
Lecture 6: Ensemble methods, Clustering

Part I: Pruning, Bagging, Boosting
Part II: Clustering

Prof. Alexandra Chouldechova
95-791: Data Mining

February 22, 2017

1 / 95



Agenda for Part I

• Pruning trees

• Ensemble methods
◦ Bagging
◦ Random Forests
◦ Boosting
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Reminder: Recursive binary partitioning

• At each step, you pick a new split by finding the input Xj and split
point x̃j that best partitions the data

• In prediction, you choose splits to minimize the RSS

• In classification, choose splits to maximize node purity (minimize Gini
index)

G =
K∑

k=1
p̂mk(1− p̂mk)

where p̂mk is the proportion of training observations in the mth region
that are from the kth class

• G is small if all the p̂mk are close to 0 or 1
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Tree pruning

Why did we stop here? Why not keep partitioning?

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)
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Low salary (blue, Green)
High salary (orange, red)
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We could just keep going...
|

Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289
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Tree pruning

• If we just keep going, we're going to overfit the training data, and get
poor test performance

• We could stop as soon as we can't find a split to reduce RSS or Gini
index by at least some pre-specified amount

• But this strategy is short-sighted: A seemingly worthless split early
on might be followed by a really good split later

• Solution: Grow a very large tree T0, and then prune it back
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Cost complexity pruning
• Here's the regression tree version of cost complexity pruning aka
weakest link pruning

• For each α, find the subtree T ⊂ T0 that minimizes

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)2 + α|T |

where |T | is the number of terminal nodes (leaves) in tree T , and
Rm is the rectangle corresponding ot the mth terminal node. ŷRm is
just the mean of the training observations in Rm

• This is familiar. It has the form:

RSS(T ) + α|T |

model error + a penalty on model complexity
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Cost complexity pruning

For each α, find the subtree T ⊂ T0 that minimizes

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)2 + α|T |

• How do we pick α?

• Use Cross-validation
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Pruning detailsSummary: tree algorithm

1. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has
fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of ↵.

3. Use K-fold cross-validation to choose ↵. For each
k = 1, . . . ,K:
3.1 Repeat Steps 1 and 2 on the K�1

K th fraction of the training
data, excluding the kth fold.

3.2 Evaluate the mean squared prediction error on the data in
the left-out kth fold, as a function of ↵.

Average the results, and pick ↵ to minimize the average
error.

4. Return the subtree from Step 2 that corresponds to the
chosen value of ↵.

20 / 51
[source: ISL Chapter 8 slides] 9 / 95



Tree pruning
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Looks like the small 3-leaf tree has the lowest CV error.
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Good things about trees

• Trees are the most easily interpretable method we've talked about in
this class
◦ You can explain a decision tree to even your least technical colleague

• Arguably, trees more closely mirror human decision-making

• Trees are easy to display graphically.
◦ You can print off your tree and easily obtain predictions by hand

• Trees can handle qualitative predictors and ordered qualitative
predictors without needing to create dummy variables

• Trees handle missing values very nicely, without throwing out
observations
◦ When a value is missing, they split on a surrogate variable: E.g., if a user's

years of job experience is missing, they'll split on an optimally chosen
correlated variable like age.
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A summary of our methods so far

Method Interpretable Flexible Makes assumptions?

Logistic regression Yes Extensible Yes
k-NN No Highly No
LDA/QDA Sometimes No Yes
Trees Extremely Somewhat No

• Decision trees are perhaps the most Interpretable method we've
seen so far

• Trees don't assume any particular relationship between the response
Y and the inputs Xj , and large trees are quite flexible

• So what's the catch?

• Turns out, Trees tend to be rather poor predictors/classifiers!

• We can fix this, if we're willing to give up Interpretability
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Why are Decision trees poor predictors?
• Decision trees tend to have high variance. A small change in the
training data can produce big changes in the estimated Tree.
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How are we going to fix this?

• Let's think back to Cross-Validation, and why it gives much better
results than the Validation Set Approach

• The Validation Set Approach tends to overestimate the error, but it
also gives highly variable estimates
◦ If you pick a different random split, you can get wildly different estimates

of Test error

• The K-fold Cross-validation produces much more stable error
estimates by averaging over K separate estimates of error (one from
each fold).

• The idea of Bagging (Bootstrap AGGregatING) has a similar
motivation: To decrease the variance of a high-variance predictor, we
can average across a bunch of estimates
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The Bootstrap

• The Bootstrap1 is a fundamental resampling tool in statistics.

• Basic idea: We're going to create resampled data sets of size n by
sampling from our observed data with replacement

• More formally this idea says: We're going to use the empirical
distribution of our data to estimate the true unknown
data-generating distribution

1Efron (1979), “Bootstrap Methods: Another Look at the Jackknife”
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• We'd love to be able to generate more data from the true
distribution. This would solve all of our problems.

