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Reflecting Uncertainty about Economic Theory
when Estimating Consumer Demand

Abstract:

Economic theory provides agreat deal of information about demand models. Specifically, theory
can dictate many relationships that expenditure and price elasticities should fulfill. Unfortunately,
analysts cannot be certain whether these relationships will hold exactly. Many analysts perform
hypothesis tests to determine if the theory is correct. |If the theory is accepted then the relationships are
assumed to hold exactly, but if the theory is rejected they areignored. In this paper we outline a
hierarchical Bayesian formulation that allows usto consider the theoretical restrictions as holding
stochastically or approximately. Our estimates are shrunk towards those implied by economic theory.
This technigue can incorporate information that atheory is approximately right, even when exact
hypothesis tests would reject the theory and ignore all information from it. We illustrate our model with
an application of this datato a store-level system of demand equations using supermarket scanner data.
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1 Introduction

A basic goal of many marketing analysts and econometriciansisthe estimation of consumer demand
models. More specifically analysts might be interested in estimating price and promotional elasticitiesthat
can be used in devel oping better marketing strategies. Economics provides alarge body of theory to guide
an analyst in constructing a consumer demand model. Unfortunately, the analyst can never be entirely
confident that thistheory iscorrect. In practice many marketing analysts may assume that nothing isknown
about expenditure and price elasticities due to their uncertainty about whether all theoretical assumptions
are met. However, even if the assumptions of these theories are not met exactly the theory might still be
approximately correct. It isthis notion of approximation that we formalize in this chapter.

Thefocus of many econometric studiesisto determine the extent that the data supports a particular
theory. Classical approachesto testing lead the analyst to an all or nothing approach. If the data provides
strong confirmatory evidence then the analyst usually proceeds under the assumption the theory is correct
and estimates the model. However, if the theory is rejected then the analyst simply rejects the theory and
ignores all information from the theory. Sharp tests of null hypothesesin large datasets frequently lead to
rejectionif thetolerance for typel errorsisnot increased with the sample size. Large datasets can result in
very precise tests that often miss the fact that the theory may not be perfect but provides a reasonable
approximation to the true process.

In this paper we propose a Bayesian framework in which uncertainty about a theory is directly
represented in the model. Our procedure prescribes treating the theory as a prior and follows recent work
by Montgomery and Rossi (1999). The prior is centered over the theory, so the mean is what would be
expected under arestricted model in which the theory holds exactly. The variance of the prior is alowed
to vary depending upon the analyst’s confidence about the theory. For example, Slutsky symmetry may
require equating two parameters. In our methodology we can represent these two parameters as two draws
from a common distribution, which we call the hyper-prior. If we are certain that the theory holds exactly
then the variance of this hyper-prior is zero, and the restrictions areimplicitly fulfilled. However, wewish

to entertain the notion that the theory may only be approximately correct. Hence we allow the variance of



the hyper-prior to vary, perhaps substantially. We may be uncertain about the exact values of the parameters
of this distribution and place a prior on the parameters of this hyper-prior.

The analyst can incorporate prior beliefs about the adequacy of the theory and gain useful
information even if the theory is technically wrong, but is approximately right. It is this notion of
approximation that we are especially interested in representing. The estimator proposed resultsin adaptive
shrinkage towards the theory. Adaptivity refers to the ability of the model to decrease the amount of
shrinkageif the datadisagreeswith the prior. Asmoreinformation or dataisobserved less shrinkage occurs
and we can learn more about how good an approximation the theory provides to the observed data. Our
framework allows the flexibility to mimic the estimates of amodel achieved by an economist who holdsto
theory dogmatically, an analyst who ignores theory entirely, or an analyst’ swhose beliefsfall in between by
choosing the prior appropriately. Our framework also contrasts with statistical formulations of shrinkage
estimators in marketing that move estimates towards one another due to empirical similarities without any
theoretical justification (Blattberg and George 1991, Montgomery 1997).

Economic theory provides many possible sources of information. First, it can provide information
about relationshipsthat el asticities should satisfy, such asadding up or Slutsky symmetry. Second, specific
assumptions about utility may result in more parsimonious demand models. For example, the assumption
of additive utility resultsin avery parsimonious model. Many marketing models, like logit choice models
and conjoint models, are based upon the assumption of an additive utility model. Third, elasticity estimates
for one economic agent may be similar to those of other agents. Finally, previous empirical research may
enable us to directly postulate priors on the parameters, i.e., the elasticity matrix is made up of negative
elementsonthediagonal (negativeown-priceelagticities) and small positive cross-diagonal el ements(modest
direct substitution between products within a category). In this paper we show how these prior sources of
information can be parameterized and incorporated into a hierarchical Bayesian framework.

Previousresearch in marketing has considered economic restrictionsin demand model s (Berndt and
Silk 1993), restricted relationships between elasticities (Allenby 1989) in the context of market structure,
and the use of hierarchical modelsto shrink estimates across stores and households (Blattberg and George

1991, Allenby and Rossi 1993, Montgomery 1997). Our framework provides a unifying treatment to these



ideas. By evaluating these componentstogether we can appreci ate the significant gainsin measuring demand
that can be had by incorporating theory in a stochastic manner.

The outline of this paper is as follows. First we present our demand model in section 2 and the
restrictions implied by economic theory. Section 3 goes on to show how these restrictions can be
incorporated stochastically in a hierarchical Bayesian model. A short example is given to illustrate these
restrictions. The estimation of this Bayesian treatment is presented using the Gibbs Sampler in Section 4.
Section 5 provides an empirical example of shrinkage of price elasticitiestowardsthose restrictionsimplied
by an additive utility model. Thisexample estimates store level demand systems using weekly UPC scanner
data for the refrigerated orange juice category at Dominick’s Finer Foods (DFF), a major Chicago
supermarket chain. Section 6 considers a further application of this framework by considering changesin
market structures. We conclude the paper in section 7 with a discussion of these results along with

suggestions for implementing these techniques in other problems.

2 Sales Response M odeling

We begin not with aformal theory of consumer behavior from which we derive a model of demand
asin customary in econometrics, but with asalesresponse model. Both model stry to capturetherelationship
between quantity and price, the essential differenceisin terms of interpretation. A salesresponse model is
amodel motivated by statistical considerations, for example alogarithmic relationship between quantity and
price is commonly observed by marketing researchers, and is not justified on theoretical grounds. For a
discussion of sales response modeling from a marketing perspective see Blattberg and Nedlin (1990). On
the other hand an econometric model places many restrictionsupon thefunctional form and parameters. The
strength of the econometric model is our ability to estimate more parsimonious forms, while its weakness
isthe requirement to make many assumptionsthat may be suspect or untestable. In contrast, these strengths
arereversed for asalesresponsemodel. It makesfewer assumptionsabout demand, but thisflexibility comes
at the price of an increased number of parameters.

To begin our analysis of demand we choose a double log functional form for our sales response
model. Thisformischosen since previous empirical work has shown it to be a good one that captures the

logarithmic relationship between quantity and price. Our techniqueis quite general and does not rely upon
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alogarithmicfunctional form, infact it could be applied to many demand models, such asthe AIDS, transl og,

or Rotterdam model. Our sales response model can be written in vector form:

In(g,) = a + pIn(x) + Hsln(pst) +oe,, est~N(0,Zs) @

Wherethere are M productsin store s at week t, g4 and p4 are vectors of movement and price, and x4 isstore
expenditures (X4=X;pi«0i, the ith subscript denotes the ith product in the vector). Our framework is
parameterized by the store subscript s, although thisindex can be interpreted quite generally asan index for
different households, markets, or industries, depending upon the application.

The basic problem one encounters in estimating model (1) isthe large number of parameters. For
example, if there are 10 products and 100 stores as would be found in one small category of a moderately
sized retailer, thisresultsin more than 10,000 parameters that must be estimated. In atypical supermarket
retailing application perhaps two or three years of weekly observations would be available. Whilethisisa
large amount of data, if the retailer wishes to estimate demand for each store separately then it may be
difficult to estimate store-level demand with any degree of statistical precision. Thisproblem becomesacute
if the retailer wishes to formulate an elasticity based pricing strategy, since the high degree of parameter
uncertainty may result in strange pricing prescriptions. For example, positive own-price elasticities may
result in undefined optimal prices, or erroneously signed cross-price el asticities may result in higher overall

levels of prices.

