
Technical Appendix

for Estimating Price Elasticities with Theory-Based Priors

To make the procedure as general as possible we rewrite our model in SUR form:

In this case the s subscript denotes an individual store, and the dimension of the ys vector is M brands by

T weeks.  In rewriting the model we have implicitly stacked the vector of observations for each brand on

top of one another in the following manner:

The second stage of our hierarchical model refers to the hyper-distribution from which the

vector of parameters for each store is drawn:

where the expected price elasticity matrix is the restricted one implied by an additive utility model:

The remaining parameters are drawn from:

The third stage of our model expresses the prior on the hyper-distribution:



Estimation Using the Gibbs Sampler

Our purpose is to compute the posterior distribution of the model parameters.  The posterior

distribution contains all the information from our sample given our distributional assumptions.  From

the posterior distribution we can compute the means, which are commonly used as point estimates,

along with any other measures of the distribution that are of interest.  The following data and parameters

are supplied by the analyst:

The general procedure for finding the marginal posterior distribution is to compute the joint

posterior and then integrate out all parameters except those of interest.  In this case the joint distribution

of our model can be written as:

If we wanted to find the marginal posterior distribution of OOOO we would need to solve:

The analytic solution to this integral is not known even with natural conjugate priors.  To understand the

difficulty in solving this integral, we refer the reader to the simpler case of trying to solve a single stage

SUR model (Zellner 1971, pp. 240-6) for which the analytic solution is not known either.  Therefore we

will have to rely upon numerical procedures to find the solution.  Unfortunately the high dimension of

the integral makes it difficult to find a numerical solution using conventional numerical integration

techniques.

An alternate method is through the use the Gibbs sampler.  The Gibbs sampler requires the

solution of the conditional distributions, which can be easily derived due to the hierarchical structure of

the model.  For a good introduction to the Gibbs sampler see Casella and George (1992).  We do not

advocate the use of Gibbs sampler based on computational efficiency, instead we advocate its use

because of its ease of implementation.  The most desirable solution would be an analytical one, but given



that this solution does not exist in closed form we satisfy ourselves with a numerical solution.

The Gibbs sampler employed in this paper requires sequentially randomly sampling from each

of the conditional distributions.  It has been shown by Gelfand and Smith (1990) and Gelfand et al

(1990) that this draws converge to the posterior marginal distributions.  The general outline of the

procedure is:

1. Select starting values for the parameters of the marginal posterior distributions.  In our

practice the least squares estimates of these parameters provide good starting points.

2. Generate M1+M2 sets of random numbers with each set being drawn in the following

manner:

Where the symbol x – p(x) means that the x is a simulated realization or draw from the

density p(x) and k denotes the iteration number.  The above conditional distributions are



understood to also depend upon the prior parameters and the data.

3. Use the last M2 sets of draws to estimate the posterior marginal distributions.

This means that the problem reduces to solving the conditional distributions of each of the

parameters in the posterior distribution.  These solutions are readily available due to the hierarchical

structure of our model and the affine nature of the normal and Wishart distributions.  The solution of

the conditional densities are:

1. Draw the parameter vector in the first-stage in two parts to avoid the nonlinearity

induced by the additive separable prior:

(a) Since we know the price elasticities, we can rewrite the model as below:

The AAAAs vector can be drawn using the usual SUR result.

(b) Since we know the AAAAs vector we can rewrite the model as below:

The Es matrix can be drawn using the usual multivariate regression result.

2. Draw the k parameter.  Notice that conditional upon Hs and WWWWs we have the following

univariate regression:

Hence, ks can be drawn using the usual univariate regression result.

3. Ds is drawn from an inverted wishart distribution

4.  is a multivariate regression



 is a univariate regression

5. Since F and T are independent they can be drawn separately from inverted Wishart

distributions:


