
CMUcam3: An Open Programmable
Embedded Vision Sensor

Anthony Rowe Adam Goode Dhiraj Goel
Illah Nourbakhsh

CMU-RI-TR-07-13

May 2007

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c© Carnegie Mellon University

Abstract

In this paper we present CMUcam3, a low-cost, open source, embedded com-
puter vision platform. The CMUcam3 is the third generation of the CMUcam
system and is designed to provide a flexible and easy to use open source develop-
ment environment along with a more powerful hardware platform. The goal of the
system is to provide simple vision capabilities to small embedded systems in the
form of an intelligent sensor that is supported by an open source community. The
hardware platform consists of a color CMOS camera, a frame buffer, a low cost 32-
bit ARM7TDMI microcontroller, and an MMC memory card slot. The CMUcam3
also includes 4 servo ports, enabling one to create entire, working robots using
the CMUcam3 board as the only requisite robot processor. Custom C code can
be developed using an optimized GNU toolchain and executables can be flashed
onto the board using a serial port without external downloading hardware. The de-
velopment platform includes a virtual camera target allowing for rapid application
development exclusively on a PC. The software environment comes with numer-
ous open source example applications and libraries including JPEG compression,
frame differencing, color tracking, convolutions, histogramming, edge detection,
servo control, connected component analysis, FAT file system support, and a face
detector.

1 Introduction

The CMUcam3 is an embedded vision sensor designed to be low cost, fully pro-
grammable, and appropriate for realtime processing. It features an open source de-
velopment environment, enabling customization, code sharing, and community.

In the world of embedded sensors, the CMUcam3 occupies a unique niche. In
this design exercise we have avoided high-cost components,and therefore do not have
many of the luxuries that other systems have: L1 cache, an MMU, DMA, or a large
RAM store. Still, the hardware design of the CMUcam3 provides enough processing
power to be useful for many simple vision tasks [1], [2], [3],[4], [5] .

An ARM microcontroller provides excellent performance andallows for the exe-
cution of a surprisingly broad set of algorithms. A high speed FIFO buffers images
from the CIF-resolution color camera. Mass storage is provided by an MMC socket
using an implementation of the FAT filesystem so that the file written by the CMUcam3
are immediately readable to an ordinary PC. User interaction occurs via GPIO, servo
outputs, two serial UARTs, a button, and three colored LEDs.

We provide a full C99 environment for building firmware, and include libraries
such aslibjpeg , libpng , andzlib . Additionally, we have developed a library of
vision algorithms optimized for embedded processing. Fullsource is provided for all
components under a liberal open source license.

The system described in this paper has been implemented and is fully functional.
The system has passed CE testing and is available from multiple international commer-
cial vendors for a cost of approximately US$239. [12]

I

Figure 1: Photograph of the CMUcam3 mated with the CMOS camera board. An
MMC memory card used for mass storage can be seen protruding on the right side of
the board. The board is 5.5cm× 5.5cm and approximately 3cm deep depending on the
camera module.

1.1 Embedded Vision Challenges

Embedded Vision affords a unique set of functional requirements upon a computational
device meant to serve as a visual-sensor. In fact, taken as a general purpose processor,
the CMUcam3 is rather underpowered compared to desktop computers or even PDAs.
However, if examined as a self-contained vision subsystem,several benefits become
clear.

The system excels in IO-constrained environments. The small size and low power
of the CMUcam3 enables it to be placed in unique environments, collecting data au-
tonomously for later review. If coupled with a wireless network link (such as 802.15.4
or GPRS), the CMUcam3 can perform sophisticated processingto send data only as
needed over a potentially expensive data channel.

Its low cost allows the CMUcam3 to be purchased in greater quantities than other
solutions. This makes the CMUcam3 more accessible to a larger community of de-
velopers. In several applications, for instance surveillance, reduced cost allows for
a meaningful tradeoff between high performance from a single sensor node and the
distribution of lower-cost nodes to achieve greater coverage.

