dependences on,
and summing over, the characters themselves.

Avoiding the need to refer to any particular representation of the characters
meant relying instead on properties of the characters that can be expressed in
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terms of the values they take on suitable inputs. In other words, it amounted to
adopting an extensional view of the characters, in which statements about the
characters are cast purely in those terms. In contemporary proofs of Dirichlet’s
theorem, this is taken to the extreme when we define the set of characters as
the set of nonzero homomorphisms from the group in question to the complex
numbers, and carry out the proof without indicating any way of representing
individual characters, let alone means of computing with them.

One might describe these changes as “merely notational,” or “merely prag-
matic.” But dismissing them in that way belies the fact that these changes
reflect a fundamentally different way of talking about, thinking about, and rea-
soning about the characters. And this was by no means an isolated example.
As we have noted in the introduction, during the nineteenth century the treat-
ment of other mathematical entities that we now take to be instances of sets,
functions, or structures evolved in similar ways, and for similar reasons. So the
history we have traced here is but one instance of a general transformation in
mathematical thought, with a new conception of the basic objects of mathemat-
ics and appropriate means of reasoning about them. It seems strange to resist
seeing this as a change in ontology. (Gray [34] nicely emphasizes this point.)

According to the historical model described in Section 2, we should view
the history of Dirichlet’s theorem as a response to fundamental methodologi-
cal pressures, as mathematicians struggled to meet both intrinsic and extrinsic
mathematical goals while respecting intrinsic and extrinsic methodological con-
straints. As philosophers, we should not be interested so much in the historical
and psychological contingencies that shaped the process, but, rather, the sense
in which the outcome is rational and justified. In other words, we wish to un-
derstand the extent to which the methods of contemporary mathematics serve
to achieve our mathematical goals, given some conception of those goals and
what it means to do mathematics. Attention to the history can bring some of
the goals and constraints to light, but then we are left to weigh their impor-
tance and assess the merits of the present solution. This is the point at which
philosophical analysis must come into play.

In broad terms, here we will view mathematics as a process by which finite
beings attempt to impose a useful order on the complex and varied data that
confronts them. The philosophical task is then to develop more refined char-
acterizations of the mathematical process, in terms that adequately reflect the
constraints we face as mathematical agents and the goals we pursue. In “Con-
cept,” we provided a detailed discussion of some of the various methodological
benefits and concerns that accrue to the use of the modern function concept.
Let us briefly review these here, and see what they have to tell us about the
nature of mathematics.

Treating characters as objects, in all the senses described in Section 4, brings
a number of methodological benefits. Expressions become simplified, meaning
that the reader has to keep track of less information when parsing them, and
the author of a proof can record and convey the relevant information more
compactly. Proofs become simplified as well, meaning that readers have to keep
track of less information while following the argumentative structure of a proof,

32



and authors have to keep track of less information while working out the details.
Information that is irrelevant to the argument at hand, or can be made so, is
suppressed, making key data and relationships more salient.

Moreover, proofs became more modular, as properties of the characters were
abstracted away and proved separately. This further supports the aim of reduc-
ing the amount of information in play at any given point. While developing a
theory of the characters, we need only work with their defining properties, and
when checking that particular instances of functions are characters, we need
only check that these instances satisfy the defining properties. Then, when rea-
soning about these particular characters, we can invoke results from the general
theory, such as the orthogonality lemma, as “black boxes.” The fact that ex-
traneous information has been filtered out means that expressions depend on
fewer parameters, and inferences depend on fewer assumptions. This makes it
easier to check details and avoid mistakes.

Modularity brings additional benefits, in that definitions and theorems that
have been abstracted away from the body of the proof can be reused elsewhere.
The process of abstraction clarifies the data that serves to parametrize a def-
inition and the hypotheses that are required to establish a proposition. This
facilitates not only using the definitions and proposition in other contexts, but
also modifying the definitions and propositions by varying the parameters and
hypotheses accordingly. In this way, modularity supports generality as well as
reuse.

Thus, with a modular structuring, dependencies between mathematical com-
ponents are minimized, and the mathematics becomes easier to understand. It
also becomes easier to ensure correctness, and components can be modified and
reused. Notice, incidentally, that these are exactly the benefits associated with
modularity in software engineering.10

The key point is that treating characters as objects supports this modular-
ity. To start with, identifying characters as “things” means that they can be
objects of study. We can make assertions about them, and specify predicates
and functions that take them as arguments. Moreover, notations, definitions,
and theory designed to handle other “things” now applies: we can form sums
that range over the characters and reason about them; we can form sets and
sequences of characters and reason about them; we can consider groups of char-
acters and reason about them; and so on. In short, all of methods that are
available to us for reasoning about mathematical objects become applicable to
reasoning about characters.

Given the apparent benefits of treating characters as full-blooded objects,
why did it take so long for the mathematical community to do so? When we
look back at the history of mathematics, it is hard to appreciate the difficulties
that accompany significant shifts in method, but they are substantial. Mathe-
matics is a communal activity: when a mathematician writes a proof, his or her
intention is that others will read it and judge it to be informative and correct.
This requires that the author and the reader have a common understanding not

10This is a topic is explored in greater detail in [4].
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only as to what is permissible, but also as to what is appropriate and desirable.
In Section 2, we enumerated some of the concerns that arise when new

methods are introduced. In “Concept,” we explored the way these concerns
apply specifically to the modern treatment of characters, and to functions more
generally. To start with, it is important that the new manner of speaking about
functions come with clear rules of use. If there is no agreement as to which
inferences are permissible — for example, under what conditions it is legitimate
to consider two expressions denoting functions as “equal,” and to substitute one
expression for another in a given context — then the mathematical enterprise
falls apart, and mathematicians cannot read each others’ proofs.

Moreover, whether the rules of use are presented explicitly or implicitly,
there is also the question as to whether they are consistent. Even if we think of
the new treatment of characters as a mere short cut to establishing Dirichlet’s
theorem, such short cuts are clearly illegitimate if they lead to false or nonsen-
sical conclusions. It is by no means apparent that there are no hidden pitfalls in
quantifying over characters, summing over characters, and treating characters
as arguments to other functions. It would be mathematically reckless to adopt
these devices out of sheer convenience, without some assurances that the results
obtained are reliable. As suggested in Section 2, to some extent it helps to
know how the new methods can be interpreted in terms of the prior methods,
bolstering the understanding that if we try to view talk of characters as short
cuts to proving new theorems, the long way is still, in principle, open to us.

Even if the new rules of use seem to be reliable, there is still the question
as to whether they are meaningful. We argued in Section 6 that early authors
tended to think of characters as symbolic expressions of a certain kind, or at
least, as entities with canonical representations as such symbolic expressions. If
the new methods no longer support such a view, one has to come to terms with
the question of how one should think of a character. Put succinctly, once we
have proved a statement about characters, what do we know?

