Internet Marketing and Web Mining

Alan Montgomery
Associate Professor
Carnegie Mellon University
Graduate School of Industrial Administration

e-mail: alan.montgomery@cmu.edu **web:** http://www.andrew.cmu.edu/user/alm3

M2002, Cary, North Carolina, 22 October 2002

© 2002 by Alan Montgomery, All rights reserved.

Outline

- Web Mining as a basis for Interactive Marketing
- What is clickstream data?
- User Profiling
 - What does 'what you view' say about 'who you are?'
- Path Analysis
 - What does 'what you view' say about 'what you want'?
- Text Classification
 - Using text processing algorithms to classify content

Interactive Marketing

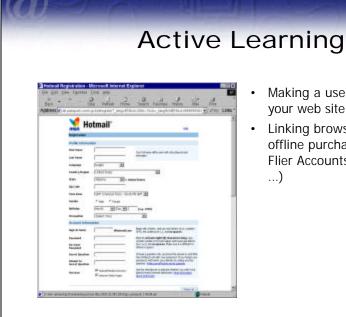
The reason we are interested in web mining is that we can use it for interactive marketing

Interactive Marketing Requires...

- Ability to *identify* end-users
- Ability to differentiate customers based on their value and their needs
- Ability to *interact* with your customers
- Ability to customize your products and services based on knowledge about your customers

Peppers, Rogers, and Dorf (1999)

Information is key!



- Making a user subscribe to your web site
- Linking browsing behavior to offline purchasing (Frequent Flier Accounts, Mailing Lists,

How can we learn about a user without asking questions?

Observe their actions and

Marketing research tells us that the most predictive information is what consumers have done in the

Learning

- The web is a rich environment for both active and passive
- Most overlook passive because it requires higher degree of sophistication, generally data mining tools
- But can be much more powerful and help fulfill all the promises of interactive marketing

7

Defining Clickstream Data

The raw input for web mining

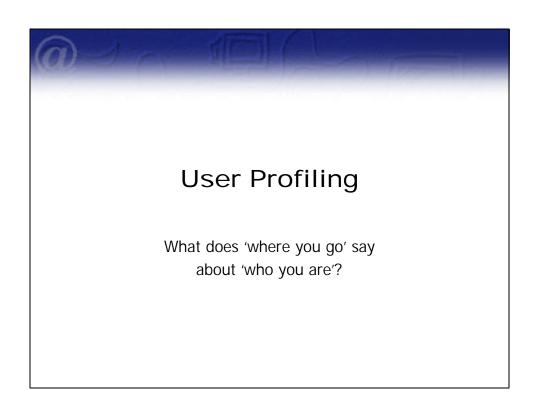
What is clickstream data?

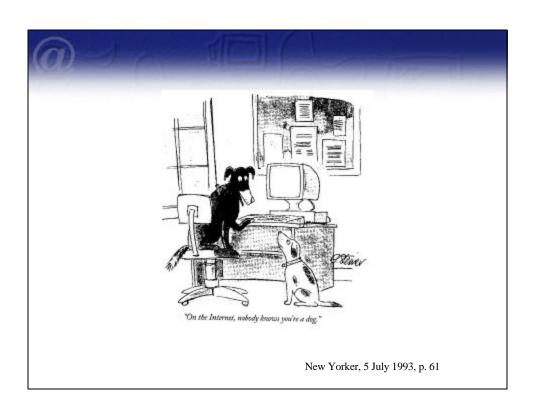
- A record of an individual's movement through time at a web site
- · Contains information about:
 - Time
 - URL content
 - User's machine
 - Previous URL viewed
 - Browser type