• But we can't do that. We only get to see a sample of size n

• So we'll approximate sampling from the true distribution by
re-sampling from our observed data instead.
◦ A bootstrap sample of size n is a data set (x∗

i , y∗
i ) i = 1, . . . , n where

each (x∗
i , y∗

i ) are sampled uniformly at random with replacement from
our observed data (x1, y1), . . . , (xn, yn)

◦ We're (re-)sampling rows of our data, with replacement. 16 / 95
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What shows up?

• Not all of the training points will appear in each sample

• Each bootstrap sample contains roughly 63.2% of the observed data
points
◦ The points that randomly get left out points feel like a validation

set…we'll return to this later

• If we bootstrap sample B times, we get B data sets of size n, and we
can estimate whatever we want on each dataset
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Bagging: Classification trees

• Given a training data (xi, yi), i = 1, . . . n, bagging2 averages the
predictions from classification trees over a collection of bootstrap
samples.

• Here we'll describe how to apply Bagging to Classification Trees
1 For b = 1, . . . , B, get a bootstrap sample of size n from the training

data: (x∗b
i , y∗b

i ), i = 1, . . . n
2 Fit a classification tree f̂ tree,b on each sample
3 Classify a new point x0 by taking the plurality vote across all B

bootstrapped trees:

ŷbag
0 = argmax

k=1,...,K

B∑
b=1

I
(

f̂ tree,b(x0) = k
)

• Step (3) amounts to letting each of the B trees vote, and then
choosing whichever class has the most votes

• Typically, in Step (2) the trees are grown very large, with no pruning.
Why are we less worried about tuning each tree?
2Breiman (1996), “Bagging Predictors”
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Example: bagging
Example (from ESL 8.7.1): n = 30 training data points, p = 5 features,
and K = 2 classes. No pruning used in growing trees:
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How could this possibly work?

• You may have heard of the Wisdom of crowds phenomenon

• It's a concept popularized outside of statistics to describe the idea
that the collection of knowledge of a group of independent people
can exceed the knowledge of any one person individually.

• Interesting example (from ESL page 287): Academy award
predictions
◦ 50 people are asked to predict academy award winners for 10 categories
◦ Each category has 4 nominees
◦ For each category, just 15 of the 50 voters are at all informed (the

remaining 35 voters are guessing randomly)
◦ The 15 informed voters have probability P ≥ 0.25 of correctly guessing

the winner
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There are 10 award categories and 4 nominees in each. For each of the 10
categories, there are 15 (of 50) voters who are informed. Their probability of
guessing correctly is P ≥ 0.25. Everyone else guesses randomly.
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Example: Breiman's bagging

Example from the original Breiman paper on bagging: comparing the
misclassification error of the CART tree (pruning performed by
cross-validation) and of the bagging classifier (with B = 50):
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Voting probabilities are not estimated class probabilities
• Suppose that we wanted probability estimates p̂k(x) out of our bagging
procedure.

• What if we tried using:

p̂vote
k (x) = 1

B

B∑
b=1

(
f̂ tree,b(x) = k

)
This is the proportion of bootstrapped trees that voted for class k.

• This can be a bad idea

• Suppose we have two classes, and the true probability that y0 = 1
when X = x0 is 0.75.

• Suppose each of the bagged trees estimates the probability function
quite well, resulting in each tree producing the correct classification
of x0 to class 1: f̂ tree,b(x0) = 1

• Then p̂vote
1 (x) = 1... that's wrong

• What if we used each tree's estimated probabilities instead?
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Alternative form: Probability Bagging

• Instead of just looking at the class predicted by each tree, look at the
predicted class probabilities p̂tree,b

k (x)
• Define the bagging estimate of class probabilities:

p̂bag
k (x) = 1

B

B∑
b=1

p̂tree,b
k (x) k = 1, . . . K

• We can use p̂bag
k (x) itself as an alternative to plurality voting of the

trees.
• Given an input vector x0, we can classify it according to

ŷbag
0 = argmax

k=1,...K
p̂bag

k (x)

• This form of bagging is preferred if we want to estimate class
probabilities, and it may improve overall classification accuracy
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Comparison of the two bagging approaches
The probability form of bagging produces misclassification errors shown
in green. The Consensus version is what we first introduced. It's not as
well behaved.

The Test error eventually stops decreasing past a certain value of B
because we hit the limit in the variance reduction bagging can provide
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Out-of-Bag (OOB) Error Estimation
• Recall, each bootstrap sample contains roughly 2/3 (≈ 63.2%) of the
of the training observations

• The remaining observations not used to fit a given bagged tree are
called the out-of-bag (OOB) observations

• Another way of thinking about it: Each observation is OOB for
roughly B/3 of the trees. We can treat observation i as a test point
each time it is OOB.

• To form the OOB estimate of test error:
◦ Predict the response for the ith observation using each of the trees for

which i was OOB. This gives us roughly B/3 predictions for each
observation.