And even if we come to believe that a certain manner of working with char-
acters is consistent, legitimate, and meaningful, there is still the question as to
whether it constitutes good mathematics, which is to say, whether it furthers
our epistemic goals and provides satisfactory answers to our questions. This
issue becomes pressing when we try to reconcile a computational conception
of mathematics with the new methods of abstraction. For most of its history,
mathematics was essentially computational, supplying methods of calculation
that could be used to predict the motion of the planets, succeed in games of
chance, and compute lengths and magnitudes of all sorts. A central feature of
the modern treatment of characters is that it suppresses details of how to rep-
resent and compute with individual characters, and often even eliminates these
details entirely. We may feel as though we have an understanding of what it
means for a function, viewed as a general procedure, to take a natural num-
ber as input, but what does it mean for a function to take a character, viewed
abstractly, as input? If we expect a mathematical theory of characters to tell
us how to represent them and compute with them, then a theory that fails to
provide that information is simply defective.
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Separating concerns as we have done here is somewhat artificial. For exam-
ple, maintaining a computational view of characters is one way of interpreting
their meaning, and the ability to ascribe any sort of meaning to mathematical
objects tends to clarify the rules of use and support the belief in these rules
are consistent. Notice, also, that on our analysis, the factors that ultimately
support adopting a modern treatment of functions are an uneasy mix of prag-
matic, empirical, and broadly philosophical considerations. That does not mean
that they are not good reasons, however, nor that we have not made important
philosophical progress by understanding them better.

In the latter half of the nineteenth century, Frege’s development of formal
logic was designed to represent mathematical language and methods of reason-
ing, and offer clear recommendations as to proper usage. Famously, the notion
of “function” is central to his account, as well as an understanding of the re-
lationship between “function” and “object.” In the remaining sections of this
essay, we will consider Frege’s analysis, and argue that his logical and philo-
sophical choices were influenced by many of the same considerations that were
faced by his mathematical peers.

8 Frege’s view of functions and objects

In 1940, Alonzo Church presented a formulation of type theory [11], now known
as “simple type theory.” Simple type theory can serve as a foundation for a
significant portion of mathematics, and, indeed, is the axiomatic foundation of
choice for a number of computational interactive theorem provers today [33, 35,
49]. One starts with some basic types, say, a type B of Boolean truth values
and a type N of natural numbers, and one forms more complex types σ× τ and
σ → τ from any two types σ and τ . Intuitively, elements of type σ × τ are
ordered pairs, consisting of an element of type σ and an element of type τ , and
elements of type σ → τ are functions from σ to τ . In a type-theoretic approach
to the foundations of mathematics, one identifies sets of natural numbers with
predicates, which is to say, elements of type N → B. Binary relations on the
natural numbers are then elements of type N×N→ B, and sequences of natural
numbers are elements of type N → N. Objects at this level are called type 1
elements, because they require one essential use of the function space arrow.
Integers can be identified as pairs of natural numbers and rationals can be
identified as pairs of integers in the usual ways. Real numbers are then Cauchy
sequences of rationals (elements of type 1), or equivalence classes of such, which
puts them at type 2. Functions from the reals to the reals and sets of reals
are then elements of type 3, and sets of functions from the reals to reals or
collections of sets of real numbers are then elements of type 4. For example, the
collection of Borel sets of real numbers is an element of type 4, as is Lebesgue
measure, which maps certain sets of real numbers to the real numbers. A set of
measures on the Borel sets of the real numbers is an element of type 5. And so
on up the hierarchy.

Simple type theory can be viewed as a descendant of the ramified type the-
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ory of Russell and Whitehead’s Principia Mathematica [61], which, in turn, was
inspired by the formal system of Frege’s Grungesetze der Arithmetik [29]. Start-
ing with a basic type of individuals, Frege’s system also has variables ranging
over higher-type functionals, and so can be seen as an incipient form of modern
type theory. For that reason, it may come as a surprise to logicians familiar
with the modern type-theoretic understanding that the foundational outlook
just described is not at all the image of mathematics that Frege had in mind.
It is this image that we wish to explore here.

Frege took concepts to be instances of functions; for example, in “Function
and concept” he wrote that “a concept is a function whose value is always a
truth value” [27, p. 139].11 And, throughout his career, he was insistent that
functions are not objects. The third “fundamental principle” in his Grundla-
gen der Arithmetik of 1884 was “never to lose sight of the distinction between
concept and object” 12 [26, Introduction], and he later asserted that “it will not
do to call a general concept word the name of a thing” [26, § 51].13 The dis-
tinction features prominently in his essays “Function and concept,” “Comments
on Sinn and Bedeutung” and “Concept and object” of 1891, 1891/2, and 1892,
respectively.

According to Frege, the proper distinction is tracked by linguistic usage:
objects are denoted by words and phrases that can fill the subject role in a
grammatical sentence, whereas concepts are denoted by words and phrases that
can play the role of a predicate. In “Concept and object” he wrote:

We may say in brief, taking “subject” and “predicate” in the lin-
guistic sense: a concept is the Bedeutung of a predicate; an object
is something that can never be the whole Bedeutung of a predicate,
but can be the Bedeutung of a subject.14 [28, pp. 198]

And:

A concept—as I understand the word—is predicative. On the other
hand, a name of an object, a proper name, is quite incapable of
being used as a grammatical predicate.15 [28, pp. 193]

In the sentence, “Frege is a philosopher,” the word “Frege” denotes an object,
and the phrase “is a philosopher” denotes a concept. Frege clarified the distinc-
tion by explaining that functional expressions, including concept expressions,

11We should note that in this section we will focus on his views from 1884 onwards. Prior
to this, he seems to have held a different view of concepts, though he still maintained that
they are not objects; see [38, p. 136].

12“. . . der Unterschied zwischen Begriff und Gegenstand ist in Auge zu behalten.”
13“. . . ist es unpassend, ein allgemeines Begriffswort Namen eines Dinges zu nennen.”
14“Wir können kurz sagen, indem wir “Prädikat” und “Subjekt” im sprachlichen Sinne ver-

stehen: Begriff ist Bedeutung eines Prädikates, Gegenstand ist, was nie die ganze Bedeutung
Prädikates, wohl aber Bedeutung eines Subjekts sein kann.” The word Bedeutung is often
translated as “reference” or “denotation.” But for difficulties in the translation, see §4 of the
introduction to Beaney [6].

