
Lecture 7: Unsupervised Learning

Part I: Hierarchical Clustering, EM clustering
Part II: Dimensionality Reduction, Association rule

mining

Prof. Alexandra Chouldechova
95-791: Data Mining
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Agenda for Part I

• Hierarchical clustering

• Mixture models (EM clustering)
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Hierarchical clustering

• K-means is an objective-based approach that requires us to
pre-specify the number of clusters K

• The answer it gives is somewhat random: it depends on the random
initialization we started with

• Hierarchical clustering is an alternative approach that does not
require a pre-specified choice of K , and which provides a
deterministic answer (no randomness)

• We’ll focus on bottom-up or agglomerative hierarchical clustering

• top-down or divisive clustering is also good to know about, but we
won’t directly cover it here
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...
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38 / 52

Each point starts as its own cluster
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...
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We merge the two clusters (points) that are closet to each other
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...
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Then we merge the next two closest clusters
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...
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Then the next two closest clusters…
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...
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Until at last all of the points are all in a single cluster
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Agglomerative Hierarchical Clustering
• Start with each point in its own cluster.
• Identify the two closest clusters. Merge them.
• Repeat until all points are in a single cluster

To visualize the results, we can look at the resulting dendrogram

Hierarchical Clustering Algorithm
The approach in words:

• Start with each point in its own cluster.
• Identify the closest two clusters and merge them.
• Repeat.
• Ends when all points are in a single cluster.
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Dendrogram

D E B A C

39 / 52
y-axis on dendrogram is (proportional to) the distance between the clusters
that got merged at that step 5 / 74



Linkages
• Let dij = d(xi, xj) denote the dissimilarity1 (distance) between
observation xi and xj

• At our first step, each cluster is a single point, so we start by merging
the two observations that have the lowest dissimilarity

• But after that…we need to think about distances not between
points, but between sets (clusters)

• The dissimilarity between two clusters is called the linkage

• i.e., Given two sets of points, G and H , a linkage is a dissimilarity
measure d(G, H) telling us how different the points in these sets are

• Let’s look at some examples
1We’ll talk more about dissimilarities in a moment
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Common linkage typesTypes of Linkage

Linkage Description

Complete

Maximal inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the largest of
these dissimilarities.

Single

Minimal inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the smallest of
these dissimilarities.

Average

Mean inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the average of
these dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Cen-
troid linkage can result in undesirable inversions.

45 / 52
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Single linkage

In single linkage (i.e., nearest-neighbor linkage), the dissimilarity between
G, H is the smallest dissimilarity between two points in different groups:

dsingle(G, H) = min
i∈G, j∈H

d(xi, xj)

Example (dissimilarities dij are
distances, groups are marked
by colors): single linkage score
dsingle(G, H) is the distance of
the closest pair
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Single linkage example

Here n = 60, xi ∈ R2, dij = ∥xi − xj∥2. Cutting the tree at h = 0.9
gives the clustering assignments marked by colors
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Cut interpretation: for each point xi, there is another point xj in its
cluster such that d(xi, xj) ≤ 0.9
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Complete linkage

In complete linkage (i.e., furthest-neighbor linkage), dissimilarity
between G, H is the largest dissimilarity between two points in different
groups:

dcomplete(G, H) = max
i∈G, j∈H

d(xi, xj)

Example (dissimilarities dij are
distances, groups are marked by
colors): complete linkage score
dcomplete(G, H) is the distance of
the furthest pair
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Complete linkage example

Same data as before. Cutting the tree at h = 5 gives the clustering
assignments marked by colors
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Cut interpretation: for each point xi, every other point xj in its cluster
satisfies d(xi, xj) ≤ 5
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Average linkage
In average linkage, the dissimilarity between G, H is the average
dissimilarity over all points in opposite groups:

daverage(G, H) = 1
|G| · |H|

∑
i∈G, j∈H

d(xi, xj)

Example (dissimilarities dij are
distances, groups are marked by
colors): average linkage score
daverage(G, H) is the average dis-
tance across all pairs

(Plot here only shows distances
between the green points and
one orange point)
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Average linkage example

Same data as before. Cutting the tree at h = 2.5 gives clustering
assignments marked by the colors
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Cut interpretation: there really isn’t a good one! §
hi
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Shortcomings of Single and Complete linkage

Single and complete linkage have some practical problems:

• Single linkage suffers from chaining.
◦ In order to merge two groups, only need one pair of points to be close,

irrespective of all others. Therefore clusters can be too spread out, and
not compact enough.