The CMUcam3 also has benefits when used as a self-contained part of a greater
system. Because of its various standard communications ports (RS-232, SPI, I2C),
adding vision to an existing system becomes straightforward, particularly because the
computational overhead is assumed by the separately dedicated CMUcam3 processor
rather than imposed upon the main processor and its I/O system.

II

Finally, having completely open source firmware allows flexibility and reproducibility—
anyone can download and compile the code to run on the hardware or alternatively a
desktop computer (using thevirtual-cam module).

1.2 Related Work

There have been numerous embedded image processing systemsconstructed by the
computer vision community in the service of research. In this section we will present
a selection of systems that have similar design goals to thatof the CMUcam3.

The Cognachrome [10] system is able to track up to 25 objects at speeds as high
as 60 Hz. Its drawbacks include cost (more than US$2000), size (four by two by ten
inches) and power (more than 5× that of the CMUcam3) as limitations when creating
small form factor nodes and robots.

The Stanford MeshEye [6] was designed for use in low power sensor networks. The
design uses two different sets of image sensors, a low resolution pair of sensors is used
to wake the device in the presence of motion, while the secondVGA CMOS camera
performs image processing. The system is primarily focusedon sensor networking
applications, and less on general purpose image processing.

The UCLA Cyclops [7], also designed around sensor networking applications, uses
an 8-bit microprocessor and an FPGA to capture and process images. The main draw-
backs are low image resolution (128×128) due to limited RAM and slow processing
of images (1 to 2 FPS).

Specialized DSP based systems like the Bluetechnix [9] Blackfin camera boards
provide superior image processing capabilities at the costof power, price and com-
plexity. They also typically require expensive commercialcompilers and external de-
velopment hardware (i.e. JTAG emulators). In contrast, theCMUcam3’s development
environment is fully open source, freely available and has built-in firmware loading
using a serial port.

Various attempts have been made to use general purpose single board computers
including the Intel Stargate [8] running Linux in combination with a USB webcam for
image processing. Though open source, such systems are quite expensive, large, and
demanding of power. Furthermore, USB camera acquired images are typically trans-
mitted to the processor in a compressed format. Compressed data results in lossy and
distorted image information as well as the extra CPU overhead required to decompress
the data before local processing is possible. The use of slowexternal serial bus proto-
cols including USB v1.0 limits image bandwidth resulting inlow frame rates.

Finally, a number of systems [1], [2], [3] consist of highly optimized software
designed to run on standard desktop machines. The CMUcam3 isunique in that it
targets applications where the use of a standard desktop machine would be prohibitive
because of size, cost or power requirements.

2 CMUcam3

In the following section, we will describe and justify the design decisions leading to
the hardware and software architecture of the CMUcam3.

III

Figure 2: CMUcam3 hardware block diagram consisting of three main components:
processor, frame buffer and CMOS camera.

2.1 Hardware Architecture

As shown in Figure 2, the hardware architecture for the CMUcam3 consists of three
main components: a CMOS camera chip, a frame buffer, and a microcontroller. The
microcontroller configures the CMOS sensor using a two-wireserial protocol. The
microcontroller then initiates an image transfer directlyfrom the CMOS camera to the
frame buffer. The microcontroller must wait for the start ofa new frame to be signaled
at which point it configures the system to asynchronously load the image into the frame
buffer. Once the CMOS sensor has filled at least 2 blocks of frame buffer memory (128
bytes), the main processor can begin asynchronously clocking data 8 bits at a time out
of the image buffer. The end of frame triggers a hardware interrupt at which point the
main processor disables the frame buffer’s write control line until further frame dumps
are needed.

The CMUcam3 has two serial ports (one level shifted), I2C, SPI, four standard
hobby servo outputs, three software controlled LEDs, a button and an MMC slot. A
typical operating scenario consists of a microcontroller communicating with the CMU-
cam3 over a serial connection. Alternatively, I2C and SPI can be used, making the
CMUcam3 compatible with most embedded systems without relying soley on RS-232.
The SPI bus is also used to communicate with FLASH storage connected to the MMC
slot. This allows the CMUcam3 to read and write gigabytes of permanent storage.