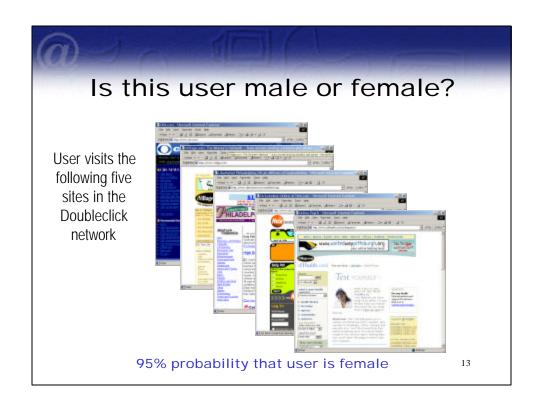
9

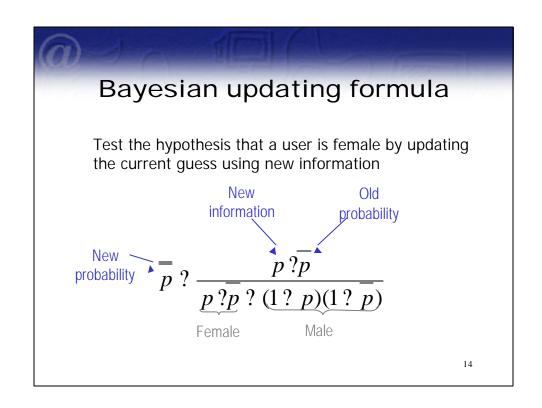
Sources of clickstream data

- Web Servers
 - Each hit is recorded in the web server log
- · Media Service Providers
 - DoubleClick, Flycast
- ISP/Hosting Services
 - AOL, Juno, Bluelight.com
- Marketing Research Companies
 - ComScore Media Metrix and NetRatings









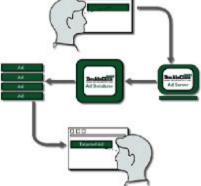
Probability user is female

	Probability a	Probability visitor is
	,	
	Female Visits	Female given
	the site	visits to
Overall Internet	45%	45.0%
cbs.com	54%	49.0%
ivillage.com	66%	65.1%
libertynet.org	63%	76.0%
nick.com	57%	80.8%
onlinepsych.com	83%	95.4%

Best Guess

1.5

Banner Ad Generation by DoubleClick



Source: http://www.doubleclick.com/publishers/service/how_it_works.htm16

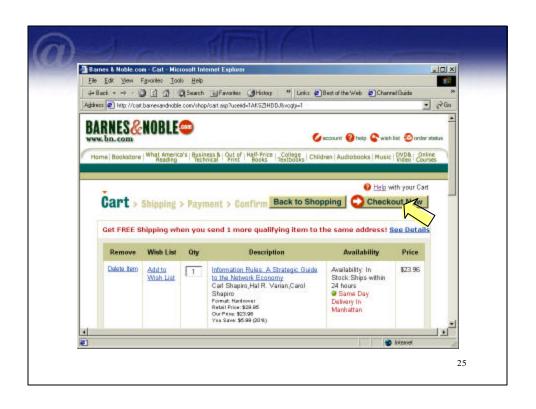
A Full Month of Browsing Exame % of female visitors during one month (Media Metrix): libertynet.org 48% aol.com 63% 64% 39% lycos.com astronet.com 75% avon.com 27% netradio.net 52% blue-planet.com 57% nick.com 56% cartoonnetwork.com 59% onhealth.com 54% cbs.com 83% onlinepsych.com simplenet.com 76% country-lane.com 44% 47% eplay.com 76% thriveonline.com 41% halcyon.com 59% valupage.com 70% homearts.com 71% virtualgarden.com 66% 66% womenswire.com ivillage.com 99.97% probability that user is female

Key Points of User Profiling

We can identify 'who you are' from 'where you go'

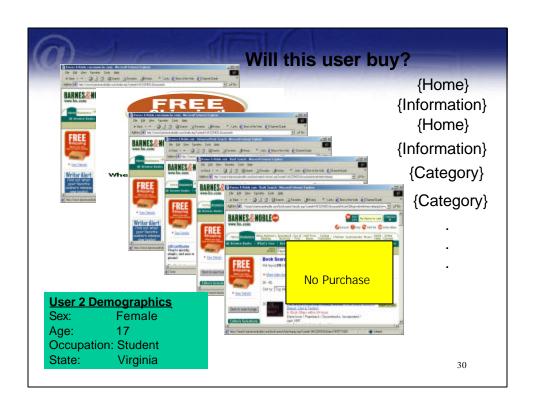
- What the user views on the web reveals their interests and preferences
 - We can personalize the web experience without explicitly requiring customers to login and identify themselves
- Browsing and product choices can reveal key information about interest and price sensitivity
- Requires marketers to be smarter in designing their websites and analyzing their information. Big profitability gains if this is done correctly.