• Complete linkage avoids chaining, but suffers from crowding.
◦ Because its score is based on the worst-case dissimilarity between pairs,

a point can be closer to points in other clusters than to points in its own
cluster. Clusters are compact, but not far enough apart.

Average linkage tries to strike a balance. It uses average pairwise
dissimilarity, so clusters tend to be relatively compact and relatively far
apart
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Example of chaining and crowding

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Single

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Complete

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Average

15 / 74



Shortcomings of average linkage

Average linkage has its own problems:

• Unlike single and complete linkage, average linkage doesn’t give us a
nice interpretation when we cut the dendrogram

• Results of average linkage clustering can change if we simply apply a
monotone increasing transformation to our dissimilarity measure,
our results can change
◦ E.g., d→ d2 or d→ ed

1+ed

◦ This can be a big problem if we’re not sure precisely what dissimilarity
measure we want to use

◦ Single and Complete linkage do not have this problem
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Average linkage monotone dissimilarity transformation
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The left panel uses d(xi, xj) = ∥xi − xj∥2 (Euclidean distance), while
the right panel uses ∥xi − xj∥22. The left and right panels would be same
as one another if we used single or complete linkage. For average
linkage, we see that the results can be different.
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Where should we place cell towers?

[source: http://imagicdigital.com/, Mark & Danya Henninger]

Suppose we wanted to place cell towers in a way that ensures that no building
is more than 3000ft away from a cell tower. What linkage should we use to
cluster buildings, and where should we cut the dendrogram, to solve this
problem?
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Dissimilarity measures

• The choice of linkage can greatly affect the structure and quality of
the resulting clusters

• The choice of dissimilarity (equivalently, similarity) measure is
arguably even more important

• To come up with a similarity measure, you may need to think
carefully and use your intuition about what it means for two
observations to be similar. E.g.,
◦ What does it mean for two people to have similar purchasing behaviour?

◦ What does it mean for two people to have similar music listening habits?

• You can apply hierarchical clustering to any similarity measure
s(xi, xj) you come up with. The difficult part is coming up with a
good similarity measure in the first place.
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Example: Clustering time series

Here’s an example of using hier-
archical clustering to cluster time
series.

You can quantify the similarity
between two time series by cal-
culating the correlation between
them. There are different kinds
of correlations out there.

[source: A Scalable Method for Time Series Clustering,

Wang et al]

 
Figure 3 2D map from SOM process showing 5 clusters 

 
 
 

 
   

(a) benchmark    (b) our result 

 

Figure 4 Comparison of clustering results using hierarchical representation 
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K-means vs Hierarchical clustering
• K-means:
© Low memory usage
© Essentially O(n) compute time
§ Results are sensitive to random initialization
§ Number of clusters is pre-defined
?? Awkward with categorical variables

• Hierarchical clustering:
© Deterministic algorithm
© Dendrogram shows us clusterings for various choices of K
© Requires only a distance matrix, quantifying how dissimilar observations

are from one another
• We can use a dissimilarity measure that gracefully handles categorical

variables, missing values, etc

§ Memory-heavy, more computationally intensive than K-means

There are lots of practical considerations...
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What does it mean for two things to be “similar”?

[source: photographs by Sebastian Magnani]
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What shape might the clusters be expected to have?K -means Limitations Illustrated

Non-convex/non-round-shaped clusters: Standard K -means fails!

Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

(CS5350/6350) Data Clustering October 4, 2011 21 / 24
[source: Piyush Rai, CS5350/6350 @ Utah]
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Not that your data will ever look like this, but...

Single linkage Complete linkage

The chaining property of Single linkage actually helps us in this case.
Single linkage reproduces the clusters exactly, while Complete linkage
strives to find compact clusters, and hence fails on this problem.