IV

Unlike previous CMUcam systems, all of these peripherals are now controlled by the
processor’s hardware and hence do not detract from processing time. The expansion
port on the CMUcam3 is compatible with various wireless sensor networking motes
including the Telos [15] motes from Berkeley.

The image input to the system is provided by either an Omnivision OV6620 or
OV7620 CMOS camera on a chip [14]. As in the CMUcam and CMUcam2, the CMOS
camera is mounted on a carrier board which includes a lens andsupporting passive
components. The camera board is free running and will outputa stream of 8-bit RGB
or YCbCr color pixels. The OV6620 supports a maximum resolution of 352×288 at 50
frames per second. Camera parameters such as color saturation, brightness, contrast,
white balance gains, exposure time and output modes are controlled using the two-wire
SCCB protocol. Synchronization signals including a pixel clock (directly connected to
the image FIFO) are used to read out data and indicate new frames as well as horizontal
rows. The camera also provides a monochrome analog signal.

One major difference between the CMUcam2 and the CMUcam3 is the use of the
NXP LPC2106 microcontroller. The LPC2106 is a 32-bit 60 MHz ARM7TDMI with
built-in 64 KiB of RAM and 128 KiB of flash memory. The processor is capable of
software controlled frequency scaling and has a memory acceleration module (MAM)
which provides it with near single cycle fetching of data from FLASH. A built-in boot
loader allows downloading of executables over a serial portwithout external program-
ming hardware. Since the processor uses the ARM instructionset, code can be com-
piled with the freely available GNU GCC compiler. Built-in downloading hardware
and free compiler support makes the LPC2106 an ideal processor for open source de-
velopment.

The frame buffer on the CMUcam3 is a 50 MHz, 1 MB AL4V8M440 video FIFO
manufactured by Averlogic. The video FIFO is important because it allows the camera
to operate at full speed and decouples processing on the CPU from the camera’s pixel
clock. Running the camera at full frame rate yields better automatic gain and exposure
performance due to factory default tuning of the CMOS sensor. Even though pixels
can not be accessed in a random access fashion, the FIFO does allow for resetting the
read pointer which enables multiple pass image processing.One disadvantage of the
LPC2106 is that it has relatively slow I/O. Reading a single pixel value can take as
long as 14 clock cycles, of those 12 are spent waiting on I/O. Software down sampling,
operating on a single image channel, or doing software windowing greatly accelerates
image processing since skipping a pixel takes only 8 cycles.Using the FIFO, algo-
rithms can be developed that first process a lower resolutionimage and can later rewind
and revisit regions at higher resolutions if more detail is required. For example frame
differencing can be performed on a low resolution gray scaleimage, while frames of
interest containing motion can be saved as high resolution color images. Since pro-
cessing is decoupled from individual pixel access times, the pixel clock on the camera
does not need to be set to the worst case per pixel processing time. This in turn allows
for higher frames rates that would not be possible without the frame buffer.

In many embedded applications, such as sensor networks, power consumption is
an important factor. To facilitate power savings, we provide three power modes of
operation (active, idleandpower down) as well as the ability to power down just the
camera module. In the active mode of operation when the CPU, camera and FIFO

V

Voltage (V) Current (mA) Power (mW)
CPU core 1.8 60 108

CPU peripherals 3.3 15 49.5
Frame Buffer 3.3 52 171

Camera 5 25 125
MMC 3.3 4 13.2
Misc 3.3 10 33
Total na na 499.7

Table 1: This table shows a breakdown of the power consumption of various compo-
nents while the camera is fully active.

are all fully operating the system consumes 500 mW of power. Table 1 shows the
distribution of power consumption across the various components. When in anidle
state, where RAM is maintained and the camera is disabled, the system consumes
around 300 mW. The transition time betweenidle andactiveis on the order of 30 us.
For applications where very low duty cycles are required andstartup delays of up to 1
second can be tolerated, we provide an externalpower downpin which gates external
power to the board bringing the consumption down to nearly zero (25 uW). In the
power downstate of operation, the processor RAM is not maintained and hence camera
parameters must be restored by the firmware at startup.