Clickstream Example #1



Clickstream Example #2

Clickstream Example #3



Identifying Browsing Patterns

Categorizing Pages

Abbr	Category	Description
Н	Home	Home page
Α	Account	User account pages
С	Category	Page with list of products
Р	Product	Product information pages
I	Information	Shipping, order status, etc
S	ShoppingCart	Pre-order pages
0	Order	Confirmation/purchase page
F	Enter/Exit	Non B&N pages

Some Sample User Sessions

	User	Path
S	1	ICCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
el	2	IHHE
owser	3	IE
_	4	IHICPPPCE
В	5	IHHIIICIIE
	6	HIAAAAIAIIIICIIICICICCICICCIPPIPPIPPIPIICCSIIIPPPPPIPIPSISISISSSOIIIIIHE
ırs	7	HCCPPPCCPCCCCCCCCSSCSPCCPCPCCCCCCSAAAAAAAA
lye	8	IIICICPCPPPCPCICICPCCCPCPPPIPSIIAASSSIIIIOIIE
Bu	9	IISIASSSIOIE
	10	IPPPPSASSSSSOIAAAHCCPCCCCCE

33

Probability of Viewing a Page

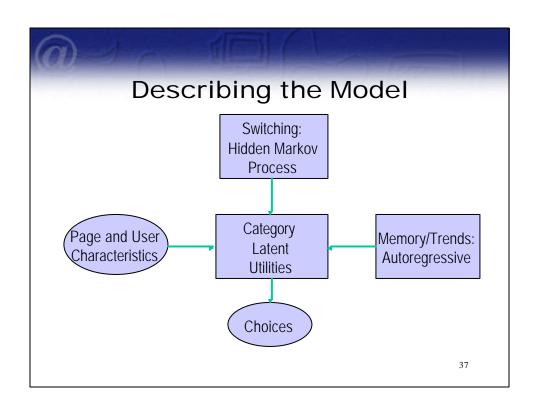
Category	Purchaser	Browser	Odd Ratio		
Home	1%	9%	1/9		
Account	13%	4%	3/1		
Category	27%	35%	.8/1		
Product	17%	17%	1/1		
Information	24%	33%	.8/1		
Shopping Cart	15%	2%	7/1		
Purchase	3%	0%	Inf		