2.1 An Economic Interpretation of the Sales Response Model

We can reinterpret our sales response model in (1) as a system of demand equations. The H
represents uncompensated price el asticitiesand the . are expenditure el asticities. Usually x would represent
income, and demand would be defined over all products consumed. However, we do not have ameasure of
weekly income for consumers that shop at store s. Therefore, we use store expenditures' and consider (1)

as asubset demand model for the productsin stores. Subset demand models possessall the usual properties

1. Our dataset in sections 5 and 6 consists of 26 categories with over 5,000 UPC's. This dataset
accounts for 25% of total store sales. It isthis dataset that we use to compute store expenditures. While
it would be desirable to have use all productsin astore, many products are not scanned, like produce and
meat which account for 50% of store sales. Therefore, our expenditure variable can be thought of largely
as grocery sales.
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of full demand models, although theincome elasticities are now interpreted as store expenditure el asticities.
For afurther discussion of subset demand models see Deaton and Muellbauer (1983).

A store expenditure el asticity states how product sales are effected as store shoppers purchase more
groceries. Specifically y; statesthe effect of an increase of store expenditures on the movement for product
i. If u,<0 then product sales decrease as expenditures grow (an inferior product), and when p,>1 product
salesgarner alarger share of overall sales. Since, thisexpenditure elasticity is conditional upon store sales,
it cannot be used to determine how store traffic is affected by competition and cross-category promotions.

The price elasticity matrix can be decomposed into expenditure and price effects:

H, = E - uw, )

s

Wherethe uncompensated crosselasticity (H) for store sisthe sum of asubstitution effect, the compensated
cross elasticity matrix (Ey), and an income effect, which is the outer product of the income elasticities (u.)
and the budget or market shares (w,). Theith element of the market share vector is defined as w,=p,40«/X4-
We use the usua definition of substitutes ([E];>0), complements ([EJ];<0), and independent products
([EJ;=0) that rely upon compensated €lasticities.

Substituting (2) into (1) yields a demand system in terms of compensated elasticities. We also
augment thismodel with cross- feature and deal variablesto control for other marketing mix effects. Finally,
we assumethat the category employed in our analysisisindependent of other categories, so our system only
usesthe set of productswithin acategory. Thefinal form of the demand model that we employ in this paper
is:

]'n(qst) = as * p'sln(xs/Pst) + Espst + ®sfst + Tsdst t €y est - N(O’Es) (3)

st

Where Pg=exp{ Z,w,4In(p,)} isaDivisiapriceindex, f4 and dy arethevectorsof featureand display variables

for store s during week t.

2.2 Economic Theory
If weinterpret (3) not asasalesresponse model, but as asystem of demand equati onsthen economic

theory isvery informative about the parameters or more specifically the conditionsthat the price el asticities
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must satisfy. Theserestrictionsfollow asaconsequenceof underlying assumptionsabout utility: reflextivity,
completeness, transitivity, continuity, and nonsatiation. Inour discussionweonly expressthe consequences
of these assumptions on demand and do not providetheir derivations. For additional reference werefer the
reader to Deaton and Muellbauer (1983, pp. 43-46).

Adding-Up: The budget constraint imposes the following condition on demand:

/
Pq,= X, (4)

This equation can be differentiated with respect to price and expenditures to yield the following:

wp =1 ©)

and

wH=w - wéES =0 (6)

§ 7 K

These restrictions reduce our demand system by 1 and M parameters respectively.
Homogeneity: The assumption of homogeneity impliesthat if we doubleal pricesand incomethen

the budget shares remain unchanged (no money illusion):
Hi=p = Ev=0, wherev= (111 (7)
This restriction reduces our demand system by an additional M parameters.
Symmetry: The symmetry restrictionisderived fromthe doubl e differentiability of the cost function

or the symmetry of the Slutsky matrix?, and implies that the compensated elasticity matrix when weighted

by the budget sharesis symmetric:

diagw ) E, = E| diag(w) ®

Noticethat symmetry resultsinalargereductioninthe order of thedemand system, specifically by ¥2M (M-1)

terms or a 45% reduction in the cross-price e asticities with 10 products (M=10).

o og
2. The i,j)th element of the Slutsky matrix is defined as s, = %qj R a_“".
x P,
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Many marketers may worry that Slutsky symmetry may be too restrictive. It iswell established in
marketing (Blattberg and Wiesniewski 1989 and Kamakura and Russell 1989) that uncompensated price
€l asticity matrices are asymmetric. For example price changes of higher quality brands effect sales of lower
guality brands, but price changes of lower quality brands have only small effects on high quality brands.
These asymmetriesare consi stent with economic theory and can be explained by differencesin market shares
and expenditure elasticities, and do not require asymmetriesin the compensated elasticity matrix. Consider

an example with three brands (premium, national, and store brands) and the following parameters:

1.5 4 -2.0 50 50
=10/, w=1[3, E=| .67 -2.0 50
5 3 67 50 -2.0

Employing (8) we find the uncompensated price elasticity matrix becomes:

-2.6 05 .05

H = 27 -23 20

47 35 -215
The asymmetry in the compensated el asticity matrix (E) between the premium and national brandsisdueto
market share differences (w), while thereis no assymetry between the national and store brands. However,
upon eval uation of the uncompensated el asticity matrix (H), wefind pronounced price asymmetries between
thesethreebrands. Theasymmetry in price elasticitiesisdueto expenditure effects (), i.e., asexpenditures

grow people purchase higher quality brands.

Sgn-Restrictions:  Downward sloping demand curves require the Slutsky matrix to possess a

negative semi-definite property:

V8 8/S.8<0 ()

In addition to the usual consequence that the own-price elasticities must be non-positive, it further implies
that any linear bundle of products must also have anon-positive elasticity. A common concernin marketing

isthat price elasticities can frequently be of the wrong sign.



2.3 Weak Separability and Market Structure

Ancther component of economic theory that can induce relationships among price elasticities are
ones about the relationships between products. Many marketing researchers have suggested a hierarchical
structure for market competition (to name just a few see Allenby 1989, Vilcassim 1989, Srivastava et al
1981). Thishierarchyisillustrated in Figure 1. For example, aconsumer first decideswhether to buy liquid
or dry laundry detergent, and then considers which product to buy within the subcategory. Products at the
same level within abranch are strong substitutes, while competition between itemsin different branchesis

weaker and have the same general pattern.

Insert Figure 1 about here.

At the heart of most research on market structure is weak separability of the utility function.
Frequently these hierarchical structures are justified by assuming that consumers engage in some type of
hierarchical budgeting process. Allocatingbudget sharestolargegroupsof productslikegroceries, housing,
transportation, etc., and then deciding upon allocations to individual products within each category. This
broad budget allocation process allows us to break the problem into smaller units by assuming groups of
products within a category can be weakly separated from one another. Categories can be partitioned into
subcategories, until finally we reach the individual product level. The general form of the utility function

for an individual household is of the form:

utlllty = V(VI( ql ) N VZ( qz ) s s Vc( qc)) (10)

Where g isthe vector of quantities for all itemsin the ith category of which there are C categories.
The hierarchy in the cost or utility functions naturally imposes a structure in the demand model. It

can be shown that weak separability imposes the following restriction on the elasticity matrix:

€ = Ko Wy W, ifi€ Gandje H (12)

where¢;isthei,jth element of the matrix E and kg, iSaparameter that may depend upon x. In other words,

ijs

the elasticities that capture substitution within a category can take on a general form, but those elasticities
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representing intra-category substitution must follow arestricted pattern that is common for all itemsin the

subcategories.

2.4 Strong Separ ability and Additive Utility

Therestrictions discussed in the previous subsection hold for many families of utility functions. If
the analyst is willing to make stronger assumptions about a specific form of utility then this can also result
in much simpler formsto demand. One possibility isto assume utility isadditive or strongly separable across

products:

utility = v( ivi(qi)) (12)

where g is the quantity of the ith product consumed. Additivity has a long history in economic models
(Lancaster 1966) and empirical applicationsin marketing likelogit modeling (Guadagni and Little 1983) and
conjoint analysis(Greenand Rao 1971). Often additivity isargued at the attributelevel inlogit and conjoint
applications and not the higher, product level aswe have suggested.