2.2 Software Architecture

Standard vision systems assume the availability of PC-class hardware. Systems such
as OpenCV [17], LTI-Lib [19], and MATLAB [13] require megabytes of memory ad-
dress space and are written in runtime-heavy languages suchas C++ and Java. The
CMUcam3 has only 64 KiB of RAM and thus cannot use any of these standard vision
libraries.

To solve this problem, we designed and implemented thecc3 vision system as the
main software for CMUcam3. We also implement several components on top ofcc3
as described in this section.

2.2.1 The cc3 Software Vision System

Thecc3 system is a C API for performing vision and control, optimized for the small
environment of the CMUcam3.

Features:

• Abstraction layer for interfacing with future hardware systems

• Modern C99 style with consistently named types and functions

• Support of a limited number of image formats for simplicity

• Documentation provided via Doxygen [18]

• Versioned API for future extensibility

• virtual-cam module for PC-based testing and debugging (see below)

VI

cc3 is a part of the CMUcam3 distribution, and is openly available at the CMUcam
website [12]. Below is an example of thecc3 based source code showing you how to
track a color:

int main(void)
{

cc3_image_t img;
cc3_color_track_pkt t_pkt;

// init filesystem driver
cc3_filesystem_init ();

// configure uarts
cc3_uart_init (0, CC3_UART_RATE_115200, CC3_UART_MODE_ 8N1, CC3_UART_BINMODE_TEXT);

cc3_camera_init ();

cc3_camera_set_colorspace(
CC3_COLORSPACE_RGB);

cc3_camera_set_resolution (
CC3_CAMERA_RESOLUTION_LOW);

cc3_camera_set_auto_white_balance (true);
cc3_camera_set_auto_exposure (true);

printf("Enter color bounds to track: ");
scanf("%d %d %d %d %d %d\n", &t_pkt.lower_bound.chan[CC3_ RED_CHAN],

&t_pkt.lower_bound.chan[CC3_GREEN_CHAN], &t_pkt.lowe r_bound.chan[CC3_BLUE_CHAN],
&t_pkt.upper_bound.chan[CC3_RED_CHAN], &t_pkt.upper_ bound.chan[CC3_GREEN_CHAN],
&t_pkt.upper_bound.chan[CC3_BLUE_CHAN]);

img.channels = 3;
img.width = cc3_g_pixbuf_frame.width;
img.height = 1;
img.pix = cc3_malloc_rows (1);

while(1) {
cc3_pixbuf_load ();
cc3_track_color_scanline_start (t_pkt);

while (cc3_pixbuf_read_rows(img.pix, 1)){
cc3_track_color_scanline (&img, t_pkt);

}
cc3_track_color_scanline_finish (t_pkt);

printf("Color blob found at %d, %d\n", t_pkt.centroid_x, t _pkt.centroid_y);
}

}

VII

The next example shows how a developer can access raw pixels.The following
code section returns the location of the brightest red pixelfound in the image:

uint8_t max_red, max_red_y, max_red_x;
cc3_pixel_t my_pix;

max_red=0;
cc3_pixbuf_load ();
while(cc3_pixbuf_read_rows(img.pix, 1)){

// read a row into the image
// picture memory from the camera
for(uint16_t x = 0; x < img.width; x++) {

// get a pixel from the img row memory
cc3_get_pixel (&img, x, 0, &my_pix);
if(my_pix.chan[CC3_CHAN_RED] > max_red){

max_red = my_pix.chan[CC3_CHAN_RED];
max_red_x = x;
max_red_y = y;

}
}
y++;

}
printf("Brightest Red Pixel: %d, %d\n",

max_red_x, max_red_y);

2.2.2 virtual-cam

Thevirtual-cam module is part of thecc3 system as mentioned above. It provides
a simulated environment for testing library and project code on any standard PC by
compiling with the system’s native GCC compiler. This allows for full use of the
PC’s debugging tools to diagnose problems in user code. Oftentimes, a difficult to
understand behavior observed on the CMUcam3 will easily manifest itself as a bad
pointer dereference or other easily found bug when run on a standard PC with memory
protection.