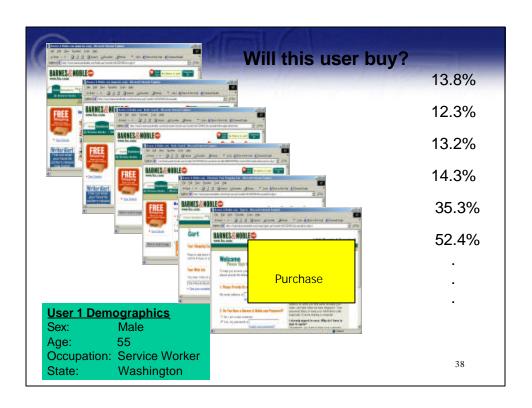
Transition Matrix

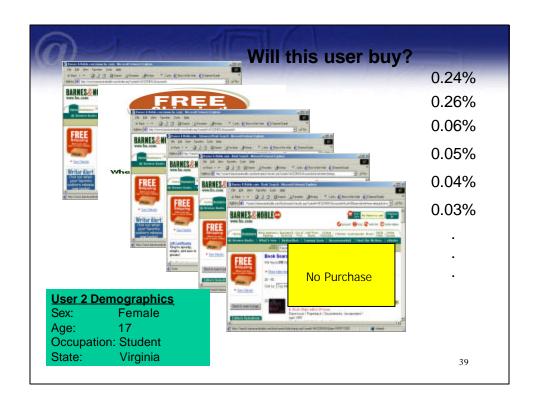
	Category of Current Viewing										
previous Viewing	Category	Home	P+C+I	A+S+O	Exit/ Entry						
<u>je</u>		P	urchaser		-						
S	Home .03 .13 .06										
<u>0</u>	P+C+I	.02	.14	.11	.73						
<u>ĕ</u>	A+S+O	.01	.01	.79	.19						
ď	Exit	.23	.08	.69	0						
ð		Non	Non-Purchaser								
S	Home	.32	.23	.02	.43						
ő	P+C+I	.10	.02	.70	.18						
Category	A+S+O	.13	.05	.02	.80						
	Exit/Entrv	.39	.54	.07	0						

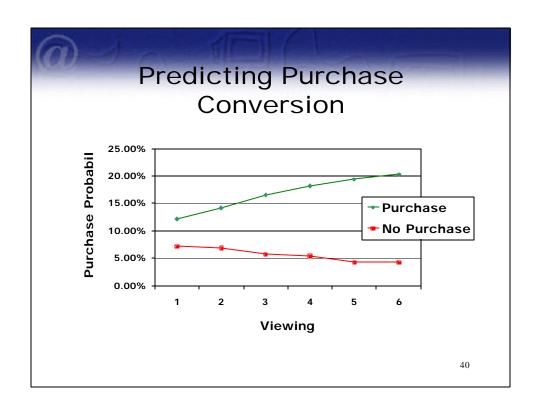
35

Purchase Conversion









Key Points of Path Analysis

We can infer 'what you want' from 'what you view'

- The path a user takes reveals goals and interests
 - We look at pages we are interested in
 - Avoid those pages that are irrelevant
- Path Analysis indicates we can intervene before a non-purchaser leaves the site
- Presenting promotional information to purchasers is distracting, but increases conversion for surfers
- · Show the right information at the right time

41

Text Classification

Categorizing Web Viewership Using Statistical Models of Web Navigation and Text Classification

Information Available

Clickstream Data

- Panel of representative web users collected by Jupiter Media Metrix
- Sample of 30 randomly selected users who browsed during April 2002
 - 38k URLs viewings
 - 13k unique URLs visited
 - 1,550 domains
- · Average user
 - Views 1300 URLs
 - Active for 9 hours/month

Classification Information

- Dmoz.org Pages classified by human experts
- Page Content Text classification algorithms from Comp. Sci./Inform. Retr.

Dmoz.org

- Largest, most comprehensive humanedited directory of the web
- Constructed and maintained by volunteers (open-source), and original set donated by Netscape
- Used by Netscape, AOL, Google, Lycos, Hotbot, DirectHit, etc.
- Over 3m+ sites classified, 438k categories, 43k editors (Dec 2001)

Categories

Arts

1.

- 2. Business
- 3. Computers
- 4. Games
- 5. Health
- 6. Home
- 7. News
- 8. Recreation
- 9. Reference
- 10. Science
- 11. Shopping
- 12. Society
- 13. Sports
- 14. Adult