[source: Ajda Pretnar, Orange, University of Ljubljana]24 / 74



You might get data that looks like this

• Of course, we don’t get to observe the labels
• This is a problem that K-means doesn’t do well on

[source: Wikipedia, Public Domain image]
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Here’s what K-means does

• K-means struggles when the clusters have different densities
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Gaussian Mixture Models (EM Clustering)

[source: Wikipedia, Public Domain image]

• If this was a classification problem, we’d try to use QDA
• The unsupervised setting, we can apply the same kind of intuition
• Basic idea: Let’s assume that the data generating process is a mixture
of Multivariate Normals
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Gaussian Mixture Models

• Assume each observation has probability πk of coming from cluster k

• Assume that all observations from cluster k a drawn randomly from
a MVN(µk, Σk) distribution

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●
●

●

●

●

●

●

●

●
●

●
●

● ●● ●●
●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●
●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●●

●
● ●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●
●

●

●

●

●

●
●●

● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●●

●

●
●

●

●●

●

●

●

● ●

●

●
● ●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●● ●

●

●

●

●

●

●●

●

●
●

●

●
● ●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

● ●

● ●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●
● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
● ●

●
●●

●

●

●

● ●

●

●●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

● ●

●
●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

● ●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3

0

3

6

−6 −3 0 3
X1

X
2

class
●

●

●

1

2

3

i.e., We’re assuming that there are latent class labels that we don’t observe.
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• We don’t know what the mixture components look like ahead of time
• We’ll use an iterative algorithm that feels kind of like K-means
• Start by fixing K at some value
• Now, if we have estimates µ̂k, Σ̂k, π̂k, we can calculate the posterior
probability that observation i comes from class k (E-step)

• If we have the posterior probabilities, we can get updated estimates
of µ̂k, Σ̂k, π̂k (M-step)
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EM Algorithm (sketch) for Gaussian mixtures

• Take initial guesses for the parameters µ̂k, Σ̂k, π̂k

• Repeat until convergence:

• (Expectation step) Using the current parameter estimates, calculate the
responsibilities

θ̂i,k = P(i ∈ Ck | xi)

• (Maximization step) Using the current responsibilities, re-estimate the
parameters.
◦ This is done with weighted averaging

E.g., the mean estimates work out to

µ̂k =
∑n

i=1 θ̂i,kxi∑n
i=1 θi,k

30 / 74



95-791 Data Mining   Lecture 7   Slide 49 Copyright © 2015  Artur Dubrawski

Example: Learning a Gaussian Mixture with E-M
Step 0
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Example: Learning a Gaussian Mixture with E-M
Step 1

• Each circle (mini pie-chart) is an observation
• Large ovals in the background represent initial µ̂k, Σ̂k.

π̂k = 1/3 for all 3 classes
• Pie chart segments correspond to responsibilities estimates from
current µ̂k, Σ̂k, π̂k.
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Example: Learning a Gaussian Mixture with E-M
Step 0
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Example: Learning a Gaussian Mixture with E-M
Step 1

1 iteration of both the E-step and M-step
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Example: Learning a Gaussian Mixture with E-M
Step 2
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Example: Learning a Gaussian Mixture with E-M
Step 3

another iteration of both the E-step and M-step
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Example: Learning a Gaussian Mixture with E-M
Step 2
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Example: Learning a Gaussian Mixture with E-M
Step 3

another iteration of both the E-step and M-step.
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Example: Learning a Gaussian Mixture with E-M
Step 4
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Example: Learning a Gaussian Mixture with E-M
Step 5

another iteration of both the E-step and M-step..
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Example: Learning a Gaussian Mixture with E-M
Step 4
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Example: Learning a Gaussian Mixture with E-M
Step 5

another iteration of both the E-step and M-step...
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Example: Learning a Gaussian Mixture with E-M
Step 6
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Example: Learning a Gaussian Mixture with E-M
Step 20

another iteration of both the E-step and M-step....
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Example: Learning a Gaussian Mixture with E-M
Step 6
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Example: Learning a Gaussian Mixture with E-M
Step 20

Final picture: algorithm has converged
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Gaussian Mixture Modeling vs. K-means