While not all of CMUcam3’s functionality is implemented invirtual-cam (miss-
ing features include the hardware-specific components of servo control and GPIO),
enough functionality is provided to enable off-line diagnostic testing.

2.2.3 CMUcam2 Emulation

The CMUcam2 [20] provides a simple human readable ASCII communication proto-
col allowing for interactive control of the camera from a serial terminal program or a
micro-controller. The CMUcam2 is capable of many functionsincluding in-built color
tracking, frame differencing, histogramming as well as binary image transfers. The
CMUcam2 comes with a graphical user interface running on a PCthat allows users to
experiment with various functions. The CMUcam3 emulates most of the CMUcam2’s

VIII

(a) (b)

(c) (d)

Figure 3: The following images show the advantage of color tracking in the HSV color
space. Figure (a) shows an RGB image, (b) shows the intensity(V) component of
the HSV image, (c) shows the Hue and Saturation components ofthe image without
intensity (d) shows the segmented hand with the center of mass in the middle.

functions making it a drop-in replacement for the CMUcam2. The CMUcam2 emu-
lation extends upon the original CMUcam2 with superior noise filtering, HSV color
tracking and JPEG compressed image transfers.

2.2.4 Color Tracking

The original CMUcam tracks color blobs using a simple RGB threshold color model.
Though computationally lightweight, it does not adapt wellto changing light condi-
tions and can only track a single color at one time. The CMUcam3 improves tracking
performance by providing the option to use the Hue Saturation Value (HSV) color
space, provisions for connected component blob filtering and the ability to track mul-
tiple colors. Figure 3 shows how the HSV color space can remove lighting effects
simplifying color segmentation. Since the system is open source, it is simple for end
users to further improve color tracking by building more complex color models.

2.2.5 Frame Differencing

As an example program to illustrate frame differencing, we provide a simple security
camera application. The camera continuously compares the previous image and the

IX

current image. If an images changes by more than a preset threshold, the image is
saved as a JPEG on the MMC card.

2.2.6 Convolutions

We provide a general convolution library that allows customkernels to be convolved
across an image. This can be used for various filters that perform tasks like edge
detection or blurring.

2.2.7 Compression

New to the CMUcam3 is the ability to compress images with bothlibjpeg and
libpng . Using different destination managers, one can redirect the output oflibjpeg
to the MMC, serial output, or any other communication bus. Depending on the quality
of the image,libjpeg can produce images as small as 4 KiB.

2.2.8 Face Detection

The CMUcam3 incorporates the ability to detect faces in plain-background environ-
ments. The face detector technique is based on the feature-based approach, proposed
by Viola and Jones, in which a cascade of classifiers are trained for Haar-like rectan-
gular features selected by AdaBoost [16].

The integral image is a key data structure used in Viola-Jones. Unfortunately, it
consumes significant memory. Even a low resolution integralimage of 176×144 re-
quires about 76 KiB of memory, far exceeding available memory.

Along with memory constraints, the processor lacks floatingpoint hardware. As
a result, two unique customizations were applied to the facedetection implementation
for CMUcam3:

• Only a part of the whole image is loaded in main memory at any time. As a
consequence, the maximum resolution of a detected face is limited to 60×60
pixels.

• All the classifier thresholds and corresponding compared values are computed
using fixed point arithmetic, via a binary scaling method.

A few other optimizations were made to improve performance:

• When scanning sub-windows, neighboring sub-windows are illumination nor-
malized with iteratively computed standard deviation (std), instead of being com-
puting independently. This can provide a speed up of approximately 3×.

• Sub-windows that are are too homogeneous (std<14) or too dark or bright
(mean<30 or mean>200) are discarded immediately, short-circuiting unnec-
essary computation in regions unlikely to yield positive detection hits.

With these changes, CMUcam3 face detection operates on-board at 1 Hz.

X

(a) (b)

Figure 4: Sample output from a modified Viola-Jones face detector. Faces are denoted
with boxes. Image (b) shows how texture in the background canoccasionally be de-
tected as a false positive.

2.2.9 Polly

The Polly [3] algorithm provides visual navigation information based on color. This
navigation was used on the Polly robot to give tours of the MITAI laboratory in the
early 90’s. The algorithm originally consisted of three steps: blurring the image, edge
detection and generating a free space map starting from the bottom of the image upward
towards any edges. Our implementation applies a 3x3 blur followed by a simple edge
detector. We then filter out small edges using our connected component module. As
can be seen in Figure 5 the algorithm returns a histogram of the free space in front of
the robot. Polly is able to run on-board CMUcam3 at 4 fps, operating on a 176x144
image.

2.2.10 SpoonBot

SpoonBot is a small mobile robot consisting of a CMUcam3, twocontinuous rotation
hobby servos mounted to wheels, a four AA battery pack and a micro-servo connected
to a plastic spoon. The two hobby servos allow SpoonBot to drive forward, backward
and rotate left and right. The rear mounted micro-servo pushes the spoon up and down
acting as a tilt degree of freedom. SpoonBot can use the Pollyalgorithm described
above to drive around a table top or it can follow colored objects. All control and
navigation is run locally on the CMUcam3, since the board cancompute and command
servo control signals directly, without the need for conventional robot control hardware.

3 Performance

In this section we discuss execution time and memory consumption for various CMU-
cam3 software components. Depending on the image resolution and complexity of the
algorithm, these values can vary significantly. The goal of this section is to provide
some intuition for the various types of image processing that are possible using the

XI

Figure 5: Sample output of the Polly algorithm. The first column shows the original
image. The second column shows the image after a blur filter, edge detection and small
connected component filter. The final column shows the histogram representing free
area in front of the camera.

CIF RGB CIF Mono QCIF RGB QCIF Mono
Load Frame 2 ms 2 ms 2 ms 2 ms

Copy Memory 210 ms 128 ms 52 ms 32 ms
Pack Pixels 150 ms 160 ms 38 ms 39 ms
Total FPS 2.76 3.45 10.87 13.70

Table 2: This table shows a breakdown of the time required when loading a CIF and
QCIF image in color as well as grayscale.

CMUcam3 and to understand where computational and I/O bottlenecks are typically
found.

Table 2 shows the breakdown of time consumed by the three major steps involved
in loading a frame into the processor’s memory. TheLoad Framecolumn refers to the
time required once a new frame arrives and before data can start to be retrieved from
the frame buffer. This does not directly correlate to thecc3_pixbuf_load() func-
tion because this function incorporates leftover time fromwhen the last frame finished.
TheCopy Memory column refers to the time required to move data from the frame
buffer into the processor. This directly correlates to the speed of the

XII

0

100

200

300

400

500

600

700

800

900

JPEG CIF TC CIF TC-HSV

CIF

JPEG

QCIF

TC QCIF TC-HSV

QCIF

T
im

e
 (

m
s
)

Processing

Pix Packing

Mem Copy

Load Frame

(2.30)

(3.05)

(8.93)

(4.33)

(1.17)(1.17)

Figure 6: This figure compares the execution times of loadinga frame, copying the
image from the frame buffer to the processor, unpacking the pixels and processing the
new frame. JPEG, Track Color (TC) and Track Color in the HSV color space (TC-
HSV) are shown at two different resolutions. The numbers in parenthesis represent the
frame rate of the operation.