◦ Aggregate predictions into a single prediction for observation i and
calculate the error of this aggregated prediction

◦ Average all of the errors
27 / 95



Random Forests

• Random forests provide an improvement over bagged trees by
incorporating a small tweak that decorrelates the individual trees
◦ This further reduces variance when we average the trees

• We still build each tree on a bootstrapped training sample

• But now, each time a split in a tree is considered, the tree may only
split on a predictor from a randomly selected subset of m predictors

• A fresh selection of m randomly selected predictors is presented at
each split... not for each tree, but for each split of each tree

• m ≈ √p turns out to be a good choice
◦ E.g., if we have 100 predictors, each split will be allowed to choose from

among 10 randomly selected predictors
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Bagging vs. Random Forests
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A big data example: Gene expression data

• p = 4,718 genetic measurements from just 349 patients

• Each patient has a qualitative label. K = 15 possible labels
◦ Either normal, or one of 14 types of cancer

• Split data into training and testing, fit Random forest to training set
for 3 different choices of number of splitting variables, m.

• First, filter down to the 500 genes that have the highest overall
variance in the training set
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Test error: Gene expression data
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• Curves show Test misclassification rates for a 15-class problem with
p = 500 predictors and under 200 observations used for training

• x-axis gives number of trees (number of bootstrap samples used)

• m = p corresponds to bagging.

• A single classification tree has an error rate of 45.7%.
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Summary: Random forests
• Random forests have two tuning parameters:
◦ m = the number of predictors considered at each split
◦ B = the number of trees (number of bootstrapped samples)

• Increasing B helps decrease the overall variance of our estimator

• m ≈ √p is a popular choice

• Cross-validation can be used across a grid of (m, B) values to find
the choice that gives the lowest CV estimate of test error

• Out-of-bag (OOB) error rates are commonly reported
◦ Each observation is OOB for around B/3 of the trees
◦ Can get a test error estimate for each observation each time it is OOB
◦ Average over all the OOB errors to estimate overall test error

• RF's are parallelizable: You can distribute the computations across
multiple processors and build all the trees in parallel
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Random forests vs. Trees
• We liked trees because the model fit was very easy to understand
◦ Large trees wind up hard to interpret, but small trees are highly

interpretable

• With random forests, we're averaging over a bunch of bagged trees,
and each tree is built by considering a small random subset of
predictor variables at each split.

• This leads to a model that's essentially uninterpretable

• The Good: Random forests are very flexible and have a somewhat
justifiable reputation for not overfitting
◦ Clearly RF's can overfit: If we have 1 tree and consider all the variables

at each split, m = p, we just have a single tree

◦ If m≪ p and the number of trees is large, RF's tend not to overfit

◦ You should still use CV to get error estimates and for model tuning!
Don't simply rely on the reputation RF's have for not overfitting.
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Boosting
• We talked about Bagging in the context of bagged trees, but we can
bag any predictor or classifier we want

• Boosting is yet another general approach that can be applied to any
based learning method

• Here we'll briefly discuss Boosting decision trees

• Boosting is another way of taking a base learner (a model) and
building up a more complex ensemble

• In bagging, we bootstrap multiple versions of the training data, fit a
model to each sample, and then combine all of the estimates
◦ The base learners used in bagging tend to have high variance, low bias

• Boosting builds up the ensemble sequentially: E.g., To boost trees, we
grow small trees, one at a time, at each step trying to improve the
model fit in places we've done poorly so far
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Boosting algorithm: Regression trees

1 Set f̂(x) = 0 and residuals ri = yi for all i in the training set
2 For b = 1, 2, . . . , B, repeat:

1 Fit tree f̂ b with d splits to the training data (X, r)3
2 Update f̂ by adding shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x)

3 Update the residuals
ri ← ri − λf̂ b(xi)

3 Output the boosted model,

f̂(x) =
B∑

b=1
λf̂ b(x)

• λ is called the shrinkage parameter. Typically, λ≪ 1
3We're treating the residual vector r as our outcome at each step.
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What's boosting trying to do?

• Boosting works best if d (the size of each tree) is small

• Given the current model, we fit a decision tree to the residuals from
the model

• This new tree helps us perform just a little bit better in places where
the current model wasn't doing well

• Unlike bagging, where each tree is large and tries to model the entire
(bootstrapped) data well, each tree in boosting tries to incrementally
improve the existing model

• Think of boosting as learning slowly: We use small trees, try to make
incremental improvements, and further slow down the learning
process by incorporating the shrinkage parameter λ
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Boosting for classification

• The basic idea is the same: Use weak base learners, update
incrementally, shrink at each step

• Details are more complicated…too complicated to present here

• The R package gbm (gradient boosted models) handles both
prediction (regression) and classification problems