• GMM’s do better on this example because they essentially allow for a
data-adaptive notion of distance when assigning points to centroids

• i.e., In the original data, we have 2 clumps with small variance, and one
clump with large variance

• K-means can’t capture this added information

• GMM’s say: An observation belongs to Ck if its variance-adjusted (i.e.,
Σk-adjusted) distance to µk is small 33 / 74



A note on variable scaling

• Variable scaling can matter a lot
• Here’s an example of data in some original scaling.
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A note on variable scaling

• Here’s what happens if we rescale X2 via X2 ← X2/3
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A note on variable scaling
• To make it easier to compare the results, in the right panel of the
Figure below we colour the points in the original data based on the
clustering obtained from the scaled data
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Socks Computers
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Figure 10.14 from ISL. Here we have # socks and computers purchased. Each
observation is represented by a coloured bar. How we scale the Socks and
Computers variables affects how dissimilar we view the people to be.

One general approach: Rescale all variables to have variance 1.
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Agenda for Part II

• Dimensionality reduction
◦ Principal Components Analysis
◦ Correspondence analysis
◦ Multidimensional scaling

• Association rules
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Dimensionality reduction
• Dimensionality reduction describes a family of methods for identifying

directions along with the data varies most highly

• E.g., the plot below shows Ad Spending vs. Population for n = 100
different cities.

• Most of the variation is along the direction of the green diagonal line

• A smaller amount of variation is in the direction of the dashed blue line

PCA: example
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The population size (pop) and ad spending (ad) for 100 di↵erent
cities are shown as purple circles. The green solid line indicates
the first principal component direction, and the blue dashed
line indicates the second principal component direction.

7 / 52
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Principal components analysis

PCA: example
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The population size (pop) and ad spending (ad) for 100 di↵erent
cities are shown as purple circles. The green solid line indicates
the first principal component direction, and the blue dashed
line indicates the second principal component direction.

7 / 52

• Principal components analysis (PCA) takes a data frame and computes the
directions of greatest variation

• Essentially: PCA finds linear combinations of the original features that
explain as much of the variation in the data as possible

• The green diagonal line in the Figure above is called the first principal
direction

• The dashed blue line is the second principal direction
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Computation of Principal Components

• Start with an n× p data set X. We only care about variation, so
assume all of the columns (variables) have mean 0.

• To find the first principal component, look for the linear combination
of features

zi1 = ϕ11xi1 + ϕ12xi2 + . . . + ϕp1xip

for i = 1, . . . , n that has the largest sample variance, subject to the
constraint

∑p
j=1 ϕ2

j1 = 1
• We started by assuming that 1

n

∑n
i=1 xij = 0, which ensures that the

sample mean 1
n

∑n
i=1 zi1 = 0 also

• So we just need to find values of ϕj1 to maximize the sample
variance:

1
n

n∑
i=1

z2
i1

subject to
∑p

j=1 ϕ2
j1 = 1.
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What does this give us?
• We get a vector Z1 = (z11, z21, . . . , zn1) called the first principal
component

• The vector ϕ1 = (ϕ11, ϕ21, . . . , ϕp1) is called a loading vector, and
defines a direction in feature space along which the data varies the
most

• By projecting the n data points x1, . . . , xn onto this direction, we get
the principal component scores (z11, z21, . . . , zn1)

• To find the second principal component Z2, we repeat the process,
further requiring that Z2 be uncorrelated with Z1
◦ This amounts to requiring that the second principal direction ϕ2 be

orthogonal to the first direction ϕ1

• In general, for the kth principal component Zk, we figure out the
direction ϕk that maximizes the variance, requiring that ϕk be
orthogonal to ϕ1, ϕ2, . . . , ϕk−1
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A picture

[source: https://onlinecourses.science.psu.edu/stat857]

• This Figure shows an observation xi = (xi1, xi2) along with zi1, its
projection onto the first principal component direction, and zi2, its
projection onto the second principal component direction
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Example: USArrests Data

• USArrests data: For each of the n = 50 states in the United
States, the data set contains the number of arrests per 100,000
residents for each of three crimes: Assault, Murder, and Rape.