cc3_pixbuf_read_rows() function. Operating at a lower resolution obviously
decreases the execution time because fewer pixels are fetched. Operating on a single
channel instead of three channels provides only a 1.625× increase in speed. This in-
crease is due to no longer having to read all of the color pixels, however, since the
CMOS camera does not have a monochrome output mode, color information must still
be clocked out of the FIFO. The finalPack Pixelcolumn shows the time required to
convert the GRGB pattern from the camera in memory into the local RGB pixel struc-
ture. This corresponds to thecc3_get_pixel() function call. It is possible to
greatly reduce the pixel construction time by designing algorithms that operate on the
raw memory from the camera. This becomes a trade-off betweensimple portable code
and execution speed. We provide examples of both methodologies for those interested
in highly optimized implementations.

Figure 6 shows the relative time consumption of the previously mentioned frame
loading operations along with processing times for three different algorithms: JPEG,
Track Color and Track Color HSV. The JPEG algorithm in this example compresses a

XIII

color image in memory and does not write the output to a storage device. The Track
Color (TC) and Track Color HSV (TC-HSV) algorithms are profiled directly from the
CMUcam2 emulation code. Each algorithm finds the bounding box, centroid and den-
sity of a particular color specified. For this test we show theworst-case performance by
tracking all active pixels. The Track Color HSV benchmark isidentical to Track Color
except that it performs a software based conversion from theRGB to HSV color space
for each pixel. The general trend found in these plots is thatvery simple algorithms
such as tracking color are mostly I/O limited. For example Track Color spends only
17% of the time on processing. A more complex algorithm, JPEG, spends 62% of its
time on processing. JPEG also shows an example of where optimized pixel accesses
can drastically reduce the pixel packing time. However as can be seen in the JPEG
operating on a QCIF image, as resolution decreases these optimizations become less
relevant.

As previously mentioned, the LPC2106 has 64 KiB of internal RAM and 128 KiB
of ROM. By default, 9 KiB of RAM is reserved for stack space and9 KiB of RAM
is used by the core software libraries (includinglibc buffers). A 176×144 (QCIF)
gray-scale image requires 25 KiB of RAM, while a 100×100 RGB image requires
30 KiB of memory. All processing on larger sized images must be performed on a
section by section basis, or using a sliding window scan-line approach. For example,
JPEG requires only eight full rows (8 KiB) of the image in addition to the storage
required for the compressed image (less than 12 KiB). The code space consumed by
most CMUcam3 applications is quite small. The full CMUcam2 emulation with JPEG
compression and the FAT file system requires 96 KiB of ROM. A simple program that
loads images and links in the standard library functions requires 52 KiB of ROM. The
FAT filesystem and MMC driver require an additional 12 KiB of ROM.

4 Conclusions and Future Works

The goal of this work was to design and publicly release a low cost, open source, em-
bedded color computer vision platform. The system can provide simple vision capabil-
ities to small embedded systems in the form of an intelligentsensor that is supported by
an open source community. Custom C code can be developed using an optimized GNU
toolchain and flashed onto the board using the serial port without external downloading
hardware. The development platform includes a virtual camera target and numerous
open source example applications and libraries.

The main drawback of the CMUcam3 hardware platform is the lack of RAM and
computation speed required for many complex computer vision algorithms. We cur-
rently have a prototype system using a 600 MHz Blackfin media processor from Analog
Devices. Ideally, we would like to provide a software environment for this new plat-
form that is compatible with our existing environment to help reduce the learning curve
typically associated with high-end DSP systems. Eventually, applications can be pro-
totyped on a PC using our virtual-cam with various hardware deployment options to
support that particular application’s needs. Staying trueto the spirit of the CMUcam
project, we are also developing a simpler and cheaper hardware platform using a lower
cost ARM7 processor without the frame buffer. This device will be compatible with

XIV

the current software environment except that it will be restricted to pure scan-line style
processing.

Acknowledgements

The authors would like to thank Charles Rosenberg for his continuing contributions to
this project.