15“Der Begriff—wie ich das Wort verstehe—ist prädikativ. Ein Gegenstandsname hingegen,
ein Eigenname ist durchaus unfähig, als grammatisches Prädikat gebraucht zu werden.”
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are “unsaturated,” or incomplete. These stand in contrast to signs that are
used to denote objects, which are complete in and of themselves. For example,
in the sentence “Frege is a philosopher,” the expression “Frege” is saturated,
and succeeds in picking out an object. In contrast, the expression “. . . is a
philosopher” contains a gap, and fails to name an object until one fills in the
ellipsis, at which point the expression denotes a truth value.16

Having distinguished between concepts and objects in such a way, Frege
had to deal with objections, such as the one he attributed to Benno Kerry in
“Concept and object.” In the sentence “The concept ‘horse’ is a concept easily
attained” the concept denoted by “horse” does fill the subject role. Frege’s
surprising answer was to deny that the phrase “the concept ‘horse’ ” denotes a
concept. He conceded that this sounds strange:

It must indeed be recognized that we are confronted by an awk-
wardness of language. . . if we say that the concept horse is not a
concept. . . .17 [28, pp. 196–197]

Yet, he insisted, this is what we must do. He was already clear about this in
the Grundlagen:

The business of a general concept word is precisely to signify a con-
cept. Only when conjoined with the definite article or a demonstra-
tive pronoun can it be counted as the proper name of a thing, but
in that case it ceases to count as a concept word. The name of a
thing is a proper name.18 [26, §51]

And so, in “Concept and object,” he reminded us:

If we keep it in mind that in my way of speaking expressions like
“the concept F” designate not concepts but objects, most of Kerry’s
objections already collapse.19 [28, pp. 198–199]

He similarly urged us to reconstrue expressions like “all mammals have red
blood” as “whatever is a mammal has red blood” so as to avoid the impression
that the predicate “has red blood” is being applied to an object, “mammal.”

16While the distinction between saturated and unsaturated expressions is cast as a distinc-
tion between linguistic signs, in his 1904 essay “What is a Function?” Frege made it clear
that the dichotomy extends to functions and objects themselves: “The peculiarity of func-
tional signs, which we here called ‘unsaturatedness’, naturally has something answering to it in
the functions themselves. They too may be called ‘unsaturated’ . . . ” (“Der Eigentümlichkeit
der Fuktionszeichen, die wir Ungesättigtheit genannt haben, entspricht natürlich etwas an den
Funktionen selbst. Auch diese können wir ungesättigt nennen . . . ”) [30, p. 665].

17“Es kann ja nicht verkannt werden, daß hier eine freilich unvermeidbare sprachliche Härte
vorliegt, wenn wir behaupten: der Begriff Pferd ist kein Begriff . . . .”

18“Ein allgemeines Begriffswort bezeichnet eben einen Begriff. Nur mit dem bestimmten
Artikel oder einem Demonstrativpronomen gilt es als Eigenname eines Dinges, hört aber damit
auf, als Begriffswort zu gelten. Der Name eines Dinges ist ein Eigenname.”

19“Wenn wir festhalten, daß in meiner Redeweise Ausdrücke wie “der Begriff F” nicht
Begriffe, sondern Gegenstände bezeichnen, so werden die Einwendungen Kerrys schon
größtenteils hinfällig.”
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Although these examples deal with concepts, Frege’s analysis makes it clear
that he intended the linguistic separation to remain operant for other kinds of
functions as well.

At the same time, Frege was equally dogmatic in insisting that what we
commonly take to be mathematical objects really are mathematical objects as
such. The introduction to his Grundlagen begins as follows:

When we ask someone what the number one is, or what the sym-
bol 1 means, we get as a rule the answer “Why, a thing.”20 [26,
Introduction]

The claim is so curious as to give one pause.21 The fact that Frege used such
a brazen rhetorical flourish to frame the whole project makes it clear just how
central the issue is to his analysis. Once again, he took the distinction to be
tracked by linguistic use. For example, because the number 7 plays the role of a
subject in the statement “7 is odd,” 7 must be an object. But, once again, Frege
had to deal with sentences where the syntactic role of a number is murkier. For
example, he considered uses of number terms in language that are attributive
and do not occur prefixed by the definite article, for example, “Jupiter has four
moons” [26, §57]. He wrote

“. . . our concern here is to arrive at a concept of number usable for
the purposes of science; we should not, therefore, be deterred by the
fact that in the language of everyday life number appears also in
attributive constructions. That can always be got round.”22 [26,
§57]

Specifically, it can be got round by writing an attributive statement such as
“Jupiter has four moons” as “the number of Jupiter’s moons is the number 4,
or 4” [26, §57], thereby eliminating the attributive usage.

So, for Frege, functions are not objects, but numbers are, because they
play the subject role in mathematical statements and can be used with the
definite article. There is clearly a difficulty lurking nearby. At least from a
modern standpoint, we tend to view functions, sequences, sets, and structures
as objects, and certainly in Frege’s time locutions such as “the function f”
and “the series s” were common. Frege’s response was similar to his response
to Kerry’s objection, namely, to deny that that expressions like these denote
functions. To understand how this works, consider the fact that Frege’s logical
system includes an operator which takes any function f from objects to objects
and returns an object,

,
εf(ε), intended to denote its “course-of-values” or “value

range.” If f is a concept, which is to say, a function which for each object

20“Auf die Frage, was die Zahl Eins sei, oder was das Zeichen 1 bedeute, wird man meistens
die Antwort erhalten: nun, ein Ding.” All our translations from the Grundlagen are taken
from the Austin translation cited in the references.

21We are grateful to Steve Awodey for this observation.
22“Da es uns hier darauf ankommt, den Zahlbegriff so zu fassen, wie er für die Wissenschaft

brauchbar ist, so darf es uns nicht stören, dass im Sprachgebrauche des Lebens die Zahl auch
attributiv erscheint. Das lässt sich immer vermeiden.”
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return a truth value, the course-of-values of f is called the “extension” of the
concept. Frege’s Basic Law V asserts that two functions which are extensionally
equal—that is, which return equal output values for every input—have the same
courses-of-values.

Frege used these courses-of-values and extensions as object-proxies for func-
tions and concepts. This is how he analyzed the concept of a cardinal number.
Let F , for example, be a second-level concept, such that F holds of a first-level
concept f if and only f holds of exactly one object. Frege took the number one
to be the extension of F , thereby achieving the goal of making the number one,
well, a thing. But this “pushing down” trick is central to the methodology of the
Grundgesetze: whenever the formal analysis of common mathematical objects
seems to suggest identifying such objects as functions or concepts, Frege avoided
doing so by replacing the function or concept with its extension. For example,
in the Grundgesetze he circumvented the need to define mathematical opera-
tions on sequences and relations construed as functions, defining the operations
rather on the associated courses-of-values.23 Referring to Frege’s concepts as
“attributes” and their extensions as “classes,” Quine described the difference as
follows:

Frege treated of attributes of classes without looking upon such dis-
course as somehow reducible to a more fundamental form treating of
attributes of attributes. Thus, whereas he spoke of attributes of at-
tributes as second-level attributes, he rated the attributes of classes
as of first level; for he took all classes as rock-bottom objects on par
with individuals. [55, p. 147]

Frege never got so far as developing mathematical analysis in his system,
and we cannot say with certainty how he would have developed, for example,
ordinary calculus on the real numbers. But there is a strong hint that here, too,
he would have taken, for example, operations like integration and differentiation
to operate on extensions, rather than functions, in his system. He touched on
the history of analysis in his Function and concept of 1891, and noted that, for
example, differentiation can be understood as a higher-type functionals.