• We also record UrbanPop, the percent of the population in each
state living in urban areas.

• The principal component score vectors have length n = 50, and the
principal component loading vectors (directions) have length p = 4.

• PCA was performed after standardizing each variable to have mean
zero and standard deviation one.
◦ Normalization is very important!
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USArrests biplot
arrests.scaled <- scale(USArrests) # Normalize the data
arrests.pca <- princomp(arrests.scaled) # Perform PCA
biplot(arrests.pca, scale = 0) # Construct biplot
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What happened?
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Our biplot ISL Figure 10.1

• The direction of the arrows and location of the points is now flipped...
• The PCA solution is non-unique in this sense: Loading vectors ϕ1 and
−ϕ1 will produce the same variance for the scores zi1, but will result
in opposite signs.
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Let’s look at the loadings
Here’s what ISL reports for the loadings ϕ1, ϕ2:

PCA loadings

PC1 PC2
Murder 0.5358995 -0.4181809
Assault 0.5831836 -0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186

16 / 52

Here’s what we got (all 4 loading vectors are shown):

Comp.1 Comp.2 Comp.3 Comp.4
Murder -0.53590 0.41818 -0.34123 0.64923
Assault -0.58318 0.18799 -0.26815 -0.74341

UrbanPop -0.27819 -0.87281 -0.37802 0.13388
Rape -0.54343 -0.16732 0.81778 0.08902

• If we flip the sign of all the values in our table, we’ll get the same
answer as ISL.

• We’ll want to flip the signs on the loadings ϕj and the scores zj
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Here’s our new biplot
arrests.pca$loadings = -arrests.pca$loadings # Flip loadings (phi's)
arrests.pca$scores = -arrests.pca$scores # Flip scores (z's)
biplot(arrests.pca, scale = 0) # Construct biplot
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Loadings

ϕ1 ϕ2
Murder 0.54 -0.42
Assault 0.58 -0.19

UrbanPop 0.28 0.87
Rape 0.54 0.17
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• The word UrbanPop is centered at (0.28, 0.87) (in terms of the top
and right side coordinate axes)
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Let’s look at the scores (z’s)

Comp.1 Comp.2 Comp.3 Comp.4
Alabama 0.98 -1.12 0.44 -0.15
Alaska 1.93 -1.06 -2.02 0.43

Arizona 1.75 0.74 -0.05 0.83
Arkansas -0.14 -1.11 -0.11 0.18
California 2.50 1.53 -0.59 0.34
Colorado 1.50 0.98 -1.08 -0.00

• Just like we get 4 loading vectors, we get 4 score vectors.
• The table above shows the scores for all 4 principal components
• The biplot is constructed by plotting the points with Comp.1 on the
x-axis and Comp.2 on the y-axis
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Scores

Comp.1 Comp.2
Alabama 0.98 -1.12
Alaska 1.93 -1.06

Arizona 1.75 0.74
Arkansas -0.14 -1.11
California 2.50 1.53
Colorado 1.50 0.98

...
...

...
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• The word California is centered at (2.5, 1.53) (in terms of the
bottom and left side coordinate axes)
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Why does PCA work well on this data?
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50 150 250

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

30 50 70 90

5
10

15

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

50
15

0
25

0

0.80 Assault
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

0.56 0.67 Rape

10
20

30
40

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

5 10 15

30
50

70
90

0.07 0.26

10 20 30 40

0.41 UrbanPop

In this pairs plot we can clearly see that the crime rate variables—Murder,
Assault, and Rape—are highly correlated with one another. They provide
redundant information. The first loading vector winds up forming a
combination of these three features, essentially compressing 3 features into 1. 53 / 74



Proportion Variance Explained

• Dimensionality reduction techniques such as PCA work well when
the data is essentially low dimensional
◦ i.e., when there are many groups of highly correlated features

• i.e., We may have p features, but we might be able to describe the
data with just k ≪ p linear combinations of them
◦ For instance, if we have data on children, height, weight and age will

all be highly correlated

◦ PCA will be able to identify a linear combination of these features that
we we’ll roughly be able to interpret as the child’s size

• In general, to understand how well PCA is doing, we look at the
proportion of variance explained (PVE) of each principal component.
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Proportion Variance Explained

• Assume as usual that all the variables have been centered to have
mean 0.