Additive utility models result in parsimonious—but restrictive—demand models:

E = ¢, diag(p) - dp, (pow) (13)

Notice that the cross-elasticity matrix is populated solely by the expenditure elasticities (1), market shares
(w), and a general substitution parameter (¢). This restricted elasticity matrix has M+1 parameters, not
including the market shares, as opposed to M?+M for the unrestricted form. Additionally, the elasticity
matrix in (13) will satisfy the properties of demand models given in the previous subsections. However, the
incredible parsimony of the additive model also comes ahigh penalty. Namely, either all products must be
substitutesor complements, and thelevel of substitution or complementarity isdictated by asingle parameter
(¢) and the expenditure elasticities.

It might seem odd to many economists to propose an additive utility structure, since many
econometric studies have rejected additivity (Barten 1969, Deaton 1974, Theil 1976, Deaton 1978).
However, we are proposing an additive utility structure at avery low-level (e.g., similar products within a

single category), while most have considered additivity at high levels in a hierarchical structure (food,
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clothing, housing). Additive utility implies that the utility gained from one product is unaffected by the
utility of other products. For example, there is no interaction in utility from purchasing Minute Maid and
Tropicanaorangejuicetogether. Thismakesagreat deal of sense for productswithin acategory, which are
typically direct substitutes and not used together. However, additivity may not make sense across products

from different categories that when combined together can interact, such as bread and peanut butter.

2.5 Pooling and Heter ogeneity

Thelast set of restrictions that we propose are not really theoretical ones, but ones motivated from
practice. It is quite common to observe multiple agents, either consumers or stores as in our case. A
common assumption isto simply pool the observations across all agents and assume identical elaticitiesas

in the following relationship:

E=E, p,=p (14)

Recently there hasbeen agreat deal of research in marketing studying heterogeneity, for arecent review refer

to Rossi and Allenby (2000). One technique is to capture heterogeneity in a random coefficient model:

E=E+U, p,=p+u, (15)

This specification has been studied extensively starting with the early work by Swamy (1970) from a
frequentist perspective and by Lindley and Smith (1972) from a Bayesian interpretation as a hierarchical

Bayesian model.

3 A Bayesian Specification

The economic theory proposed in section 2 is simply that, a theory. As with any theory the
assumptions upon which it is based are subject to question. One technique isto inject randomness into the
axioms upon which the theory is constructed, namely reflexivity, completeness, transitivity, continuity,
nonsatiation, and convexity. However, our belief isthat the theory is quite reasonable. But we also realize
that there are many reasons to believe that this model may not be entirely correct. Our theory is at an

individual level, but our datais at an aggregate level. We know that aggregate demand models will satisfy
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additivity and other economic properties only under certain conditions (see Deaton and Muellabuer (1983,
pg. 148-166) for adiscussion of the conditionsfor exact aggregationto hold). Additionally, thesetheoretical
relationships are abstractionsthat omit certain effects (intertemporal substitution, savings, nonlinear budget
constraints, etc.) or be subject to measurement errors.

Our belief isthat the theory should be areasonabl e approximation to the observed process, but will
hold approximately or in a stochastic manner and not exactly. This contrasts with the usual pre-testing
approach which would test whether these effects hold exactly and then totally discard them if they do not
meet a specific p-value. Anessential differenceisthat in our framework—even if the theory is not entirely
supported by the data—the information implied by the theory will not be completely ignored. To explicitly
incorporate the notion of approximation into our model follow the approach proposed by Montgomery and

Rossi (1999). First, we assume that the price elasticities have the following prior distribution:

e, | B ~ NE,,A) (16)
where
B, - [Bis By, %/’ Bu = (e b 6, 0,/ (17)

Thisdistribution will be centered around the restrictionsimplied by our theory, €., and the variance around
these restrictions represents our confidence in this approximation. A can be interpreted as the degree to
which an approximation is valid. If A is small then these restrictions will effectively be enforced.
Conversaly large values of A will result in estimates that may bear little resemblance to the restricted
parameter estimates, i.e., unrestricted parameter estimates.

We are not abl e to assess the parameters of this prior directly, so we place aprior onthisprior. To
avoid confusionthe prior in (16) iscalled the hyper-prior. Additionally, we assumethat an elasticity matrix
that conforms to an additive utility structure is reasonable, which implicitly satisfies all the relationships

outlined in section 2. We propose the following relationship:

e, = vee(E), € = VGC(ES) , E = ¢ diagp) - dp (pow,) (18)

We place the usual multivariate normal prior on the remaining store parameters:
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b, ~ N(.A,) (19)

ﬁs - AT(ES’A) (20)

Animportant reason for expressing the prior on E conditionally upon p.,and ¢isto avoid problems
on nonlinearity. Notice that while Eis conditionally linear upon ., unconditionally our prior is nonlinear
in pue. Additionally the prior implies that the price elasticity elements will be correlated, which can help
counter the effect of multicollinearity in atypical price dataset.

Noticethat our priorson Eg, ., and ¢.are exchangeable across stores. It isthisexchangeability that
will drive the shrinkage of one stores parameter estimates towards another. The store to store variation of
theexpenditureelasticities () isgoverned by A, and variationinthe priceelasticity matrix (E)—both across
store and deviations from the theory—is governed by the A matrix. If A and A are zero then there will be
no random variation across stores and the cross el asticity matrix will be held to itsrestricted pattern, i.e., the
estimateswill be closeto apooledrestricted model. If A and A arelargethen theinformation fromthe hyper-
distribution will be discounted and the parameter estimates will be close to individual store models.

Sincewe cannot directly evaluate A and A, we formulate a prior on these matrices, and use the data
to make inferences about the variation present in the data. In our Bayesian framework we assume

independent Wishart priors for each of these matrices:

A" ~ Wishart( VA,VA_I) , A1 ~ Wishart( VA,VAI) (22)

We parameterize the prior on these priors as: V,=v, k, V, and V,=v, k, V,, so that these priors are centered
over V, Yk, and V,/k,, respectively.

Theuse of independent priorson A and A asin Montgomery and Rossi (1999) providesan important
point of divergence with previouswork in marketing research that uses asinglejoint Wishart prior on these
matrices (Blattberg and George 1991, Montgomery 1997). The problemwith asingleinverted Wishart prior
on the variance of f,and e, isalack of flexibility. Once the mean of the distribution is set, the dispersion
around this mean is controlled by a single scaling parameter. However, we want a prior that will allow for

differential degrees of freedom on how tight the prior should be on p, and e.. Specifically in our problem
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we wish to have a prior that may allow differential amounts of shrinkage across stores and towards the
theory. For example, we may wish to have more cross-store shrinkage than shrinkage towards the theory,
i.e, A>A.

To illustrate this problem consider Figure 1 which illustrates the inverted Wishart prior for two
diagonal elementsinthecorresponding panels. Oncethedispersionisset for thefirst element, thedispersion
for the second element is automatically fixed, as denoted by asolid line. If we wish to loosen up the prior
on the first element to increase the amount of shrinkage (there is an inverted relationship), this would also
increase the shrinkage of the second element, as denoted by the dashed line. However, we wish to havethe
ability to tighten up the prior onthefirst element without altering the second element, i.e., choose the dashed
linefor thefirst parameter and the solid line for the second parameter. The introduction of two independent

priors allows for thistype of differential shrinkage.

Figure 1 about here

Recent work by Barnard et al (2000) on decomposing the prior on the covariance matrix into the standard

deviations and correlation matrices can also allow differential shrinkage.

3.1 An Example
To illustrate the framework presented in the previous subsection consider an example with three

products. We use our demand model from (3) without promotional variables:

In(q,,) e PII P €115 €125 E135[MP,) C1ss
In(gy)| = (O] + Pos|In(x, /P,.) + (€21 €25 €xs4|[N@y)| + 3|, € ~ N(0,Z) (22)
In(q,,) Ol Mg €315 €3 E33|INP3) Cass

The hyper-parameters are:
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Suppose the draw for an individual storeis:

1.4 33 -23 11 11
b = -3, p,=|8/, w =33, E=|11 -1.7 6
8 33 11 .6 -17

The restricted price elasticity implied by this specific model would be:

33 -23 11 11
b, = -3, w =133, E=|1.l -1.7 6
33 L1 .6 -17

Notice that this restricted price elasticity reflects the high own-price sensitivity and small cross-price
elasticities that is usually observed in empirical work.