Now at this point people had particular second-level functions, but
lacked the conception of what we have called second-level functions.
By forming that, we make the next step forwards. One might think
that this would go on. But probably this last step is not so rich in
consequences as the earlier ones; for instead of second-level functions
one can deal, in further advances, with first-level functions—as shall
be shown elsewhere.24 [27, p. 31]

23In fact, the definition of the number one earlier in the paragraph describes, more precisely,
the construction in the Grundlagen. In the Grundgesetze, he took F to be a first-level concept
that holds of classes, i.e. extensions of concepts, that contain one element. This is a nice
illustration of how the “pushing down” trick can be used repeatedly to avoid the use of higher
types. See Reck [58, Section 5] for a discussion of the two definitions, and Burgess [8] for an
overview of Frege’s methodology.

24“Damit hatte man nun einzelne Funktionen zweiter Stufe, ohne jedoch das zu erfassen, was
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Presumably, he had the method of replacing functions by their extensions in
mind.

Notice, incidentally, that Frege’s method of representing mathematical func-
tions as courses-of-values has the effect that mathematical functions are treated
extensionally. For example, defining the integral as an operation that applies
to a course-of-values means that integration cannot distinguish mathematical
functions that are extensionally equal, since any two descriptions of a function
that satisfy extensional equality have the same course-of-values, by Basic Law
V.

There are other interesting features of Frege’s treatment of functions that
push us away from identifying them with the functions of ordinary mathemat-
ics. For example, for Frege, every function has to be defined on the entire
domain of individuals; even if one is interested in the exponential function on
the real numbers, one has to specify a particular (but arbitrary) value of this
function for every object in existence.25 And the separation of functions and
objects has other effects on the system. There is only one basic type, so, for
example, truth values live alongside everything else. There is no notion of iden-
tity between higher-type objects—the equality symbol can only be applied to
equality between objects—even though Frege pointed out that one can define
an extensional notion of “sameness” of functions and concept, for example, say-
ing two functions from individuals to individuals are the “same” if their values
are identical at each input. Frege’s system, of course, includes the axiom of
universal instantiation. In contemporary notation, this would be expressed as
∀xϕ(x) → ϕ(a) where x is a variable ranging over individuals and a is any
individual term. It also includes the corresponding axiom ∀F ϕ(F ) → ϕ(A),
where F ranges over functions from objects to objects. Notably, however, the
system does not include analogous axioms for elements of the higher types: the
“pushing down trick” obviates the need for these.

All things considered, Frege’s foundational treatment of mathematics seems
closer to modern set-theoretic treatments, where there is one homogeneous uni-
verse of individuals. Truth values are individuals, numbers are individuals,
mathematical sequences and series are individuals—all bona-fide mathematical
objects are individuals. Functions are special sorts of entities that our partial
expressions refer to when we make statements about objects, but they are not
objects in their own right. As Marco Panza puts it:

. . . according to Frege, appealing to functions is indispensable in or-
der to fix the way his formal language is to run, but functions are not
as such actual components of the language. More generally, func-

wir Funktion zweiter Stufe genannte haben. Indem man dies tut, macht man den nächsten
Fortschritt. Man könnte denken, dass dies so weiter ginge. Wahrscheinlich ist aber schon
dieser letzte Schritt nicht so folgenreich wie die früheren, weil man statt der Funktionen
zweiter Stufe im weiteren Fortgang Funktionen erster Stufe betrachten kann, wie an einem
anderen Orte gezeigt werden soll.”

25However, Patricia Blanchette has argued [7] that Frege intended theories presented in his
formal system to treat objects in the domain of a particular subject, in which case “every
object in existence” really means “every object in the theory’s intended domain.”
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tions manifest themselves in our referring to objects—either concrete
or abstract—and making statements about them, but they are not
as such actual inhabitants of some world of concreta and abstracta.
[50, p. 14]

This is not to say that functions are any less “real” or objective than mathe-
matical objects like numbers, only that they play a distinct role: they allow us
to define objects, say things about objects, and reason about objects, but they
are not objects themselves.

9 Frege’s foundational concerns

We have seen that a curious tension lies at the core of Frege’s formal repre-
sentation of mathematics. On the one hand, Frege asserted, repeatedly, that
functions, in the logical and linguistic sense, are not objects. On the other hand,
when it comes to formalizing mathematical constructions, he clearly felt that
functions, in the mathematical sense, have to be objects. His course-of-values
operator, together with his Basic Law V, allowed him to have his cake and eat
it too, maintaining clear borders between the two realms while passing between
them freely. But Frege is often taken to task for failing to realize that this
strategy opens the door to Russell’s paradox. Indeed, the strategy feels like a
hack, a desperate attempt to satisfy the two central constraints. Why was he
so committed to them? The goal of this section is to suggest that the concerns
Frege was trying to address with the design of the logic of the Grundgesetze
parallel some of the informal mathematical concerns we were able to discern in
the nineteenth century treatment of characters.

When one speculates as to the philosophical and logical considerations that
influenced the design of Frege’s logic, two possibilities come to mind. One is
that Frege determined that functions and objects should be separate on broad
ontological grounds, and then designed the logic accordingly. The other is that
he designed the logic, determined it worked out best with a separation of indi-
viduals and functions, and read off the ontological stance from that. But, in fact,
there is no clear distinction between these two descriptions. Frege designed his
logic to try to model scientific practice at its best, and account for and support
its successes while combating and eliminating confusions. The examples in the
previous section show that Frege had no qualms about reinterpreting ordinary
locutions and reconstruing everyday language, so he was by no means slave to
naive ontological intuitions. But even when doing so he appealed to intuitions
to convince us that the reconstruals are reasonable. Thus “doing ontology”
meant analyzing the practice, sorting out intuitions, and trying to regiment and
codify them in a coherent and effective way. From the other direction, “get-
ting the logic to work” meant being able to account for the informal practice
effectively and efficiently, and supporting our intuitions to the extent that they
can be fashioned into a coherent system. So it is not a question as to whether
the ontology or the logic comes first; working out the ontology and designing
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the logic are part and parcel of the same enterprise. The following questions
therefore seem more appropriate:

1. What considerations pushed Frege to maintain the sharp distinction be-
tween function and object?

2. What considerations pushed Frege to identify mathematical entities, in-
cluding ordinary mathematical functions, as objects?