• If you're interested in the details, see Chapter 10 of Elements of
Statistical Learning
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Gene expression example: RF vs Boosted trees
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Fig 8.10 Random forests with different choices of m (K = 15 classes)
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Gene expression example: RF vs Boosted trees
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• K = 2 class problem: cancer vs non-cancer

• Boosting with Depth-1 trees outperforms Depth-2 trees, and both
outperform random forests…but standard errors are actually around 0.02,
so differences aren't really statistically significant

• Boosting uses λ = 0.01
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Tuning parameters for boosting

• Number of trees, B: Boosting can overfit if B is too large, though
overfitting happens slowly. Use cross-validation to select

• shrinkage parameter, λ: 0 < λ≪ 1. This is sometimes called the
learning rate. Common choices are λ = 0.01 or λ = 0.001. Small λ
requires very large B to achieve good performance.

• Number of splits, d: d = 1, called stumps, often works well. This
amounts to an additive model.
◦ Often refer to d as the interaction depth: d splits can involve at most d

variables
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Email spam data (seen on Homework 4)

15.2 Definition of Random Forests 589

Typically values for m are
√
p or even as low as 1.

After B such trees {T (x;Θb)}B1 are grown, the random forest (regression)
predictor is

f̂B
rf (x) =

1

B

B∑

b=1

T (x;Θb). (15.2)

As in Section 10.9 (page 356), Θb characterizes the bth random forest tree in
terms of split variables, cutpoints at each node, and terminal-node values.
Intuitively, reducing m will reduce the correlation between any pair of trees
in the ensemble, and hence by (15.1) reduce the variance of the average.
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FIGURE 15.1. Bagging, random forest, and gradient boosting, applied to the
spam data. For boosting, 5-node trees were used, and the number of trees were
chosen by 10-fold cross-validation (2500 trees). Each “step” in the figure corre-
sponds to a change in a single misclassification (in a test set of 1536).

Not all estimators can be improved by shaking up the data like this.
It seems that highly nonlinear estimators, such as trees, benefit the most.
For bootstrapped trees, ρ is typically small (0.05 or lower is typical; see
Figure 15.9), while σ2 is not much larger than the variance for the original
tree. On the other hand, bagging does not change linear estimates, such
as the sample mean (hence its variance either); the pairwise correlation
between bootstrapped means is about 50% (Exercise 15.4).
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Bagging, Boosting, Interactions
• Ensemble methods feel like black boxes: they make predictions by
combining the results of hundreds of separate models

• Such models are able to capture complex interactions between
predictors, which additive models are unable to do

• E.g., Suppose that your most profitable customers are young women
and older men. A linear model would say:

profit ≈ β0 + β1I(female) + β2age

• This doesn't capture the interaction between age and gender

• Trees (and ensembles of trees) do a great job of capturing
interactions

• Indeed, a tree with d splits can capture up to d-way interactions
42 / 95



Variable Importance
• While RF's and Boosted trees aren't interpretable in any meaningful
sense, we can still extract some insight from them

• For instance, we can use variable importance plots to help answer
the question: Which inputs have the biggest effect on model fit?

• There are two popular ways of measuring variable importance.

• Approach 1: For regression (resp. classification) record the total
amount that the RSS (resp. Gini index) is decreased due to splits
over a given predictor. Average this over all B trees.
◦ A large value indicates an important predictor

• Approach 2: Randomly permute the values of the jth predictor, and
measure how much this reduces the performance of your model
(e.g., how much it increases MSE or accuracy)
◦ A large drop in performance indicates an important predictor

• The varImpPlot() function in R calculates these quantities for you 43 / 95



354 10. Boosting and Additive Trees
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FIGURE 10.6. Predictor variable importance spectrum for the spam data. The
variable names are written on the vertical axis.

• This helps us to see which variables are the most important…but it
doesn't tell us how they affect the model. E.g., the frequency of ! is
very important, but are emails with lots of !'s more likely to be spam
or not spam?
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10.9 Boosting Trees 355
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FIGURE 10.7. Partial dependence of log-odds of spam on four important pre-
dictors. The red ticks at the base of the plots are deciles of the input variable.
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• You can get partial dependence plots by using the partialPlot
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10.9 Boosting Trees 355
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Bootstrap for SE estimation

• We introduced the Bootstrap for the purpose of bagging

• There's a more common use of bootstrapping: standard error
estimation for complicated parameter estimates

• Commonly used to estimate the standard error of a coefficient, or to
build confidence intervals

• Can be used to estimate uncertainty for very complex parameters,
and in very complex sampling settings
◦ We know how to do these things for Normal data, or when the Central

limit theorem holds
◦ Bootstrapping provides a way of estimating standard errors and building

CI's even when the data generating distribution is non-Normal and the
CLT cannot be expected to hold
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A Toy Example: Asset Allocation

• Let X and Y denote the (log) returns of two financial assets

• We want to invest α of our money in asset X and 1− α of our
money in asset Y

• We want to minimize the risk (variance) of our investment returns:

Var(αX + (1− α)Y )

• We're given 100 observations of daily returns
(x1, y1), . . . , (x100, y100)

• In addition to estimating the best allocation (getting an estimate α̂),
we also want to know the standard error of α̂

• If the SE of α̂ is large, this would mean that our investment strategy
may be quite far from optimal
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A Toy Example: Asset Allocation

• With some work, one can show that Var(αX + (1− α)Y ) is
minimized by

αopt = σ2
Y − σXY

σ2
X + σ2

Y − 2σXY

where σ2
X = Var(X), σ2

Y = Var(Y ), σXY = Cov(X, Y )

• We can use the data to calculate the sample variances of X and Y ,
along with a sample covariance.