The price elasticity estimates for this individual store will be shrunk towards the restricted price
elasticity matrix. Thiscontrastswith Blattbergand George (1991) who proposeshrinkingall own priceterms

(deflated by relative prices) to a single value. Their structure would result in price terms being shrunk

towards:
-2 S S
S5 -2 5
S S -2

Notice that Blattberg and George (1991) can be thought of asa special case of our framework. The
shrinkage pattern they suggested is the same as ours when market shares and expenditure elasticities are
equal. However, market shares are rarely equal and we may expect some brands to benefit from category
expenditures more than others (unequal expenditure elasticities). Anadvantage of our framework isthat we
can evaluate the shrinkage of the estimatesin terms of theoretical properties of our model, and not rely upon
empirical justifications. Thisisanimportant distinction sinceit permits evaluation of shrinkage in terms of

utility and not ad hoc empirical justifications.

4 Estimation

We rewrite our model in SUR form:

1

y, ~ N(XB,,Zel,), ' ~W(vy, Vg ) (27)
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In this case the s subscript denotes an individual store, and the dimension of the y, vector isM brandsby T
weeks. Inrewriting the model we have implicitly stacked the vector of observations for each brand on top

of one another in the following manner:

. : 1 In(x,/P,) Py = Pagy Jus i
1s ils 1s
e | ) ' _ 1 In(x,/P,) Piy = Parpy Jiog Gz 28)
ys = : , q‘s = : , Xs = . s ‘Xvis - . . : . . .
q]Ws iTs Xm
.l ln(sz/Pts) plTs pMTS ‘flTS diTs_

The second stage of our hierarchical model refers to the hyper-distribution from which the vector
of parameters for each store is drawn:

1

veo(E) | 1, b, ~ N(vec(E,) , A) for s=1,-,8 , A '~ W(v, Vy') (29)

where the expected price elasticity matrix is the restricted one implied by an additive utility model:

E, = ¢,diag(p,) - &b, (10w, (30)

The remaining parameters are drawn from:

1

B~ N(B,,A)fors=1,-8 , A'~wW(v,,7;") (31)

The third stage of our model expresses the prior on the hyper-distribution:

B~N(CO,V,) (32)

4.1 Estimation Using the Gibbs Sampler

Our goal isto computethe posterior distribution of themodel parameters. The posterior distribution
contains all the information from our sample given our distributional assumptions. From the posterior
distribution we can compute the means, which are commonly used as point estimates, along with any other
measures of the distribution that are of interest. The following data and parameters are supplied by the

analyst:
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X,Y ; e’VB’VA’VA’VA’VA’V}J’VZ’vd)’Vd)’a)’V$ (33)

Thegeneral procedurefor findingthe marginal posterior distributionisto computethejoint posterior
and then integrate out all parameters except those of interest. In this casethejoint distribution of our model
can be written as:

P(Bl L) ﬁS’El >“'>Ess¢1 9“'9¢8921 9'“928969A>A9(T)9A‘¢ | data, priorS) &

< _ _ (34
1_:[1 hke( ﬁsaEsazs | AaA) p(B | BlaaﬁsaA) p(A) p(A) p(e) p(¢) p(A‘q,)

If we wanted to find the marginal posterior distribution of 8we would need to solve:

p(‘_3 |ea VeavAa VAavAa VAavga Vzavd,, V¢a Z) s VE,)
= p(B.€.Z,0.B.A.A,0.4,) dB AEdB dp d dh,

(35

The analytic solution to this integral is not known even with natural conjugate priors. To understand the
difficulty in solvingthisintegral, werefer the reader to the simpler case of tryingto solveasingle stage SUR
model (Zellner 1971, pp. 240-6) for which the analytic solution is not known either. Thereforewewill have
to rely upon numerical procedures to find the solution. Unfortunately the high dimension of the integral
makes it difficult to find a solution using conventional numerical integration techniques.

An alternate method is through the use the Gibbs sampler. The Gibbs sampler requiresthe solution
of the conditional distributions, which can be easily derived due to the hierarchical structure of the model.
For a good introduction to the Gibbs sampler see Casella and George (1992). We do not advocate the use
of Gibbs sampler based on computational efficiency, instead we advocate its use because of its ease of
implementation. The most desirable solution would be an analytical one, but given that this solution does
not exist in closed form we satisfy ourselves with a numerical solution.

The Gibbs sampler employed in this paper requires sequentially randomly sampling from each of
the conditional distributions. It has been shown by Gelfand and Smith (1990) and Gelfand et al (1990) that

this draws converge to the posterior marginal distributions. The general outline of the procedureis:
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Select starting values for the parameters of the marginal posterior distributions. In our
practice the least squares estimates of these parameters provide good starting points.

Generate M,+M, sets of random numbers with each set being drawn in the following

manner:
BY v p(p, | EX P, 5% 0,y fors=1,-,8 (36)
EP v p(E | BY, 550, ¢80,y fors=1,-.8 (37)
oP v p(, | BPEP, ) fors=1,-8 (38)
OV s, | BP,ED, ) (39)
B(k) vV (B | B(k) (k) A(k—l),m) (40)
¢V p(d | &7, 09,24 ") (41)
A® Y pA | BD, . BD B, .. O, ¢, .. ¢®, .. ) (42)
APV p(A | B, BS. B0 ) (43)
A v p PO | 0P, -, 40, 3%, .. ) (a4)

Where the symbol x V p(X) means that the x is a simulated realization or draw from the
density p(x) and k denotes the iteration number. The above conditional distributions are
understood to also depend upon the prior parameters and the data.

Usethe last M, sets of draws to estimate the posterior marginal distributions.

-17 -



This means that the problem reduces to solving the conditional distributions of each of the
parametersintheposterior distribution. Thesesolutionsarereadily availableduetothehierarchical structure
of our model and the affine nature of the normal and Wishart distributions. The solution of the conditional
densities are:

1 Draw the parameter vector in the first-stage in two parts to avoid the nonlinearity induced

by the additive separable prior:

@ Since we know the price elasticities, we can rewrite the model as below:

]'n(qits)_ Eeijsln(pjts) - ais * p'isln(X/Pts) * eisf;ts * d>isdits * eits (45)
J

The B vector can be drawn using the usual SUR resullt.

(b Since we know the (3 vector we can rewrite the model as below:
[ln(qits) % T W InGx/P) + O, f + IIJisdits}] = Zeijsln(pjts) Tl (46)
J

The E; matrix can be drawn using the usual multivariate regression result.
2. Draw the ¢ parameter. Notice that conditional upon E, and p, we have the following

univariate regression:

€ = (61.]. = RWIR, b, + Uje » Uy~ N(,A) (47)

Hence, ¢, can be drawn using the usual univariate regression result.

3. s 1S drawn from an inverted Wishart distribution

5 Mg+ T,, (T BEEYY B = y,- X8, (48)

is s

4. B isamultivariate regression

1

B~NCHxA'B, + Vo 0),H) , H=(SA'+ 7')! (49)

¢ isaunivariate regression

-18-



— ¢ 1

¢ ~ HES¢S+3,H , H=£+iI (50)
Ay 6 Ay T
5. Since A and A are independent they can be drawn separately from inverted Wishart
distributions:

A - W+ S,V 2B~ BB, - BYY) (51)
AV~ W(vg+ S, Vy + y(vee(B), - vee(E))(vec(E), - vec(E))) (52)
Ayl = W(vy+ S,V + 5(b,- ), - )) (53)

5 Application to Scanner Data from the Refrigerated Orange Juice Category

We apply our methods to store level scanner data collected from 83 stores from Dominick’s Finer
Foods chain in Chicago, IL. Thisdatais collected from point-of-sale computers that record quantity and
prices of purchased items. Our datais reported at the weekly level for each store. We have 120 weeks of
datawhich is split for the purposes of model validation into a sample for estimation and another for out-of-
sample predictive validation. We consider productsin the refrigerated orange juice category. Table 1lists
the items under study, average price and market share. The 11 itemsrepresent well over 70% of the revenue
in this category and cover the range from premium national brands to lower quality store brands. Our
expenditure variable (X) is calculated from a subset of 26 store categories with over 5,000 UPC's. These

categories account for over 25% of total store ACV.