Let us consider each in turn.
It seems to us that the answer to the first question is simply that Frege felt

that failure to respect the distinction results in linguistic confusion.

If it were correct to take “one man” in the same way as “wise man,”
we should be able to use “one” also as a grammatical predicate, and
to be able to say “Solon was one” just as much as “Solon was wise.”
It is true that “Solon was one” can actually occur, but not in a way
to make it intelligible on its own in isolation. It may, for example,
mean “Solon was a wise man,” if “wise man” can be supplied from
the context. In isolation, however, it seems that “one” cannot be a
predicate. This is even clearer if we take the plural. Whereas we
can combine “Solon was wise” and “Thales was wise” into “Solon
and Thales were wise,” we cannot say “Solon and Thales were one.”
But it is hard to see why this should be impossible, if “one” were a
property both of Solon and of Thales in the same way that “wise”
is.26 [26, §29]

In other words, even though in some contexts an object word like “one” can
appear to be used as a predicate, and in other contexts a concept can appear
to be used as a subject, closer inspection shows that these uses do not conform
to the rules that govern the use of prototypical subjects and predicates, and so
should not be categorized in the naive way.

One of Frege’s favorite pastimes was to show that assertions made by philo-
sophical and mathematical colleagues degenerate into utter nonsense when they
fail to maintain sufficient linguistic hygiene. For example, in his 1904 essay,
“What is a Function,” Frege was critical of conventional mathematical accounts
of variables and functions. It is a mistake, he said, to think of a variable as
being an object that varies:

26“Wenn ‘Ein Mensch’ ähnlich wie ‘weiser Mensch’ aufzufasen wäre, so sollte man denken,
dass, ‘Ein’ auch als Praedicat gebraucht werden könnte, sodass man wie ‘Solon war weise’
auch sagen könnte ‘Solon war Ein’ oder ‘Solon war Einer’. Wenn nun der letzte Ausdruck
auch vorkommen kann, so ist er doch dür sich allein nicht verständlich. Er kann z.B. heissen:
Solon war ein Weiser, wenn ‘Weiser’ aus dem Zusammenhange zu ergänzen ist. Aber allein
scheint ‘Ein’ nicht Praedicat sein zu können. Noch deutlicher zeigt sich dies beim Plural.
Während man ‘Solon war weise’ und ‘Thales war weise’ zusammenziehen kann in ‘Solon und
Thales waren weise,’ kann man nicht sagen ‘Solen und Thales waren Ein’. Hiervon wäre die
Unmöglichkeit nicht einzusehen, wenn ‘Ein’ sowie ‘weise’ eine Eigenschaft sowohl des Solon
als auch des Thales wäre”.
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. . . a number does not vary; for we have nothing of which we could
predicate the variation. A cube never turns into a prime number;
an irrational number never becomes rational.27 [30, p. 658]

He took the mathematician Emanuel Czuber to task for giving such a sloppy
account of variables and functions in an introductory mathematical text. For
example, he criticized Czuber’s terminology “a variable assumes a number” [30,
288] as being incomprehensible. On Czuber’s account, a variable is an “indefinite
number,” so the terminology can be rephrased “an indefinite number assumes a
(definite) number”; but where we may talk about an object assuming a property,
what can it mean for an object to assume another object?

In other connections, indeed, we say that an object assumes a prop-
erty, here the number must play both parts; as an object it is called
a variable or a variable magnitude, and as a property it is called a
value. That is why people prefer the word “magnitude” to the word
“number”; they have to deceive themselves about the fact that the
variable magnitude and the value it is said to assume are essentially
the same thing, that in this case we have not got an object assuming
different properties in succession, and that therefore there can be no
question of a variation.28 [30, p. 660–661]

The essay closes with the following assessment:

The endeavor to be brief has introduced many inexact expressions
into mathematical language, and these have reacted by obscuring
thought and producing faulty definitions. Mathematics ought prop-
erly to be a model of logical clarity. In actual fact there are perhaps
no scientific works where you will find more wrong expressions, and
consequently wrong thoughts, than in mathematical ones. Logi-
cal correctness should never be sacrificed to brevity of expression.
It is therefore highly important to devise a mathematical language
that combines the most rigorous accuracy with the greatest possible
brevity. To this end a symbolic language would be best adapted,
by means of which we could directly express thoughts in written or
printed symbols without the intervention of spoken language.29 [30,
p. 665]

27“Folglich verändert sich die Zahl gar nicht; denn wir haben nichts, von dem wir die
Veränderung aussagen könnten. Eine Kubikzahl wird nie zu einer Primzahl, und eine Irra-
tionalzahl wird nie rational.”

28“Sonst sagt man wohl, daß ein Gegenstand eine Eigenschaft annehme; heir muß die Zahl
beide Rollen spielen; als Gegenstand wird sie Variable oder veränderliche Größe, als Eigen-
schaft wird sie Wert genannt. Darum also zieht man das Wort ‘Größe’ dem Worte ‘Zahl’ert,
den sie angeblich annimmt, im Grunde dasselbe sind, daß man gar nicht den Fall hat, wo ein
Gegenstand nacheinander verschiedene Eigenschaften annimmt, daß also von Veränderung in
keiner Weise die Rede sein kann.”

29“Das Streben nach Kürze hat viele ungenaue Ausdrücke in die mathematische Sprache
eingeführt, und diese haben rückwirkend die Gedanken getrübt und fehlerhafte Definitio-
nen zuwege gebracht. Die Mathematik sollte eigentlich ein Muster von logischer Klarheit
sein. In Wirklichkeit wird man vielleicht in den Schriften keiner Wissenschaft mehr schiefe
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Frege aimed to give a clear account of the rules that govern proper logical
reasoning. Although, in ordinary language, the line between concepts and ob-
jects is sometimes blurry, failure to diagnose and manage the blurriness opens
the door to nonsensical reasoning. Even though words like “one” and “horse”
sometimes seem to denote both concepts and objects, conflating the two causes
problems. For Frege, the only viable solution was to analyze and regiment such
uses in a way that cordons off problematic instances. He found that the best
way to do this is to maintain a clear separation of concept and object, and then
supplement the analysis with an explanation as to how some words seem to
cross the divide in certain contexts.

Now let us turn to the second question: why was Frege so dogged in his
insistence that mathematical entities like numbers have to be treated as objects,
and so persistent, in practice, in pushing mathematical constructions down to
that realm? We believe that the answer lies in an observation that we found in
Heck [37]: Frege wanted his numbers to be able to count all sorts of entities,
and the only way he could make that work was by treating all these entities as
inhabitants of the same type. Consider the following statements:

• There are two truth values.