• The total variance present in the data is defined as

p∑
j=1

var(Xj) =
p∑

j=1

1
n

n∑
i=1

x2
ij

and the variance explained by the mth principal component is

var(Zm) = 1
n

n∑
i=1

z2
im

• The PVE of the mth component is the ratio of these quantities:

PVE(Zm) = var(Zm)
total variance
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Figure 10.4 from ISL

• Left panel shows PVE(Zm) for all 4 principal components in the
USArrests data

• Right panel shows cumulative PVE: i.e., values of
∑

m≤k PVE(Zm)
for k = 1, 2, 3, 4
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How many principal components should we use?

• There’s no simple answer to this question

• Cross-validation is not available for this problem
◦ CV allows us to estimate test error... but we’re doing unsupervised

learning here and we don’t really have a notion of test error to work with

◦ If we treated our principal components as derived features in a regression
or classification task, we could certainly run Cross-validation in that
setting

• Often, people like to look at so-called scree plots, which is what we
showed on the previous slide
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Finding elbows in scree plots

[source: https://gugginotes.wordpress.com/]

• Eigenvalue y-axis label should be interpreted as PVE
• Rule-of-thumb: Stop at the elbow in the Scree plot. (k = 5 here)
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Principal Components Regression
• Suppose we’re back in the supervised learning setting where we have
observations (xi, yi)

• We have a lot of feature (p is large), and we suspect that many of
them may be redundant/highly correlated

• We can perform PCA on the data matrix X, treating this as a feature
engineering step

• This will give us k < p new features z1, . . . , zk, corresponding to the
top k principal components

• Then we can model y on z1, . . . , zk instead of on the xj

• This method is called Principal Components Regression (PCR)
◦ Of course, there’s a classification version of PCR as well
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Simple PCR example
• Suppose that we have two features: age and height

• Everyone in our sample is between 10 and 17 years old, so these
features are highly correlated

• Instead of using both features in our models, we could just use the
1st principal component.
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PCR Success case
• Will PCR work? This depends on the outcome, y

• Let’s look at a classification setting where y = 1 if the individual is in
high school, and 0 otherwise.
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• Using just the first principal component for classification will work
really well here!
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PCR Success case
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• This is what the data looks like when plotted in terms of the two
principal components

• We can clearly see that a logistic model with y ∼ z1 will classify
really well 62 / 74



PCR Failure case
• Now what if our outcome was instead y = 1 if the person is tall for

their age, and 0 otherwise.
• Here’s a scatterplot of the data, colour-coded by outcome.
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• The first principal component is going to be entirely orthogonal to
the interesting direction for classification!
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PCR Failure case
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• A logistic model with y ∼ z1 will fail completely!

• Take-away: PCR will work well when the leading principal
components define directions that capture variation in the outcome y
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PCA captures linear directions of variation
• PCA works well when the relationships between the features are linear

(e.g., when features are linearly correlated)
• Shown below is an example where the two axes are clearly strongly

associated, but the association is non-linear
• The PCA directions are reasonable... but don’t really capture the key trend

in the data
• Principal curves can be applied in such settings: This method generalizes

PCA by fitting 1-dimensional curves instead of lines

PCA Principal curve

[img source: http://what-when-how.com/]65 / 74



Correspondence Analysis

• PCA is great and widely used

• But it’s limited to numeric or ordinal data

• We may want to perform dimensionality reduction with categorical
features

• Correspondence analysis is an extension of PCA that gracefully
handles categorical features

• The figure on the next page shows a biplot obtained by running
Correspondence analysis on a dataset where consumers were asked
to check whether or not they associated particular attributes (blue
points) with various car models (red points)
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Multidimensional scaling
• Multidimensional scaling (MDS) is a dimensionality reduction methods
for visualizing the level of similarity among individuals in a dataset

• Instead of feeding in the data set X, we feed in a distance matrix
specifying the pairwise distances between all observations
◦ Recall: For hierarchical clustering, we also don’t need X. We just

operate on the distance matrix

• Here’s MDS output from an analysis of voting similarity between
Republicans and Democrats (blue) in the house of representatives