Table 1 about here
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The settings of the priors are chosen to be relatively uninformative relative to the data except for
priorson A and A. The prior on A controls the amount of shrinkage towards the theory, and the prior on A
controls the amount of shrinkage across the stores. A judicious choice of prior settings on these variables
can result in estimates that closely proxy the restricted or unrestricted models, or fulfill our desire to fall

somewhere in-between these estimates. We evaluate the impact of the prior over arange of settings.

5.1 How good isour theory?

We remind the user that we can actually think of our model as providing two dimensions of
restrictions. Thefirstisto employ therestrictionson the price el asticity matrix implied by an additive utility
model as described in section 2. The second isto pool the observations across stores, which would restrict
the estimates of one store to be equal to one ancther. A natural starting point isto perform aclassical test
to determine whether therestrictions hold exactly. We summarize the number of parameters, in- and out-of -
sample M SE, log-likelihood, and Schwarz information criterion (SIC) in Table 2. The restrictions implied
by an additive utility model, pooling assumption, or both are all overwhelming rejected (p<.0001) by
standard likelihood ration tests. Upon an initial evaluation it might appear that the neither the theory nor
poolingishelpful. Analternative model selection criterion would beto use SIC as an asymptotic argument
to justify the choice of models. Using the Schwarz information criterion (SIC) would lead to the choice of
restricted store-level models. The out-of-sampl e predictions imply that the parameter bias induced by the

restricted store model iswell worth the reduced variance of the parameter estimates.

Table 2 about here

Table 2 clearly shows that, either in terms of in-sample or out-of-sample fit, pooled models are
inferior to more unrestricted models. Thisis because of the large heterogeneity in this population of stores.
It isimportant to note that the out-of-sampl e validation resultsindicate that thisis not just the result of over-
fitting. The next most important conclusion is that the restrictions of the additive utility theory are useful
inimproving predictive accuracy. TheBayesmodel performsthebest in out-of-sample predictive validation

and offerstheflexibility of storelevel modelswithout the dangers of over-parameterization. Inthisdataset,
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it appears that the restrictions of additive utility theory hold fairly well. In addition, there are large and
detectabl e store differences so that the Bayes model adapts to something fairly close to the restricted store
models. A more formal measure to determine the best model is to compute the posterior odds of our
Bayesian models. Wefollow Newton and Raftery’ s (1994) technique to compute the posterior odds and we
find overwhelming support that amodel with astrong prior on the theory and weak prior on commonalities

across stores has the highest posterior prabability.

5.2 Impact on price elasticity estimates

In Table 3 weillustrate the similarity and differencesin the point estimates for the expenditure and
price elasticities of four selected products. First, notethewide variation inthe magnitude of the unrestricted
storemodels. A common complaint amongst analystsisthat alarge number of el asticitiesmay beincorrectly
signed and even the magnitudes may be suspect. Noticefour of thetwelve parametershave unexpected signs
and the magnitudes of the own-price elasticities vary widely from -2.2 to -3.7, given the similarity of the
productswe might expect more similar estimates. |n contrast the restricted pooled model whichimplements
pooling acrossthe stores and the exact restrictions as prescribed by an additive utility model eliminates both
of these criticisms. However, we have lost all heterogeneity in the estimates across the stores and the
theoretical restrictions are rigidly enforced. Both of these assumptions are rejected by standard statistical
tests. The estimates from the Bayes model offer a compromise solution in which the only on of the cross-
price elasticity isincorrectly signed, and the range of the elasticitiesare reduced. A judicious choice of our
prior can result in estimates that can mimic these restricted estimates, or result in estimates that fall in
between these estimates. Again we note that the data provides strong support that a compromise solution

is superior both in the form of improved out-of -sample predictions and high posterior odds.

Table 3 about here

6 I ncor porating Information about Market Structure

The analysis of the previous subsection which uses a prior based upon an additive prior may seem

overly restrictive. One concern isthat a category may have two subcategories that are only weakly related.
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For example, the laundry detergent category may consist of liquid and powder forms. Substitution within
asubcategory may be high, but between these subcategoriesit may be weak. To allow increased flexibility
we consider combining the strong and weak separability argumentsfrom section 2 into asingle model. If we
assumethat utility isadditive or strongly separabl ewithin acategory but weakly separabl e across categories,

then utility can take the following structure:

utility = V(Eivli( 9)> %2045 ) > 5 £Vl in)) (54)

where g is the quantity of the ith product in the cth category. Thiswill result in the following restrictions
on the price elasticities:
oo By = bog i b,w, ifieGandjeH, iz
€ = oo B e W, ifieGandjeG,i=j (55)
(T B W, ifie Gandje H

Notice one change from our previous formulation is that we have dropped the store subscript on ¢. This
changeis necessitated by theincreased computational requirements of themodel. However, we believethis
isasensiblerestriction, sincethe ¢’ s permit differencesin market structures and we presumethat the market
structure in each store is the same.

Thisstructure permits more flexibility inthe price el asticity matrix, but still isafairly parsimonious
structure, perhaps overly so for many analysts. If ¢g,=¢ for all G and H then (55) will reduce to the
restrictionsinduced by an additive utility structurein (13). While these structures can be similar, our hope
isthat by incorporating modelsthat are closer to the true generating process of the data this should result in
better approximations and shrinkage patterns. Onthe other hand, the added flexibility may not be necessary
since the model already permits substantial departures from the theory embedded within the prior.

This type of structure has been considered previously in marketing in the context of market
structures.  Allenby (1989) proposed identifying market structures using a restricted additive utility
model—albeit in nested logit form. If we assume that the expenditure elasticities within a market segment
are constant, we can derivethe same market structure proposed by Allenby. Asanillustration supposethere

are two submarkets each with 3 brands. The uncompensated elasticity matrix will be:
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N & &y | Ews Euws G
S My By | Euwy Euws Euwg
S &2 My | &y Euws G
H=|--- --- --- + —-- -—-- --- (56)
G ey &y | mg Euws Euw
G By &y | B Mg Euw
B Gy &y | B, Eaws Mg

Where n,=E,Wi-pid, Ea=-bpi-i, @ and b denote the submarket for productsi andj. Therestricted el asticity

matrix of (56) isthe same asthat given in Allenby’s (1989) figure 1.

6.1 Constructing a Prior on Market Structure

Thefirst step in constructing a Bayesian model isto develop a prior assessment of the probability
for each market structure. For example if we have a category with three products: A, B, and C, then there
arefive possible market structures: { (A,B,C)}, {(A,B),(O)},{(A),(B,C)},{(A,C),(B)},{(A),(B),(C)}. The
most direct solution would be to assume a particular market structure and simply replacethe e used in (18),
which was based upon an additive utility model with the model proposedin (55). In keeping with thetheme
of this paper wewould liketo allow some uncertai nty about the market structure and allow deviations away
from this market structure. Our prior must attach a probability to each of these possible market structures.
Asthenumber of productsincreasesthereisacombinatorial explosion of possible market structures, perhaps
allowing millions of models. Computationally it is not possible to compute the posterior distribution if all
these markets must be considered aswoul d happenwith aflat prior. Thereforetheory or some expertise must
be used to guide in identifying likely market structures. If we aretotally agnostic then we will not be able
to find a solution.

One technique used by Allenby (1989) isto simply enumerate category structures based upon the
product attributes, like brand, size, flavor, etc. For example, choose amarket structure induced by blocking
all brands with the same size together. This technique results in a small number of market structures.
Unfortunately, grouping upon individual attributes alone may not be satisfactory. Wewould liketo propose

a more flexible approach, that allows grouping based upon multiple attributes, say size and quality.
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Additionally, we would like to permit some deviations away fromthis structure. For example, one product
that has the same size as those products in one subcategory should be placed with another subcategory due
its similarity on quality.