• There are two natural numbers strictly between 5 and 8.

• There are two constant functions taking values among the truth values.

• There are two characters on (Z/4Z)∗.

• There are two subsets of a singleton set.

Frege would have insisted that the word “two” in each of these statements refers
to the same object. We would like to say that the number of truth values is
equal to the number of natural numbers between 5 and 8, but if truth values
and numbers were different types of entities, his analysis of number would not
do that: even if Frege had a notion of identity for each type, we would have
to define a different notion of two for each such type. In other words, for
each type σ, we would have to define a concept Twoσ that holds of concepts
of arguments of type σ under which two elements fall.30 Taking extensions
according to Frege’s construction would yield an object 2σ for each σ. But this
results in a proliferation of twos, and since 2σ and 2τ are not guaranteed to be
the same object, one would have to exercise great care when reasoning about
the relationship between them. This is clearly unworkable.

Ausdrücke und infolgedessen mehr schiefe Gedanken finden als in den mathematischen.
Niemals sollte man die logische Richtigkeit der Kürze des Ausdrucks opfern. Deshalb ist es von
großer Wichtigkeit, eine mathematische Sprache zu schaffen, die mit strengster Genauigkeit
möglichste Kürze verbindet. Dazu wird wohl am besten eine Begriffsschrift geeignet sein,
ein Ganzes von Regeln, nach denen man durch geschriebene oder gedruckte Zeichen ohne
Vermittlung des Lautes unmittelbar Gedanken auszudrücken vermag.”

30In Frege’s system, in which the equality symbol can only be used with objects, this would
have to be expressed instead in terms of a “sameness” relation for elements of type σ, for any
σ other than the type of objects.
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Instead, Frege designed his numbers to count objects, simpliciter : 2 is the
extension of the concept of being a concept of objects under which exactly two
objects fall.31 But this means that if you want to count a collection of things,
those things have to be elements of the type of objects. This, in turn, provides
a strong motivation to locate mathematical entities of all kinds among the type
of objects.

We have seen in Sections 3.4 to 7 that what holds true of counting holds true
of other mathematical operations, relations, and constructions as well. Contem-
porary proofs of Dirichlet’s theorem have us sum over finite sets of characters
just as we sum over finite sets of numbers. We view the general operation here
as summation over a finite set of objects, viewing both characters and numbers
as such. Contemporary proofs also have us consider groups of characters, just
as we consider groups of residues. Once again, we consider these as instances
of the general group concept, with the understanding that a group’s underlying
set can be any set of objects. This allows us to speak of a homomorphism be-
tween any two groups, without requiring a different notion of “homomorphism”
depending on the type of objects of the groups’ carriers.

Characters were not the only mathematical entities studied in the latter
half of the nineteenth century that encouraged set-theoretic reification. Gauss’
genera of quadratic forms, discussed briefly in “Concept,” also bear a group-
theoretic structure, and these are sets of quadratic forms. Dedekind developed
his theory of ideals in order to supplement rings of algebraic integers with “ideal
divisors,” extending the unique factorization property of the ordinary integers
to these more general domains. Dedekind found that these ideal divisors could
be identified with sets of elements in the original ring, now known as “ideals.”
Like the characters, the ideals of a ring of algebraic integers bear an algebraic
structure, and Dedekind was adamant that they should be treated as bona-fide
objects.32 Similarly, Dedekind constructed the real numbers by identifying each
of them with a pair of sets of rational numbers [14]. By the end of the century, it
was common to view a quotient group as a group whose elements are equivalence
classes, or cosets.33

The reasons given above to treat mathematical functions and sets as objects
also speak in favor of treating them extensionally. The statements that “there
are two characters on Z/2Z” and “there are ϕ(m) characters on (Z/mZ)∗” are
false if we take characters to be representations, as there are many different
representations of the same character. We could, of course, develop notions of
“counting up to equivalence.” In the early days of finite group theory, Camille
Jordan described quotient groups as systems just like ordinary groups except
that equality is replaced by an appropriate equivalence relation.34 But, if we do
that, mathematical statements become “relativized” to the appropriate equiva-

31See footnote 23.
32See Avigad [2], especially page 172, and Edwards [20].
33See the detailed discussion in Schlimm [62, Section 3]. Other nice examples of pieces of

nineteenth century mathematics that push in favor of set-theoretic abstraction are discussed
in Wilson [68, 69].

34Again, see Schlimm [62, Section 3].
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lence relations, which constitute additional information that needs to be carried
along and managed. The alternative is to extensionalize: then the only equiva-
lence relation one has to worry about is equality.

We do not know the extent to which Frege was familiar with examples like
these. But Wilson [68, 69] calls attention to an important example of abstraction
with which Frege was quite well acquainted. Frege was trained as a geometer,
and studied under Ernst Schering in Göttingen. His dissertation, completed in
1873, was titled “Über eine geometrische Darstellung der imaginären Gebilde in
der Ebene” (“On a geometric representation of imaginary forms in the plane”).
Early nineteenth century geometers found great explanatory value and simpli-
fication in extending the usual Euclidean plane with various ideal objects, like
“points at infinity” and “imaginary” points of intersection. One of the few mo-
tivating examples that Frege provided in the Grundlagen (§64–§68) is the fact
that one can identify the “direction” of a line a in the plane with the extension
of the concept “parallel to a.” As Wilson points out (though Frege does not),
these “directions” are exactly what is needed to serve as points at infinity, en-
abling one to embed the Euclidean plane in the larger projective plane, which
has a number of pleasing properties. In the projective plane, all points have
equal standing, and so it stands to reason that the concept-extensions used
to introduce the new entities should be given the same ontological rights as
the Euclidean points and lines used in their construction. Wilson characterizes
such strategies for expansion as forms of “relative logicism,” since they pro-
vide a powerful means of relating the newly-minted objects to the more familiar
ones.35

When it comes down to the nitty-gritty details, however, the only sustained
formal development we have from Frege is his treatment of arithmetic. But even
in this particular case, many of the issues we have raised come to the fore. In
the Grundgesetze, Frege defined a number of general operations and relations
on tuples, sequences, functions, and relations. All of these now can be viewed
as general set-theoretic constructions. What gives these constructions universal
validity is that they can be applied to any domain of objects, and we now have
great latitude in creating objects, as they are needed, to populate these domains.
It is precisely the ability to bring a wide variety of mathematical constructions
into the realm of objects, and the ability to define predicates and operations
uniformly on this realm, that renders Frege’s logic so powerful—too powerful,
alas. But given Frege’s goals, it should be clear why the extension operator held
so much appeal.36

35See also Tappenden [64] for other ways that nineteenth century mathematics seems to
have influenced his Frege’s philosophical views.