References

[1] J. Bruce, T. Balch, and M. Veloso, “Fast and Inexpensive Color Segmentation for
Interactive Robots”,The Proceedings of IROS, 2000.

[2] G.D. Hager and K. Toyama, “The XVision System: A general purpose substrate
for real-time vision applications,”Computer Vision and Image Understanding,
vol. 69, no. 1, pp. 23-27, January 1998.

[3] I. Horswill, “Polly: A vision-based artificial agent”,The Proceedings of the
Eleventh Nataional Conference on Artificial Intelligence, 1993.

[4] R. Sargent, B. Bailey, C. Witty and A. Wright, “Dynamic Object Capture Using
Fast Vision Tracking”,AI Magazinevol 18, no.1 1997.

[5] I. Ulrich and I. Nourbakhsh, “Appearance-Based Obstacle Detection with Monoc-
ular Color Vision”,AAAI Conferencepp. 866-871, 2000.

[6] S. Hengstler and H. Aghajan, “A Smart Camera Mote Architecture for Distributed
Intelligent Surveillance”,ACM SenSys Workshop on Distributed Smart Cameras,
Oct. 2006.

[7] M. Rahimi, R. Baer, O. Iroezi, J. Garcia, J. Warrior, D. Estrin, M. Srivastava, “Cy-
clops: In Situ Image Sensing and Interpretation in WirelessSensor Networks”,
ACM SenSys, Nov. 2005.

[8] ”Intel Stargate Platform”,http://www.xbow.com/Products , Viewed on
March 27, 2007

[9] ”Bluetechnix Blackfin DSP”,http://www.tinyboards.com , Viewed on
March 27, 2007

[10] R. Sargent and A. Wright ”The Cognachrome Color Vision System”,
http://www.newtonlabs.com/cognachrome , Viewed on March 27,
2007

[11] K. Konolige, “The SRI Small Vision System Website”,
http://www.ai.sri.com/˜konolige/svs/ , Viewed on March
23, 2006.

XV

http://www.xbow.com/Products
http://www.tinyboards.com
http://www.newtonlabs.com/cognachrome
http://www.ai.sri.com/~konolige/svs/

[12] “CMUcam Website”, http://www.cmucam.org , Viewed on March 25,
2007

[13] “MATLAB”, http://www.mathworks.com/products/matlab/ ,
Viewed on March 25, 2007

[14] “Omnivision”, http://www.ovt.com , Viewed on March 25, 2007

[15] J. Polastre, R. Szewczyk and D. Culler, ”Telos: Enabling Ultra-Low Power Wire-
less Research,”Spots, 2005.

[16] P. Viola and M. Jones, ”Robust Real-Time Face Detection,” Computer Vision, vol.
2, pp. 747-752, 2001.

[17] “Open Source Computer Vision Library”,
http://www.intel.com/technology/computing/opencv/ ,
Viewed on March 25, 2007.

[18] “Doxygen”,http://www.doxygen.org/ , Viewed on March 27, 2007.

[19] “LTI-Lib”, http://ltilib.sourceforge.net/ , Viewed on March 25,
2007.

[20] A. Rowe, C. Rosenberg, I. Nourbakhsh, “A Second Generation Low Cost Embed-
ded Color Vision System”,Embedded Computer Vision Workshop, CVPR2005.

XVI

http://www.cmucam.org
http://www.mathworks.com/products/matlab/
http://www.ovt.com
http://www.intel.com/technology/computing/opencv/
http://www.doxygen.org/
http://ltilib.sourceforge.net/

	Introduction
	Embedded Vision Challenges
	Related Work

	CMUcam3
	Hardware Architecture
	Software Architecture
	The cc3 Software Vision System
	virtual-cam
	CMUcam2 Emulation
	Color Tracking
	Frame Differencing
	Convolutions
	Compression
	Face Detection
	Polly
	SpoonBot

	Performance
	Conclusions and Future Works