We use a conditional approach to specify our prior that a product belongs to a subcategory. The
conditional approach assumes that we know the assignments of the N-1 other items in the category and are
interested in assigning one additional product. Our problem becomes one of predicting the probability that
this unassigned product should be assigned to anew k+1 subcategory or one of the existing k subcategories.
This conditional specification makes it easy to incorporate it into our Gibbs sampling algorithm. The
marginal probabilities of each model can be computed using simulation.

We begin by considering the probability that anew category should be created. Wewould likethis
probability to reflect the similarity of the existing groups. If the existing subcategoriesare quitesimilar then
they will offer low discriminatory value, and we would argue that it islikely that a new category should be
opened. Ontheother hand, if the unassigned product hasahigh probability of belonging to one subcategory
versus the others then this indicates a high discriminatory power of the existing structure, and we would
arguethatitislesslikely that anew category should be created. Additionally, as more categoriesare created
we wish to decrease the probability that a new category should be opened. Another function of this
conditional probability isto serve as a penalty function and avoid creating too many subcategories, which
would result in an overparameterized model.

Suppose there are k existing subcategories, and the conditional probability that a new product is
assigned to subcategory g isp, and the probability that it is assigned to anew subcategory isp,.;. We begin
by defining the probability of opening a new subcategory:

1
Py = ;exp{_éo) (57)
where y is a parameter that scales the overall probability and is positive, & is afunction of the number of
categoriesthat currently existing, and o isthe entropy of the current subcategory classification probabilities.

We define entropy as follows:

k
0= -z P, logy(p,) (58)
R
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Entropy is a measure of how much disparity there isin the attributes of the existing categories. If all the
probabilitiesare (p,) are closethen entropy islow, asthe probabilitiesdiverge entropy increases. Noticethat

entropy is always positive. Additionally, the scaling function of entropy (8) is defined as follows:

2
where §, and 8, are scaling parameters and are positive. 6, scalesthe entropy, and &, increases this penalty

k
d = 61(1+‘6=] (59)

as the number of existing categories grows.

In constructing the probability that an unassigned item belongs to an existing category we wish to
reflect the similarity of the unassigned product with the existing categories. If an attribute of an unassigned
product matchesthosein an existing category thenit islikely that this product bel ongsto this category. We

begin by defining the probability that given attribute i the unassigned product belongsto category g:

c_ + W
g

Py = (60)

n+ o
g

Where ¢, is the number of products within subcategory g that have the same ith attribute and n, is the total

number of productsin the subcategory. The role of the parameter w isto prevent zero probabilities. If we

assume that the M attributes of a product are independent of one another, then the probability that the new

product belongs to gth group is proportional to:

M
Py = WPy (61)

It might seem like an independence assumption may be questionable, but since highly correlated attributes
can be omitted independence may be a reasonable assumption.

One further extension that we wish to incorporate is to place additional weight on one particular
attribute. We modify (61) by raising the probability of the correspond attribute by t and raising the other
attributes by 1/t. In our problem a priori we are uncertain as to which attribute will be more important,
therefore we consider a mixture prior in which an attribute has an equal probability of being the important

attribute. In summary our moddl is:
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M M
I H Py T ifi=j
{ (62)

1/t otherwise

Where (1-p,.,) reflects the probability that anew category is not created or one of the existing categoriesis
selected.

Example: Consider the following example to illustrate this prior. Our problem is to determine
whether the eleventh product, Minute Maid - Regular - 96 Oz, should be assigned to subcategory A, B, C,
or a new subcategory D given the assignments of the other ten products as listed in Table 4. Notice
subcategory A appearsto be premium products, B ismade up of regular productsof variousbrandsand sizes,
while C is made up of store brands. We set the parameters of this prior asfollows: »=.001, 6,=.25, 6,=10,
t=2, and y=100. The resultsindicate that there is a 99% probability that Minute Maid - Regular - 96 Oz.
should be assigned to subcategory B, a 1% chance that it should be assigned to a new category, and a
negligible probability of being assigned to subcategory A or C. This conformswell with our intuition that
subcategory B is made up of various national brands. Intuitively the prior strongly predicts that the product
belongs to subcategory B because the quality attribute matches perfectly and there one match in the brand
category, otherwise category C would have been highly favored. Asthe w parameter isincreased to .3 the
odds of the product being assigned to subcategory C rise significantly to 41%, subcategory B’ s probability
dropsto 58%, and the odds of anew category drop to .7%. If the w parameter is set to zero then unlessthere
isat least one match of the unassigned attribute to the products in the subcategory there is no probability of

the unassigned attribute being assigned to that subcategory.
Insert Table 4 about here.

For the 11 products listed in Table 4 there are almost 40 million possible permutations of market
structures. However, many of these permutationsresult in structuresthat are essentially the same except for

thelabeling of the subcategories. For example, the market structure{ (A,B),(C)} isthesameas{ (C),(A,B)}.
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To insure the identifiability of the market structures we only alow those structures in which the lowest
product rank as given in Table 1 is less than those of the subcategories that follow it. In the previous
example, the permutation { (C),(A,B)} would not be allowed. Thisidentifiability condition resultsin about
500,000 possible market structures.

We simulate our prior using 100,000 iterations, and list the parameter settings and the number of
subcategory structures identified in Table 5°. Setting 1 favors those category structures that allow more
subcategoriesand includesthe extreme casethat all productsare assigned to different subcategories. Settings
2through 6 include most of the usual candidate structuresthat are blocked by attributes: brand, size, quality,
and all productsin the same category. These priorstend to result in subcategories that have more products

and result in those subcategories that have similar attributes.

Insert Table5 about here.

In our subsequent analysis we use the prior that correspondswith setting 6. To acquaint the reader
with the types of structures that this model identifies we list the top ten models along with their prior
probability in Table 6. A priori the best market structure is the one in which there are two subcategories.
One with the store brands (which match on brand and quality) and all others. Many models are slight
deviatesfrom oneanother, inwhich oneproduct will switchto adifferent subcategory. Thesetopten models
account for 59% of the probability inthe prior. The market structure in which all items are assigned to the

same category was ranked 15",

Insert Table 6 about here.

To better demonstrate the association of the products using our prior we compute the conditional probability

that each pair of products will be included in the same subcategory in Table 7.

3. If amarket structure does not occur in the simulation we assume that its probability is zero.
Effectively, we are truncating our prior.

-27 -



Insert Table 7 about here.

We readily acknowledge that this prior isonly one out of the multitudes that could be constructed.
For example, we could imagine using aflat prior, and enumerate all possible modelsand allow each to have
an equal probability of being selected. However, thisis computationally infeasible. Another suggestion
would beto simply count the number of categoriesand place aprior that would penalize model s based upon
the number of parameters. This may result in aprior that yields a penalty function that is that same as the
Schwarz information criterion. The benefit of our prior isthat it uses brand attribute information and results
in model structures that seem plausible without eliminating too many combinations. We conducted many
tests of the sensitivity of the prior and found that the information from the likelihood function tends to
dominate theinformation in the prior. Therefore, the basic function of the prior issimply to identify which
models are considered, so the censoring property of the prior isits most critical function (i.e., most market

structures have zero probability).

6.2 Estimating the model

To estimate thismodel we can create a Gibbs sampl er to simulate draws from the marginal posterior
distribution. The estimation structure we proposed in section 4 can be readily adapted to thisnew structure.
We divide the sampler into two components. Thefirst isto simulate the model conditional upon the market
structure. The second component is to simulate the market structure conditional upon the parameter
estimates. Sincethisfirst component issimilar to the algorithm described in section 4, we will not discuss
itindepth. Thecritica differenceisthat the mean of the hyper-distributionisbased ontherestrictionsgiven
weak separability acrossthe subcategoriesasdescribedin (55) and not therestrictionsimplied by an additive
utility model asgivenin (13). Againour intent isto allow some variation around the restricted model, but
induce strong shrinkage towards the theoretical restrictions.