36The same uniformity is achieved in set theory by having a large universe of sets, and
incorporating set-forming operations which return new elements of that universe. Russell
introduced the notion of typical ambiguity [60, 24] to allow “polymorphic” operations defined
uniformly across types, and modern interactive theorem provers based on simple type theory
follow such a strategy to obtain the necessary uniformities. For example, most such systems
have operations cardσ which maps a finite set of elements of type σ to its cardinality, a natural
number. The systems include mechanisms that allow one to define this family of operations
uniformly, once and for all, treating σ as a parameter. One can then write card A, and let

46



To sum up, we have traced a central tension in Frege’s work to the need to
balance two competing desiderata:

1. the need for flexible but rigorous ways of talking about higher-type en-
tities, like functions, predicates, and relations, without falling prey to
incoherence; and

2. the need for ways of dealing with mathematical objects uniformly, since
mathematical constructions and operations have to be applied to many
sorts of objects, many of which cannot be foreseen in advance.

Compare this to the analysis of the mathematical pros and cons to treating
functions as objects, as discussed in Section 7, and note the similarities.

At the end of an essay on Frege’s treatment of concepts and objects, Thomas
Ricketts briefly discusses aspects of nineteenth-century mathematical practice
that may have had an influence on Frege. Agreeing with Wilson’s assessment of
the importance of being able to construct ideal elements in projective geometry,
Ricketts writes:

Throughout his career, Frege is concerned with the introduction of
new domains in mathematics, with the ‘creation’ of new mathemati-
cal concepts. He vigorously polemicizes against formalist account of
this practice and aims to develop an alternative to it. Frege’s own
approach here shines forth in a comment on Dedekind’s account of
the real numbers:

The most important thing for an arithmetician who rec-
ognizes in general the possibility of creation [of mathe-
matical objects] will be to develop in an illuminating way
[in einleuchender Weise] the laws governing this in order
to prove in advance of each individual creative act that
the laws allow it. Otherwise, everything will be impre-
cise, and proofs will degenerate to a mere appearance, to
a good-willed self-delusion. [29, Vol. 2, §140].

The desired foundation will be provided by formulating a logical law
that, in the context of other logical laws, will yield as a theorem the
existence of the desired new objects. [59, pp. 217–218]

What we have aimed to do here is to explain in greater detail why it is mathe-
matically important to treat certain sorts of things as objects, and what, exactly,
that amounts to. Not just Frege’s work in geometry, but also his construction
of the natural number system, would have impressed upon him the importance
of having uniform operations and constructions on higher-order entities, and

the system infer the relevant type parameter from the type of A. This provides one means
of coping with the nonuniformities that arise from a type-theoretic compartmentalization of
the mathematical universe, but the difficulties that accrue to taking simple type theory as a
mathematical foundation are complex; see, for example, [3].
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having a uniform way of making general assertions about these operations and
constructions.

In other words, Frege, like the various mathematical authors we have con-
sidered, was responding to methodological pressures that are inherent in the
nature of the mathematical enterprise. As Ricketts emphasizes, Frege’s entire
foundational project was designed to address the important mathematical need
of introducing clear means of expression, and developing general consensus as
to the rules of use, while ensuring that the expressions and rules are meaningful,
reliable, and consistent. While mathematicians from Dirichlet to Landau were
focused on extending the edifice of mathematical knowledge, Frege’s goal was
to shore up the foundations. This difference translates to differences in per-
spective, focus, and method, but the distinctions are not sharp. Working from
different ends of the spectrum, both Frege and his mathematical counterparts
were working to clarify and extend mathematical method in powerful ways. In
doing so, they addressed similar mathematical goals, and responded to similar
mathematical constraints.

Frege is often faulted for failing to recognize the simple inconsistency that
arises from the formal means he introduced to resolve the tension between the
two concerns enumerated above. Nonetheless, it is worth highlighting the ex-
tent to which these two concerns were central to the subsequent development of
logic and foundations. Russell’s paradox shows that Frege was perfectly right to
worry that an overly naive treatment of functions, concepts, and objects would
lead to problems in the most fundamental use of our language and methods of
reasoning. And, going into the twentieth century, developments in all branches
of mathematics called for liberal means of constructing new mathematical do-
mains and structures, as well as uniform ways of reasoning about their essential
properties. The most fruitful and appropriate means of satisfying these needs
was by no means clear at the turn of the twentieth century. Indeed, these issues
were at the heart of the tumultuous foundational debates that were looming on
the horizon.

Appendix: From cyclotomy to Dirichlet’s theo-
rem

In Section 3, we sketched Dirichlet’s approach to proving his theorem on primes
in an arithmetic progression. Our goal here is to explain how Dirichlet is likely
to have come upon his method of modifying Euler’s argument to tease apart the
contribution of the primes in each residue class from the overall sum of their
reciprocals.

Recall that if we split up the sum in Euler’s equation (2), we obtain

log

∞∑
n=1

1

ns
=

∑
q≡1 mod p

1

qs
+

∑
q≡2 mod p

1

qs
+ . . .+

∑
q≡p−1 mod p

1

qs
+O(1). (3)

As explained in Section 3.2, this shows that (2) is too crude to prove Theo-
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rem 3.1: we need to know that each of the terms on the right-hand side tends
to infinity, not just their sum. It is here that ideas from the theory of equations
are helpful. They come into play specifically in the theory of cyclotomy from
Gauss’ Disquisitiones Arithmeticae, work with which Dirichlet was intimately
acquainted. Historical overviews of the relevant ideas can be found in excellent
books by Edwards and Tignol on the history of the theory of equations [21, 65],
and Curtis’ equally impressive history of representation theory [12]. Curtis also
explains the role of characters in the theory of cyclotomy and Dirichlet’s proof.
What we aim to do here is make the progression of ideas leading from cyclotomy
to Dirichlet’s proof as explicit as possible.