• Thus we can estimate the optimal allocation strategy with

α̂ = σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY

• Now the tricky part: What is the standard error of α̂?
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A Toy Example: Asset Allocation
Here's our estimate of the optimal asset allocation:

α̂ = σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY

• Suppose that we knew the data generating process for (X, Y ) exactly

• We could then:
1. Simulate a bunch of new data sets of 100 observations (say, do this 1000

times)
2. Calculate new estimates α̂1, α̂2, . . . , α̂1000
3. Estimate the standard error of α̂ by calculating the standard deviation of

the estimates {α̂r}1000
r=1 from our simulated data:

ŜE(α̂) =

√√√√ 1
1000− 1

1000∑
r=1

(α̂r − ᾱ)

where ᾱ = 1
1000

∑1000
r=1 α̂r
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A Toy Example: Bootstrap Solution

• Great! There's just one major problem…we do not know the
distribution of X and Y exactly, so we can't simulate new batches of
data

• Bootstrap approach: Let's try generating new data sets by resampling
from the data itself…Sounds crazy, right?
1. Get B new data sets Z∗1, . . . , Z∗B , each by sampling 100 observations

with replacement from our observed data (do this, say, B = 1000 times)
2. Calculate new estimates α̂∗1, α̂∗2, . . . , α̂∗B

3. Estimate the standard error of α̂ by calculating the standard deviation of
the estimates from our simulated data:

ŜEB(α̂) =

√√√√ 1
B − 1

B∑
r=1

(α̂∗r − ᾱ∗)

where ᾱ∗ = 1
B

∑B
r=1 α̂∗r
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A Bootstrap Picture
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Figure 5.11 from ISL. A graphical illustration of the bootstrap approach
on a small sample containing n = 3 observations. Each bootstrap data
set contains n observations, sampled with replacement from the original
data set. Each bootstrap data set is used to obtain an estimate of α
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How well did we do?

• When we know the data generating process (see p.188 of ISL),
simulating 1000 data sets and calculating the standard errors of the
corresponding α̂ estimates gives

ŜE(α̂) = 0.083

• Starting with a single data set of n = 100 observations and running
the bootstrap procedure to resample B = 1000 data sets gives

ŜEB(α̂) = 0.087

• Amazing!

• Say we get α̂ = 0.576. The estimated SE is non-negligible, so we
know that there's still a fair bit of uncertainty in what allocation to
choose. But the SE is small enough that choosing an allocation close
to α̂ = 0.576 seems like a reasonable thing to do.
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Bootstrap Confidence Intervals
• The bootstrap procedure gives us B estimates α̂∗1, α̂∗2, . . . , α̂∗B

0

50

100

150

0.4 0.6 0.8

Bootstrapped α̂

co
un

t
Histogram of 1000 Bootstrapped optimal allocation parameters

• To form a (1− γ) · 100% CI for α, we can use the γ/2 and 1− γ/2
percentiles of the bootstrapped estimates

• In this simulation, we would get a 95% CI of [0.39, 0.76]
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Agenda for Part II

• What is Unsupervised learning?

• K-means clustering

• Hierarchical clustering

• Association rule mining
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What is Unsupervised Learning?

• Unsupervised learning, also called Descriptive analytics,
describes a family of methods for uncovering latent structure in data

• In Supervised learning aka Predictive analytics, our data consisted of
observations (xi, yi), xi ∈ Rp, i = 1, . . . , n
◦ Such data is called labelled, and the yi are thought of as the labels for the

data

• In Unsupervised learning, we just look at data xi, i = 1, . . . , n.
◦ This is called unlabelled data
◦ Even if we have labels yi, we may still wish to temporarily ignore the yi

and conduct unsupervised learning on the inputs xi
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Examples of clustering tasks

• Identify similar groups of online shoppers based on their browsing
and purchasing history

• Identify similar groups of music listeners or movie viewers based on
their ratings or recent listening/viewing patterns

• Cluster input variables based on their correlations to remove
redundant predictors from consideration

• Cluster hospital patients based on their medical histories

• Determine how to place sensors, broadcasting towers, law
enforcement, or emergency-care centers to guarantee that desired
coverage criteria are met
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• Left: Data
• Right: One possible way to cluster the data
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Here's a less clear example. How should we partition it?
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Here's one reasonable clustering.
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K=2 K=3 K=4

Figure 10.5 from ISL

• A clustering is a partition {C1, . . . , CK}, where each Ck denotes a
subset of the observations.