A new component of our algorithmisto simul atethe market structure conditional upontheparameter
values. The motivation isto randomly select one of the products, compute the probability that it should be
remain in the same subcategory, be reassigned to another subcategory, or anew subcategory created. These

probabilitiesform amultinomial distribution from which we simulate avalue and reassign the product to the
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appropriate subcategory and then repeat the first part of the process again which re-estimates all the
parameters conditional upon the market structure.

To illustrate this algorithm, suppose that we have four products: A, B, C, and D. At iterationi the
market structureis{(A),(B),(C,D)}, and we wish to re-evaluate the assignment of product A. We need to
compute the probability of the following models: {(A),(B),(C,D)}, {(A,B),(C,D)}, and {(B),(A,C,D)}. In
other words, what is the chance of no change (i.e., product A staying as a separate subcategory) or product
A being merged with one of the existing subcategories. The market assignment of product A at iteration i
is defined as M. In our example M, can take on one of three values: { (A),(B),(C,D)}, {(A,B),(C,D)}; and
{(B),(A,C,D)}. Our problemisto compute the posterior probability of M;:

p(M, | ©) <p(0 | M) p(M,) (63)

where 0 is the set of al parameters in the model to be estimated, p(8|M;) can be computed from the
likelihood function given the market structure, and the prior p(M,) isthe prior probability as defined in the

previous subsection. Equation (63) will take on a multinomial distribution which can be sampled easily.

Table 8 about here

We apply this estimation procedure to the same dataset described in section 5. We evaluate the
posterior using three different priors on the amount of shrinkage towards the theory, as captured by A, that
should be done: strong (v,=dim(A)+3+5*S V,=.000025), moderate (v,=dim(A)+3, V,=.01), and weak
(v,=dim(A)+3, V,=.25). The purposeisto guage the sensitivity of the posterior to this prior specification.
Table 8 provides the out-of-sample forecasting results. The moderate prior performs the best, but all the
priorshavesuperior out-of -sampl ef orecasting results compared with the unrestricted models. Incomparison
to the market structure restricted models the predictive results are similar. However, there are substantial
differencesintheprice elasticity estimatesinduced by the differencesin market structures. Tables9through
11 providetheposterior probability of thetop ten market structuresfor the strong, moderate, and weak priors.
The most likely market structure in the strong prior contains the 64 ounce cartons, 96 ounce cartons, Tree

Fresh, and the storebrands. Againitisunlikely that apriori an analyst would have guessed such a structure

-29.-



since this classification cannot be derived from a single attribute. The only question seems to be whether
the subcategory with the 96 ounce cartons should be split. As the prior on A is weakened the posterior
distribution becomes more diffuse and it is more difficult to identify asingle market structure. Thisisquite
important sinceit suggeststhat if theanalyst isunwilling to be aggressivein stating hisbelief sthat the theory
is correct, relying upon the data using a pre-testing method will lead to biased market structure estimates,
and hencepriceelasticity estimates. Regardlessof theanalyst’ sbeliefsthe datahasquiteabit of information
and can move the prior on the market structures significantly even with a weak prior as the posterior
probabilities that pairs of products will be assigned in the same subcategory showsin Table 12. Table 12

can be contrasted with the prior probabilities givenin Table 7.

Tables9, 10, 11, and 12 about here

7 Conclusions

Wehave shown how economic theory can beincorporated into estimators of consumer demand. Our
purpose isto represent the notion that atheory is approximately correct. Our estimates can be described as
shrinking the unrestricted model estimateswithout the theory towardstherestricted estimatesimplied by the
theory. The amount of shrinkage is adaptive and modified by both an analyst’ s prior beliefs and the amount
of support the data has for the theory. Classical approaches to estimating demand by first pre-testing the
adequacy of the theory and then proceeding conditionally upon these estimateswill biasthe estimates. This
will either lead to overconfidencein the estimates when the theory is accepted or underconfidence when the
theory is disregarded. An important facet of our shrinkage estimates is that the theory can contribute
information even when it isrejected by classical testing procedures, since the theory may be approximately
correct. Another benefit of our approachisthat it providesthe analyst amethod for understanding theimpact
of theoretical assumptions on parameter estimates by varying the degree of confidencein the prior. While
we have illustrated our technique using logarithmic demand models, this approach can be applied to any
functional form, such as an AIDS or Rotterdam model. Additionally, we hope that this research will
encourage applications of Bayes methods to other problems like the estimation of supply and production

functions.
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Figure 1. Example of ahierarchical market structure for laundry detergent with dry and liquid
subcategories.
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Figure 2. Two selected elements of an inverted Wishart distribution.
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Item Abbreviation Average Price Market Share

TropicanaPremium 64  TropP64 2.87 16.1
TropicanaPremium 96  TropP96 3.12 10.7
Florida's Natural 64 FNat64 2.86 4.0
Tropicana 64 Trop64 2.27 15.8
Minute Maid 64 MMaid64 2.24 16.9
Minute Maid 96 MMaid96 2.68 5.7
Citrus Hill 64 CHille4 2.32 5.1
Tree Fresh 64 TFresh64 2.18 25
Florida Gold 64 FGold64 207 2.6
Dominick’s 64 Dom64 1.74 13.6
Dominick’s 128 Dom128 1.83 6.9

Table 1. Listing of the items used in the study, along with their average price and market share.
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Number of Log-likeli- Predictive

Approach Model parameters hood SIC MSE MSE

Classical  Unrestricted store 12,865 49560.9 40778.2 170 379
Restricted store 2,905 24798.1 -18005.8  .247 .318
Unrestricted pooled 155 20850.9 -40016.3  .314 .385
Restricted pooled 35 11598.5 -22816.4  .358 402
Shrinkage across Stores Shrinkage Towards Addi-

tive Utility Restrictions

Bayes Strong (k,=.0001) Strong (k,=.0001) 251 318
Strong (k,=.0001) Weak (k,=10000) .209 301
Weak (k,=4900) Strong (k,=.0001) 182 337
Weak (k,=4900) Weak (k,=10000) 77 .350
Moderate (k,=1) Moderate (k,=1) 214 .292

Table 2. Comparison of various estimators in terms of number of parameters, log-likelihood, Schwarz
information criterion (SIC), and in-sample and out-of-sample M SE estimates. The Bayes estimates for
several prior settings that range between weak and moderate settings of the priors that control shrinkage
across stores and towards the restrictions of the additive utility model are provided.
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Cross-Price Elasticity Matrix Estimates

Expenditure
- Elasticity ;

Description Product Estimate TropP64  TropR64 CHille4 Dom64

Unrestricted TropP64 11 -2.2 2 2 .0

Store Model Trop64 17 -4 -3.7 .6 -2
CHille4 9 2 1 -3.1 -2
Domé64 1.2 8 15 -4 -2.3

Restricted TropP64 11 -3.1 4 A 3

Pooled Model  Trop64 1.0 4 -2.8 A 3
CHille4 1.0 4 4 -3.0 3
Domé64 1.0 4 4 1 -2.8

BayesModel  TropP64 11 2.1 A A .0
TropR64 1.6 6 -3.2 7 1
CHille4 13 4 4 -2.6 -2
Domé64 1.0 4 1.2 2 -2.3

Table 3. Expenditure and cross-price elasticity estimates for selected products using various estimators.
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Product Brand Quality Size Subcategory

1 Tropicana Premium 64 A
2 Tropicana Premium 96

3 Florida Natural Premium 64

4 Minute Maid Regular 64 B
5 Tropicana Regular 64

6 Florida Gold Regular 64

7 Citrus Hill Regular 64

8 Tree Fresh Regular 64

9 Dominicks Regular 64 C
10 Dominicks Regular 128

11 Minute Regular 96 ?

Table 4. The attributes of products and an sample market structure and the product assignments to each
subcategory.
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Parameter Values Number of

Market
Setting Y w 0 Structures

1 .6 .005 2 3,120
2 20 .005 2 16,192
3 20 .005 1 6,669
4 20 .500 5 54,756
5 100 .005 2 6,168
6 100 .001 2 3,662

Table5. Number of market structures generated by various settings of the prior.
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Prior