45

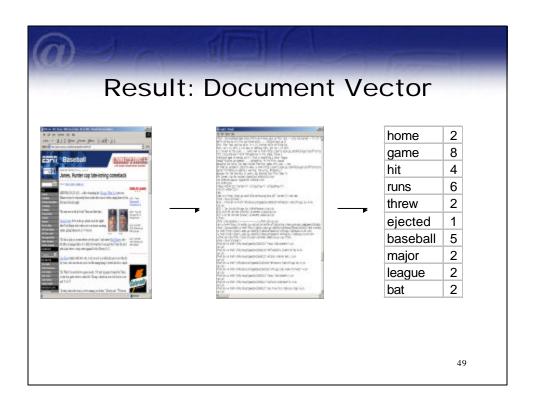
Problem

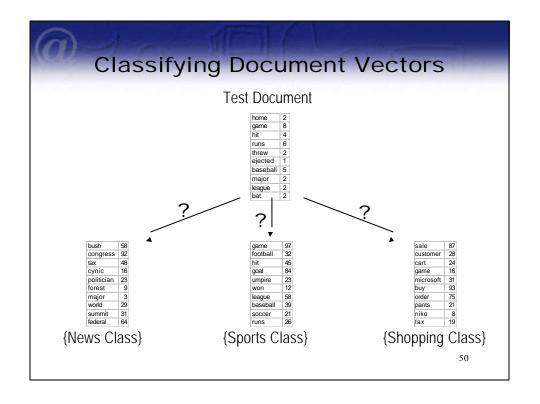
- Web is very large and dynamic and only a fraction of pages can be classified
 - 147m hosts (Jan 2002, Internet Domain Survey, isc.org)
 - 1b (?) web pages+
- Only a fraction of the web pages in our panel are categorized
 - 1.3% of web pages are exactly categorized
 - 7.3% categorized within one level
 - 10% categorized within two levels
 - 74% of pages have no classification information

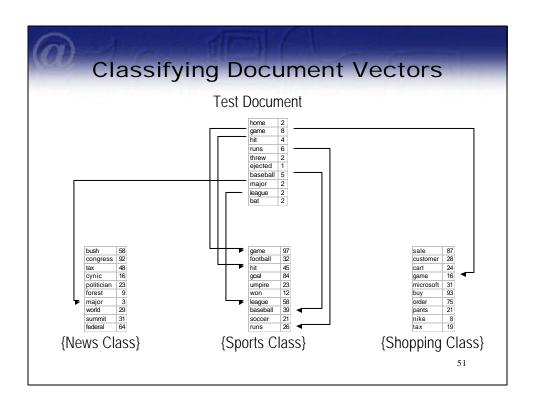
Text Classification

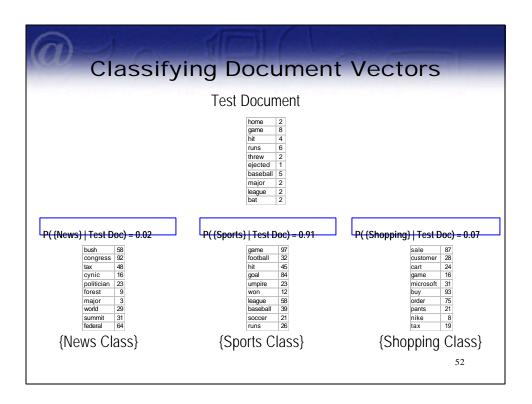
Background

- Informational Retrieval
 - Overview (Baeza-Yates and Ribeiro-Neto 2000, Chakrabarti 2000)
 - Naïve Bayes (Joachims 1997)
 - Support Vector Machines (Vapnik 1995 and Joachims 1998)
 - Feature Selection (Mladenic and Grobelnik 1998, Yang Pederson 1998)
 - Latent Semantic Indexing
 - Support Vector Machines
 - Language Models (MacKey and Peto 1994)









Classifying Document Vectors

Test Document

home	2
game	8
hit	4
runs	6
threw	2
ejected	1
baseball	5
major	2
league	2
bat	2

P({Sports]	Test D	oc) = 0.91
	game	97
	football	32
	hit	45
	goal	84
	umpire	23
	won	12
	league	58
	baseball	39
	soccer	21
	runs	26
{Spc	rts C	lass}

Classification Model

- A document is a vector of term frequency (TF) values, each category has its own term distribution
- Words in a document are generated by a multinomial model of the term distribution in a given class:

$$d_c \sim M\{n, \dot{p}^c? (p_1^c, p_2^c, ..., p_{|v|}^c)\}$$

• Classification:
$$arg_{c?\ C} max\{\ P(\ c\ /d\)\}$$

$$arg_{c?\ C} max\{\ P(\ c\)?^{N/}_{i?1}\ P(\ w_i\ /c\)^{n_i^c}\ \}$$

/V/: vocabulary size

 n_i : # of times word i appears in class c

Results

- 25% correct classification
- Compare with random guessing of 7%
- More advanced techniques perform slightly better:
 - Shrinkage of word term frequencies (McCallum et al 1998)
 - n-gram models
 - Support Vector Machines