• Each observation belongs to one and only one of the clusters
• To denote that the ith observation is in the kth cluster, we write

i ∈ Ck
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Method: K-mean clustering
• Main idea: A good clustering is one for which the within-cluster
variation is as small as possible.

• The within-cluster variation for cluster Ck is some measure of the
amount by which the observations within each class differ from one
another

• We'll denote it by WCV (Ck)

• Goal: Find C1, . . . , CK that minimize

K∑
k=1

WCV(Ck)

• This says: Partition the observations into K clusters such that the
WCV summed up over all K clusters is as small as possible
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How to define within-cluster variation?

• Goal: Find C1, . . . , CK that minimize

K∑
k=1

WCV(Ck)

• Typically, we use Euclidean distance:

WCV(Ck) = 1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2

where |Ck| denotes the number of observations in cluster k

• To be clear: We're treating K as fixed ahead of time. We are not
optimizing K as part of this objective.
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Simple example

Here n = 5 and K = 2,
The full distance matrix for all 5 ob-
servations is shown below.

1 2 3 4 5
1 0 0.25 0.98 0.52 1.09
2 0.25 0 1.09 0.53 0.72
3 0.98 1.09 0 0.10 0.25
4 0.52 0.53 0.10 0 0.17
5 1.09 0.72 0.25 0.17 0

• Red clustering:
∑

WCVk = (0.25 + 0.53 + 0.52)/3 + 0.25/2 = 0.56
• Blue clustering:

∑
WCVk = 0.25/2 + (0.10 + 0.17 + 0.25)/3 = 0.30

• It's easy to see that the Blue clustering minimizes the within-cluster
variation among all possible partitions of the data into K = 2 clusters
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How do we minimize WCV?

K∑
k=1

WCV(Ck) =
K∑

k=1

1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2

=
K∑

k=1

1
|Ck|

∑
i,i′∈Ck

∥xi − xi′∥22

• It's computationally infeasible to actually minimize this criterion
• We essentially have to try all possible partitions of n points into K
sets.

• When n = 10, K = 4, there are 34,105 possible partitions
• When n = 25, K = 4, there are 5× 1013…
• We're going to have to settle for an approximate solution
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K-means algorithm

• It turns out that we can rewrite WCVk more conveniently:

WCVk = 1
|Ck|

∑
i,i′∈Ck

∥xi − xi′∥22 = 2
∑

i∈Ck

∥xi − x̄k∥2

where x̄k = 1
|Ck|

∑
i∈Ck

xi is just the average of all the points in
cluster Ck

So let's try the following:

K-means algorithm
1. Start by randomly partitioning the observations into K clusters
2. Until the clusters stop changing, repeat:
2a. For each cluster, compute the cluster centroid x̄k

2b. Assign each observation to the cluster whose centroid is the closest

66 / 95



K-means demo with K = 3
Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

Figure 10.6 from ISL 67 / 95



Do the random starting values matter?

320.9 235.8 235.8

235.8 235.8 310.9

Figure 10.7 from ISL: Final results from 6 different random starting values
The 4 red results all attain the same solution
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Summary of K-means
We'd love to minimize

K∑
k=1

1
|Ck|

∑
i,i′∈Ck

∥xi − xi′∥22

• It's infeasible to actually optimize this in practice, but K-means at
least gives us a so-called local optimum of this objective

• The result we get depends both on K , and also on the random
initialization that we wind up with

• It's a good idea to try different random starts and pick the best result
among them

• There's a method called K-means++ that improves how the
clusters are initialized

• A related method, called K-medoids, clusters based on distances to
a centroid that is chosen to be one of the points in each cluster
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Hierarchical clustering

• K-means is an objective-based approach that requires us to
pre-specify the number of clusters K

• The answer it gives is somewhat random: it depends on the random
initialization we started with

• Hierarchical clustering is an alternative approach that does not
require a pre-specified choice of K , and which provides a
deterministic answer (no randomness)

• We'll focus on bottom-up or agglomerative hierarchical clustering

• top-down or divisive clustering is also good to know about, but we
won't directly cover it here
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...

A B

C

D

E

38 / 52

Each point starts as its own cluster
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...

A B

C

D

E

38 / 52

We merge the two clusters (points) that are closet to each other
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...

A B

C

D

E

38 / 52

Then we merge the next two closest clusters
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...

A B

C

D

E

38 / 52

Then the next two closest clusters…
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Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...