Rank  Subcategory Product Assignments Probability
1 { TropP64, TropP96,FNat64, Trop64,MMaid64,M Maid96,CHill 64, TFrsh64,FGol d64} { Dom64,Dom128} 27%
2 { TropP64, TropP96,FNat64, Trop64,FGold64} { MM aid64,MMaid96,CHill64, TFrsh64} { Dom64,Dom128} 11%
3 { TropP64, TropP96,FNat64, Trop64,MMaid64,MMaid96,FGold64} { CHill64, TFrsh64} { Dom64,Dom128} 5%
4 { TropP64, TropP96,FNat64, Trop64,CHill64,FGol d64} {MMaid64,MMaid96, TFrsh64} { Dome4,Dom128} 4%
5 { TropP64, TropP96,FNat64, Trop64, TFrsh64,FGold64} { MMaid64,MMaid96,CHill64} { Dom64,Dom128} 3.6%
6 {TropP64,TropP96,FNat64} { Trop64,MMaid64,MMaid96,CHill64, TFrsh64,FGold64} { Dom64,Dom128} 2 7%
7 { TropP64, TropP96, Trop64,MMaid64,MMaid96} { FNat64,CHill64, TFrsh64,FGold64} { Dome4,Dom128} 2504
8 {TropP64,TropP96,FNat64, Trop64,CHill64,TFrsh64,FGold64} { MMaid64,MMaid96} { Dom64,Dom128} 1.7%
9 { TropP64, TropP96,FNat64, Trop64} { MMaid64,MMaid96,CHill64, TFrsh64,FGold64} { Dom64,Dom128} 1.5%
10 { TropP64, TropP96,FNat64, Trop64,CHill64, TFrsh64,FGold64} { MM aid64,M M aid96,Dom64,Dom128} 1.3%

Table 6. Top ten market structures and their probabilities according to the prior.
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Trop Trop  Fnat Trop MMa MMa CHill TFrsh FGol Dom  Dom
P64 P96 64 64 de4 do6 64 64 de4 64 128

TropP64 1.00 .95 .86 .85 A7 49 45 45 74 .05 .05

TropP96 1.00 .82 .82 A7 .50 43 43 .70 .06 .06
FNat64 1.00 77 45 .45 .50 .50 .86 .03 .03
Trop64 1.00 .55 .56 .55 54 .78 .03 .03
MMaide4 1.00 .94 .67 .67 .51 .07 .07
MMaid96 1.00 .64 .64 .50 .08 .08
CHille4 1.00 .75 .59 .05 .04
TFrsh64 1.00 .59 .05 .05
FGol64 1.00 .03 .03
Dom64 1.00 .99
Dom128 1.00

Table 7. Prior probability that a pair of products will be assigned to the same subcategory. The product
abbreviations are givenin Table 1.
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Predictive

Description MSE MSE
Strong (v,=dim(A)+3+5* S V,=.000025) .268 .330
Moderate (v,=dim(A)+3, V,=.01) 211 .320
Weak (v,=dim(A)+3, V,=.25) 213 .352

Table 8. Comparison of various prior settings for the Bayes model described in Section 6 in terms of in-
sample and out-of-sample M SE estimates. The historical period is different than the previous example,
and has in-sample M SE of .164 and predictive M SE of .395.
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Prior

Rank  Subcategory Product Assignments Probability

1 { TropP64,FNat64, Trop64,MMaid64,CHill64,FGold64} { TropP96,MMaid96} { TFrsh64} { Dom64,Dom128} 55%

2 { TropP64,FNat64, Trop64,MMaid64,CHill64,FGold64} { TropP96} { MMaid96} { TFrsh64} 45%
{Dom64,Dom128}

Table 9. Top ten market structures and their posterior probabilities estimating using a strong prior.

-43-



Prior

Rank  Subcategory Product Assignments Probability
1 { TropP64, Trop64,MMaid96, TFrsh64} { TropP96,Dom64,Dom128} { FNat64,MMaid64,CHill64} { FGold64} 1.6%
2 {TropP64,TropP96,FNat64,MMaid64,MMaid96,CHill64,Dom64,Dom128} { Trop64,TFrsh64,FGold64} 6%
3 {TropP64,FNat64,MMaid64,TFrsh64,FGold64} { TropP96,Trop64,MMaid96,CHill64,Dom64} { Dom128} 6%
4 { TropP64, TropP96, TFrsh64,FGold64} { FNat64, Trop64,MMaid64,M Maid96,CHill64} { Dom64,Dom128} 6%
5 { TropP64, TropP96,FNat64,FGold64,Dom64} { Trop64,MMaid64,CHill64, TFrsh64} { MMaid96,Dom128} 6%
6 { TropP64,TropP96,MMaid64,MMaid96, TFrsh64} { FNat64,FGold64} { Trop64,CHill64} { Dom64,Dom128} 5%
7 { TropP64,FNat64} { TropP96} { Trop64} { MMaid64,MMaid96} { CHill64, TFrsh64,FGold64} 5%
{Dom64,Dom128}
8 { TropP64, TropP96} { FNat64,FGold64} { Trop64,MMaid64, TFrsh64} { MMaid9e} { CHill64} 5%
{Dom64,Dom128}
9 {TropP64,TropP96,FNat64, Trop64,MMaid64,MMai d96,CHill64,Dom64,Dom128} { TFrsh64,FGold64} 5%
10 {TropP64,MMaid64,MMaid96,CHill64} { TropP96,FNat64} { Trop64, TFrsh64,FGold64} { Dom64,Dom128} 5%

Table 10. Top ten market structures and their posterior probabilities estimating using a moderate prior.
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Prior

Rank  Subcategory Product Assignments Probability
1 { TropP64, TropP96} { FNat64,FGold64} { Trop64,CHille4} { MMaid64,MMaid96, TFrsh64} { Dome4} { Dom128} 1.8%
2 { TropP64} { TropP96, Trop64} { FNat64,CHill64,FGold64,Dom64} { MMaid64, TFrsh64} { MMaid96,Dom128} 1.1%
3 { TropP64, TropP96} { FNat64, TFrsh64} { Trop64,MMaide4,CHille4,FGolde4} { MMaid96,Dom128} { Dom64} 1.1%
4 {TropP64,TropP96,M M aid96, TFrsh64,Dom64,Dom128} { FNat64,Trop64,M Maid64,FGold64} { CHill64} 8%
5 {TropP64,TropP96,CHill64,FGold64} { FNat64} { Trop64} { MMaid64,MMaid96, TFrsh64} { Dom64,Dom128} 6%
6 { TropP64} { TropP96, Trop64} { FNat64,CHill64,FGold64,Dom64,Dom128} { MMaid64, TFrshe4} { MMaid96} 6%
7 { TropP64, TropP96, FNat64,M Maid64,MMaid96, TFrsh64,FGold64} { Trop64,CHill64,Dome4,Dom128} 6%
8 { TropP64,Dom64,Dom128} { TropP96,MMaid64,MMaid96} { FNat64} { Trop64,CHille4, TFrsh64,FGold64} 5%
9 { TropP64, Trop64,CHill64} { TropP96,FNat64,MMaid64,M Maid96,FGolde4} { TFrsh64,Dome4,Dom128} 5%
10 {TropP64,TropP96,CHill64} { FNat64,FGold64} { Trop64,MMaid64,MMaid96,TFrsh64} { Dom64,Dom128} 5%

Table 11. Top ten market structures and their posterior probabilities estimating using a weak prior.
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Trop Trop  Fnat Trop MMa MMa CHill TFrsh FGol Dom  Dom

P64 P96 64 64 de4 do6 64 64 de4 64 128
TropP64 1.00 .69 49 42 21 .25 .24 24 32 .20 19
TropP96 1.00 41 .36 .20 .30 15 19 .25 25 .26
FNat64 1.00 33 .25 .23 .29 .29 .56 A5 A2
Trop64 1.00 .30 .26 43 .38 41 14 12
MMaid64 1.00 .60 .39 49 .36 A7 A3
MMaid96 1.00 27 .38 24 .25 .25
CHille4 1.00 42 49 14 .07
TFrsh64 1.00 .38 14 .10
FGol64 1.00 A1 .06
Dom64 1.00 .75
Dom128 1.00

Table 12. Posterior probability that a pair of products will be assigned to the same subcategory using a
weak prior. The product abbreviations are givenin Table 1.
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