55

User Browsing Model

User Browsing Model

- Web browsing is "sticky" or persistent: users tend to view a series of pages within the same category and then switch to another topic
- Example:

57

Markov Switching Model

	arts	usiness	mputers	games	health	home	news	creation	ference	science	nopping	society	sports	adult
arts	83%	4%	5%	2%	1%	2%	6%	3%	2%	6%	2%	3%	4%	1%
business	3%	73%	5%	3%	2%	3%	6%	2%	3%	3%	3%	2%	3%	2%
computers	5%	11%	79%	3%	3%	7%	5%	3%	4%	4%	5%	5%	2%	2%
games	1%	3%	2%	90%	1%	1%	1%	1%	0%	1%	1%	1%	1%	0%
health	0%	0%	0%	0%	84%	1%	1%	0%	0%	1%	0%	1%	0%	0%
home	0%	1%	1%	0%	1%	80%	1%	1%	0%	1%	1%	1%	0%	0%
news	1%	1%	1%	0%	1%	0%	69%	0%	0%	1%	0%	1%	1%	0%
recreation	1%	1%	1%	0%	1%	1%	1%	86%	1%	1%	1%	1%	1%	0%
reference	0%	1%	1%	0%	1%	0%	1%	0%	85%	2%	0%	1%	1%	0%
science	1%	0%	0%	0%	1%	1%	1%	0%	1%	75%	0%	1%	0%	0%
shopping	1%	3%	2%	1%	1%	2%	1%	1%	0%	1%	86%	1%	1%	0%
society	1%	1%	2%	0%	2%	1%	3%	1%	2%	2%	0%	82%	1%	1%
sports	2%	1%	1%	0%	0%	0%	3%	1%	1%	0%	0%	1%	85%	0%
adult	1%	1%	1%	0%	0%	0%	1%	0%	0%	0%	0%	1%	0%	93%
	160/	100/	100/	110/	20/	20/	20/	6%	20/	20/	7%	60/	5%	70/

Pooled transition matrix, heterogeneity across users

Implications

• Suppose we have the following sequence:

Using Bayes Rule can determine that there is a 97% probability of news, unconditional=2%, conditional on last observation=69%

59

Results

Methodology

Bayesian setup to combine information from:

- Known categories based on exact matches
- · Text classification
- · Markov Model of User Browsing
 - Introduce heterogeneity by assuming that conditional transition probability vectors drawn from Dirichlet distribution
- Similarity of other pages in the same domain
 - Assume that category of each page within a domain follows a Dirichlet distribution, so if we are at a "news" site then pages more likely to be classified as "news"

61

Findings

Random guessing 7%

Text Classification 25%

+ Domain Model 41%

+ Browsing Model 78%

Findings about Text Classication

Key Points of Text Processing

Can turn text and qualitative data into quantitative data

- Each technique (text classification, browsing model, or domain model) performs only fairly well (~25% classification)
- Combining these techniques together results in very good (~80%) classification rates

Applications

- Newsgroups
 - Gather information from newsgroups and determine whether consumers are responding positively or negatively
- E-mai
 - Scan e-mail text for similarities to known problems/topics
- Better Search engines
 - Instead of experts classifying pages we can mine the information collected by ISPs and classify it automatically
- Adult filters
 - US Appeals Court struck down Children's Internet Protection Act on the grounds that technology was inadequate

65

Session Conclusions

Conclusions

- Interactive Marketing provides a foundation understanding how marketers may use data mining in e-business
- Clickstream data provides a powerful raw input that requires effort to turn it into useful knowledge
 - User profiling predicts 'who you are' from 'where you go'
 - Path analysis predicts 'what you want' from 'what you view'
 - Text processing can turn qualitative data into quantitative data

What is your company doing with clickstream data?