A B

C

D

E

38 / 52

Until at last all of the points are all in a single cluster
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Agglomerative Hierarchical Clustering
• Start with each point in its own cluster.
• Identify the two closest clusters. Merge them.
• Repeat until all points are in a single cluster

To visualize the results, we can look at the resulting dendrogram

Hierarchical Clustering Algorithm
The approach in words:

• Start with each point in its own cluster.
• Identify the closest two clusters and merge them.
• Repeat.
• Ends when all points are in a single cluster.

A B
C

D
E

0
1

2
3

4

Dendrogram

D E B A C

39 / 52
y-axis on dendrogram is (proportional to) the distance between the clusters
that got merged at that step 72 / 95



An example
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X
2

Figure 10.8 from ISL. n = 45 points shown.

Colours indicate actual class labels. We're going to apply hierarchical
clustering, pretending that we didn't get to see these class labels.
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Cutting dendrograms (example cont'd)
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Figure 10.9 from ISL

• Left: Dendrogram obtained from complete linkage4 clustering
• Center: Dendrogram cut at height 9, resulting in K = 2 clusters
• Right: Dendrogram cut at height 5, resulting in K = 3 clusters

4We'll talk about linkages in a moment 74 / 95



Interpreting dendrograms
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Figure 10.10 from ISL

• Observations 5 and 7 are similar to each other, as are observations 1
and 6

• Observation 9 is no more similar to observation 2 than it is to
observations 8, 5 and 7
◦ This is because observations {2, 8, 5, 7} all fuse with 9 at height ∼ 1.8
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Linkages
• Let dij = d(xi, xj) denote the dissimilarity5 (distance) between
observation xi and xj

• At our first step, each cluster is a single point, so we start by merging
the two observations that have the lowest dissimilarity

• But after that…we need to think about distances not between
points, but between sets (clusters)

• The dissimilarity between two clusters is called the linkage

• i.e., Given two sets of points, G and H , a linkage is a dissimilarity
measure d(G, H) telling us how different the points in these sets are

• Let's look at some examples
5We'll talk more about dissimilarities in a moment
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Common linkage typesTypes of Linkage

Linkage Description

Complete

Maximal inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the largest of
these dissimilarities.

Single

Minimal inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the smallest of
these dissimilarities.

Average

Mean inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the average of
these dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Cen-
troid linkage can result in undesirable inversions.

45 / 52
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Single linkage

In single linkage (i.e., nearest-neighbor linkage), the dissimilarity between
G, H is the smallest dissimilarity between two points in different groups:

dsingle(G, H) = min
i∈G, j∈H

d(xi, xj)

Example (dissimilarities dij are
distances, groups are marked
by colors): single linkage score
dsingle(G, H) is the distance of
the closest pair
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Single linkage example

Here n = 60, xi ∈ R2, dij = ∥xi − xj∥2. Cutting the tree at h = 0.9
gives the clustering assignments marked by colors
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Cut interpretation: for each point xi, there is another point xj in its
cluster such that d(xi, xj) ≤ 0.9
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Complete linkage

In complete linkage (i.e., furthest-neighbor linkage), dissimilarity
between G, H is the largest dissimilarity between two points in different
groups:

dcomplete(G, H) = max
i∈G, j∈H

d(xi, xj)

Example (dissimilarities dij are
distances, groups are marked by
colors): complete linkage score
dcomplete(G, H) is the distance of
the furthest pair
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Complete linkage example

Same data as before. Cutting the tree at h = 5 gives the clustering
assignments marked by colors
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Cut interpretation: for each point xi, every other point xj in its cluster
satisfies d(xi, xj) ≤ 5
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Average linkage
In average linkage, the dissimilarity between G, H is the average
dissimilarity over all points in opposite groups:

daverage(G, H) = 1
|G| · |H|

∑
i∈G, j∈H

d(xi, xj)

Example (dissimilarities dij are
distances, groups are marked by
colors): average linkage score
daverage(G, H) is the average dis-
tance across all pairs

(Plot here only shows distances
between the green points and
one orange point)
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Average linkage example

Same data as before. Cutting the tree at h = 2.5 gives clustering
assignments marked by the colors
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hi
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Shortcomings of Single and Complete linkage

Single and complete linkage have some practical problems:

• Single linkage suffers from chaining.
◦ In order to merge two groups, only need one pair of points to be close,

irrespective of all others. Therefore clusters can be too spread out, and
not compact enough.

• Complete linkage avoids chaining, but suffers from crowding.
◦ Because its score is based on the worst-case dissimilarity between pairs,

a point can be closer to points in other clusters than to points in its own
cluster. Clusters are compact, but not far enough apart.