[source: Wikipedia, Public Domain
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Multidimensional scaling: US cities
• Here’s an example of what MDS would do if applied to a matrix
giving pairwise distances between all of the “major” cities in the US

• Awesome! It doesn’t get the right rotation, but we can’t expect it to.
The reconstruction is otherwise excellent.
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Association rules (Market Basket Analysis)
• Association rule learning has both a supervised and unsupervised
learning flavour

• We didn’t discuss the supervised version when we were talking about
regression and classification, but you should know that it exists.
◦ Look up: Apriori algorithm (Agarwal, Srikant, 1994)
◦ In R: apriori from the arules package

• Basic idea: Suppose you’re consulting for a department store, and
your client wants to better understand patterns in their customers’
purchases

• patterns or rules look something like:

{suit, belt} ⇒ {dress shoes}
{bath towels}︸ ︷︷ ︸

LHS

⇒ {bed sheets}︸ ︷︷ ︸
RHS

◦ In words: People who buy a new suit and belt are more likely to also
by dress shoes.

◦ People who by bath towels are more likely to buy bed sheets 70 / 74



Basic concepts
• Association rule learning gives us an automated way of identifying
these types of patterns

• There are three important concepts in rule learning: support,
confidence, and lift

• The support of an item or an item set is the fraction of transactions
that contain that item or item set.
◦ We want rules with high support, because these will be applicable to a

large number of transactions
◦ {suit, belt, dress shoes} likely has sufficiently high support to be

interesting
◦ {luggage, dehumidifer, teapot} likely has low support

• The confidence of a rule is the probability that a new transaction
containing the LHS item(s) {suit, belt} will also contain the RHS
item(s) {dress shoes}

• The lift of a rule is
support(LHS, RHS)

support(LHS) · support(RHS)
= P({suit, belt, dress shoes})

P({suit, belt})P({dress shoes})
71 / 74



An example

1�
�

An�A�Priori�Algorithm�R�Example�

Loading required package: arules 
Loading required package: Matrix 
 
Attaching package: ‘arules’ 
 
The following objects are masked from ‘package:base’: 
 
    %in%, write 
 
> #Example of Association Rules 
>  
> #Here is one (crude) way to prepare a list of transactions for the 602X Problem 
>  
> #require(arules) 
>  
> a_list<-list( 
+   c("CrestTP","CrestTB"), 
+   c("OralBTB"), 
+   c("BarbSC"), 
+   c("ColgateTP","BarbSC"), 
+   c("OldSpiceSC"), 
+   c("CrestTP","CrestTB"), 
+   c("AIMTP","GUMTB","OldSpiceSC"), 
+   c("ColgateTP","GUMTB"), 
+   c("AIMTP","OralBTB"), 
+   c("CrestTP","BarbSC"), 
+   c("ColgateTP","GilletteSC"), 
+   c("CrestTP","OralBTB"), 
+   c("AIMTP"), 
+   c("AIMTP","GUMTB","BarbSC"), 
+   c("ColgateTP","CrestTB","GilletteSC"), 
+   c("CrestTP","CrestTB","OldSpiceSC"), 
+   c("OralBTB"), 
+   c("AIMTP","OralBTB","OldSpiceSC"), 
+   c("ColgateTP","GilletteSC"), 
+   c("OralBTB","OldSpiceSC"), 
+   c(), 
+   c(), 
+   c(), 
. 
 
# Many similar rows have been deleted here 
 
. 
. 
+   c(), 
+   c(), 
+   c(), 
+   c(), 
+   c() 
+    
+   ) 
>  
> #Set transaction names 
>  
> names(a_list) <- paste("Tr",c(1:100), sep = "") 
> a_list 
$Tr1 
[1] "CrestTP" "CrestTB" 
$Tr2 
[1] "OralBTB" 
 

• A subset of drug store transactions is displayed above
• First transaction: Crest ToothPaste, Crest ToothBrush
• Second transaction: OralB ToothBrush
• etc…

[source: Stephen B. Vardeman, STAT502X at Iowa State University]
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4�
�

17  {OralBTB}            Tr17  
18  {AIMTP,                    
     OldSpiceSC,               
     OralBTB}            Tr18  
19  {ColgateTP,                
     GilletteSC}         Tr19  
20  {OldSpiceSC,               
     OralBTB}            Tr20  
21  {}                   Tr21  
22  {}                   Tr22  
23  {}                   Tr23  
. 
#Many similar rows deleted here 
. 
. 
98  {}                   Tr98  
99  {}                   Tr99  
100 {}                   Tr100 
>  
> rules<-apriori(trans,parameter=list(supp=.02, conf=.5, target="rules")) 
 
parameter specification: 
 confidence minval smax arem  aval originalSupport support minlen maxlen target   ext 
        0.5    0.1    1 none FALSE            TRUE    0.02      1     10  rules FALSE 
 
algorithmic control: 
 filter tree heap memopt load sort verbose 
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE 
 
apriori - find association rules with the apriori algorithm 
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt 
set item appearances ...[0 item(s)] done [0.00s]. 
set transactions ...[9 item(s), 100 transaction(s)] done [0.00s]. 
sorting and recoding items ... [9 item(s)] done [0.00s]. 
creating transaction tree ... done [0.00s]. 
checking subsets of size 1 2 3 done [0.00s]. 
writing ... [5 rule(s)] done [0.00s]. 
creating S4 object  ... done [0.00s]. 
>  
> inspect(head(sort(rules,by="lift"),n=20)) 
  lhs             rhs          support confidence     lift 
1 {GilletteSC} => {ColgateTP}     0.03  1.0000000 20.00000 
2 {ColgateTP}  => {GilletteSC}    0.03  0.6000000 20.00000 
3 {CrestTB}    => {CrestTP}       0.03  0.7500000 15.00000 
4 {CrestTP}    => {CrestTB}       0.03  0.6000000 15.00000 
5 {GUMTB}      => {AIMTP}         0.02  0.6666667 13.33333 

�

• This says: Consider only those rules where the item sets have
support at least 0.02, and confidence at least 0.5

• Here’s what we wind up with

4�
�

17  {OralBTB}            Tr17  
18  {AIMTP,                    
     OldSpiceSC,               
     OralBTB}            Tr18  
19  {ColgateTP,                
     GilletteSC}         Tr19  
20  {OldSpiceSC,               
     OralBTB}            Tr20  
21  {}                   Tr21  
22  {}                   Tr22  
23  {}                   Tr23  
. 
#Many similar rows deleted here 
. 
. 
98  {}                   Tr98  
99  {}                   Tr99  
100 {}                   Tr100 
>  
> rules<-apriori(trans,parameter=list(supp=.02, conf=.5, target="rules")) 
 
parameter specification: 
 confidence minval smax arem  aval originalSupport support minlen maxlen target   ext 
        0.5    0.1    1 none FALSE            TRUE    0.02      1     10  rules FALSE 
 
algorithmic control: 
 filter tree heap memopt load sort verbose 
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE 
 
apriori - find association rules with the apriori algorithm 
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt 
set item appearances ...[0 item(s)] done [0.00s]. 
set transactions ...[9 item(s), 100 transaction(s)] done [0.00s]. 
sorting and recoding items ... [9 item(s)] done [0.00s]. 
creating transaction tree ... done [0.00s]. 
checking subsets of size 1 2 3 done [0.00s]. 
writing ... [5 rule(s)] done [0.00s]. 
creating S4 object  ... done [0.00s]. 
>  
> inspect(head(sort(rules,by="lift"),n=20)) 
  lhs             rhs          support confidence     lift 
1 {GilletteSC} => {ColgateTP}     0.03  1.0000000 20.00000 
2 {ColgateTP}  => {GilletteSC}    0.03  0.6000000 20.00000 
3 {CrestTB}    => {CrestTP}       0.03  0.7500000 15.00000 
4 {CrestTP}    => {CrestTB}       0.03  0.6000000 15.00000 
5 {GUMTB}      => {AIMTP}         0.02  0.6666667 13.33333 

�

[source: Stephen B. Vardeman, STAT502X at Iowa State University]
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