An important concern in the field of algebra is the extent to which the
roots of a polynomial can be expressed in terms of arithmetic operations on
the coefficients together with the extraction of roots. The quadratic formula
dates to antiquity, and solutions to the cubic and quartic were presented by
Cardano in his Ars Magna of 1542. A natural challenge was then to determine
a similar formula for the quintic. In 1770, Lagrange presented a general method
of attacking this problem, using what has come to be known as the Lagrange
resolvent. Let t0, . . . , tn−1 be the roots of the nth degree polynomial in question,
and let ω be an nth root of unity, that is, a solution to the equation ωn = 1.
Notice that 1 is always a solution to this equation, but there are n − 1 others.
In fact, all of the roots can be taken to be powers a single “primitive” root of
unity; for example, taking ω to be the complex number e2πi/n will do. Lagrange
considered the quantity

t0 + ωt1 + ω2t2 + . . .+ ωn−1tn−1,

as well as the quantities obtained by permuting the roots t0, . . . , tn−1. Suppose
ω is a primitive nth root of unity, and consider the values obtained by replacing
ω in the previous expression with each of the values 1, ω, ω2, . . . , ωn−1:

x0 = t0 + t1 + t2 + . . .+ tn

x1 = t0 + ωt1 + ω2t2 + . . .+ ωn−1tn−1

x2 = t0 + ω2t1 + ω4t2 + . . .+ ω2(n−1)tn−1

...

xn−1 = t0 + ωn−1t1 + ω2(n−1)t2 + . . .+ ω(n−1)2tn−1

Lagrange observed that one can solve for each of t0, t1, . . . , tn−1 in terms of
x0, x1, . . . , xn−1. For example, consider x0 +x1 + . . .+xn−1. Summing the first
column gives n·t0. Summing the second column gives t1 ·(1+ω+ω2+. . .+ωn−1).
But because ω is a root of

ωn − 1 = (ω − 1)(ωn−1 + . . .+ ω2 + ω + 1)

and ω 6= 1, we have 1 + ω + ω2 + . . .+ ωn−1 = 0. Similarly, summing the third
column gives t2 · (1 + ω2 + ω4 + . . . + ω2(n−1)); but ω2 is also an nth root of
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unity, and if ω is primitive (and n > 2), ω2 is also not equal to 1, and the same
argument shows that this quantity sums to 0. The same argument shows that
the remaining columns also sum to 0, so we have t0 = (x0+ . . .+xn−1)/n, which
is the desired expression for t0.

A similar trick works to compute the other values tk: multiplying the ith
equation by ω−ik simply “rotates” the powers of ω, leaving 1’s in the kth column.
Thus we have

tk =
1

n

n−1∑
i=0

ω−ikxi,

which provides an expression for tk in terms of t0, . . . , tn−1. Lagrange went on
to consider the values of x0, . . . , xn−1 that are obtained by replacing ω with
other roots of unity, and conditions under which one can solve for those values,
and hence x0, . . . , xn, in terms of radicals. In doing so, he was analyzing and
generalizing methods of solving equations developed by Viète, Tschrinhaus, and
others who had come before. He showed that this ideas can be used to account
for the known solutions to the quadratic, cubic, and quartic equations.

The methods break down for the general solution to the quintic, but vari-
ations on the method can, however, be used to determine roots of particular
polynomials. Consider, for example, the polynomial xn − 1 itself. We have
already noted that we have xn − 1 = (x − 1)(xn−1 + xn−2 + . . . + x2 + x + 1).
If n is not a prime number, the second term can be factored into polynomials
of lower degree, until one reaches polynomials that can no longer be factored;
these are called irreducible polynomials. The task of determining the roots of
these polynomials is known as “cyclotomy,” or “circle division,” because the n
complex roots of xn− 1 are evenly spaced around the unit circle in the complex
plane.

The problem can be reduced to the case where n is a prime number, which we
will denote p instead. In that case, xp−1+xp−2+. . .+x2+x+1 is irreducible, and
if α is any root of this polynomial, the other p−2 roots are α2, α3, . . . , αp−1. An
expression for these roots in terms of radicals were provided by Vandermonde
for the case where p = 11, and the general problem was taken up by Gauss
in the last chapter of the Disquisitiones.37 The solution involves using the
Lagrange resolvent, and taking the roots t0, t1, . . . , tp−2 to be the p − 1 roots
α, α2, . . . , αp−1, but in a particular order.

The proof involves choosing, for the prime p in question, a primitive ele-
ment g modulo p. Recall from Section 3.2 that this means that the powers
g0, g1, . . . , gp−1 modulo p are exactly the nonzero residues modulo p. The solu-
tion to the equation xp−1+xp−2+ . . .+x2+x+1 = 0 is obtained by considering
the Lagrange resolvent

αg
0

· ω0 + αg
1

· ω1 + αg
2

· ω2 + . . .+ αg
p−2

· ωp−2, (9)

37Gauss was particularly interested in the case where p is a prime number of the form 2m−1,
and showed that in that case, the solution enables one to carry out a geometric construction
using compass and straightedge that divides the circle into p equal parts. The Disquisitiones
hints as the solution to the general case, but both Edwards [21] and Tignol [65] observe that
their are gaps in the presentation; a complete solution was provided by Galois.
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where ω is a (p−1)st root of unity. If we define ti to be αg
i

, then this expression
becomes

t0 + ωt1 + ω2t2 + . . .+ ωp−2tp−2,

and we are in the situation analyzed above. Lagrange’s tricks tells us that if we
can solve for the values of this expression when ω is replaced by 1, ω, ω2, . . . , ωp−2

in succession, we can solve for all the values of αg
i

, which are just the values
α, α2, . . . , αp−1 written in a different order.

The reason for writing the elements α in the particular order they appear
in (9) is that, when they are written in that order, it is possible to solve for
each ti, with an expression involving radicals. The details of the solution are
not relevant to the proof of Dirichlet’s theorem, but one particular aspect of the
solution is. What makes the argument work is the careful pairing of αg

i

with
ωi, which has the effect that for each i and j, the element

(αg
i

)g
j

= αg
i·gj = αg

i+j

is paired with ωi+j . Using the notion of “index” defined in Section 3.2, we can
express this as follows: for any m and n, αm is paired with ωγm , αn is paired
with ωγn , and αmn is paired with ωγmn = ωγm+γn = ωγmωγn . In other words,
the key property used in the calculation of the roots of cyclotomic equations is
that the map m 7→ ωγm is multiplicative on the nonzero residues modulo p.

Dirichlet’s great insight is that these ideas can be applied in the number-
theoretic setting at hand, using the fact that the Euler product formula holds
more generally with such a multiplicative function in the numerator. In the case
where the common difference is a prime number p, if we choose a primitive root
g modulo p and define ti =

∑
q≡gi mod p 1/qs, then equation (4) in Section 3.2

can be written

log
∑
n

ωγn

ns
= t0 + t1ω + . . .+ tp−2ω

p−2 +O(1).

The derivation of this equation relies on the generalized Euler formula, which
requires that the mapm 7→ ωγm is multiplicative. But once we have the equation
in hand, we need only use the Lagrange trick, which is exactly what Dirichlet
did. The more general case where p is replaced by an arbitrary modulus k is
technically more difficult, but it builds on the same idea, combined with the
behavior of the multiplicative group of residues modulo k that are coprime to
k. Once again, this is something which Dirichlet was intimately familiar with,
from the work of Gauss.
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