Average linkage tries to strike a balance. It uses average pairwise
dissimilarity, so clusters tend to be relatively compact and relatively far
apart
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Example of chaining and crowding
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Shortcomings of average linkage

Average linkage has its own problems:

• Unlike single and complete linkage, average linkage doesn't give us a
nice interpretation when we cut the dendrogram

• Results of average linkage clustering can change if we simply apply a
monotone increasing transformation to our dissimilarity measure,
our results can change
◦ E.g., d→ d2 or d→ ed

1+ed

◦ This can be a big problem if we're not sure precisely what dissimilarity
measure we want to use

◦ Single and Complete linkage do not have this problem
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Average linkage monotone dissimilarity transformation
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Avg linkage: distance^2

The left panel uses d(xi, xj) = ∥xi − xj∥2 (Euclidean distance), while
the right panel uses ∥xi − xj∥22. The left and right panels would be same
as one another if we used single or complete linkage. For average
linkage, we see that the results can be different.
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Where should we place cell towers?

[source: http://imagicdigital.com/, Mark & Danya Henninger]

Suppose we wanted to place cell towers in a way that ensures that no building
is more than 3000ft away from a cell tower. What linkage should we use to
cluster buildings, and where should we cut the dendrogram, to solve this
problem?
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Dissimilarity measures

• The choice of linkage can greatly affect the structure and quality of
the resulting clusters

• The choice of dissimilarity (equivalently, similarity) measure is
arguably even more important

• To come up with a similarity measure, you may need to think
carefully and use your intuition about what it means for two
observations to be similar. E.g.,
◦ What does it mean for two people to have similar purchasing behaviour?

◦ What does it mean for two people to have similar music listening habits?

• You can apply hierarchical clustering to any similarity measure
s(xi, xj) you come up with. The difficult part is coming up with a
good similarity measure in the first place.
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Example: Clustering time series

Here's an example of using hier-
archical clustering to cluster time
series.

You can quantify the similarity
between two time series by cal-
culating the correlation between
them. There are different kinds
of correlations out there.

[source: A Scalable Method for Time Series Clustering,

Wang et al]

 
Figure 3 2D map from SOM process showing 5 clusters 

 
 
 

 
   

(a) benchmark    (b) our result 

 

Figure 4 Comparison of clustering results using hierarchical representation 

 

90 / 95



Association rules (Market Basket Analysis)
• Association rule learning has both a supervised and unsupervised
learning flavour

• We didn't discuss the supervised version when we were talking about
regression and classification, but you should know that it exists.
◦ Look up: Apriori algorithm (Agarwal, Srikant, 1994)
◦ In R: apriori from the arules package

• Basic idea: Suppose you're consulting for a department store, and
your client wants to better understand patterns in their customers'
purchases

• patterns or rules look something like:

{suit, belt} ⇒ {dress shoes}
{bath towels}︸ ︷︷ ︸

LHS

⇒ {bed sheets}︸ ︷︷ ︸
RHS

◦ In words: People who buy a new suit and belt are more likely to also
by dress shoes.

◦ People who by bath towels are more likely to buy bed sheets 91 / 95



Basic concepts
• Association rule learning gives us an automated way of identifying
these types of patterns

• There are three important concepts in rule learning: support,
confidence, and lift

• The support of an item or an item set is the fraction of transactions
that contain that item or item set.
◦ We want rules with high support, because these will be applicable to a

large number of transactions
◦ {suit, belt, dress shoes} likely has sufficiently high support to be

interesting
◦ {luggage, dehumidifer, teapot} likely has low support

• The confidence of a rule is the probability that a new transaction
containing the LHS item(s) {suit, belt} will also contain the RHS
item(s) {dress shoes}

• The lift of a rule is
support(LHS, RHS)

support(LHS) · support(RHS)
= P({suit, belt, dress shoes})

P({suit, belt})P({dress shoes})
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An example

1�
�

An�A�Priori�Algorithm�R�Example�

Loading required package: arules 
Loading required package: Matrix 
 
Attaching package: ‘arules’ 
 
The following objects are masked from ‘package:base’: 
 
    %in%, write 
 
> #Example of Association Rules 
>  
> #Here is one (crude) way to prepare a list of transactions for the 602X Problem 
>  
> #require(arules) 
>  
> a_list<-list( 
+   c("CrestTP","CrestTB"), 
+   c("OralBTB"), 
+   c("BarbSC"), 
+   c("ColgateTP","BarbSC"), 
+   c("OldSpiceSC"), 
+   c("CrestTP","CrestTB"), 
+   c("AIMTP","GUMTB","OldSpiceSC"), 
+   c("ColgateTP","GUMTB"), 
+   c("AIMTP","OralBTB"), 
+   c("CrestTP","BarbSC"), 
+   c("ColgateTP","GilletteSC"), 
+   c("CrestTP","OralBTB"), 
+   c("AIMTP"), 
+   c("AIMTP","GUMTB","BarbSC"), 
+   c("ColgateTP","CrestTB","GilletteSC"), 
+   c("CrestTP","CrestTB","OldSpiceSC"), 
+   c("OralBTB"), 
+   c("AIMTP","OralBTB","OldSpiceSC"), 
+   c("ColgateTP","GilletteSC"), 
+   c("OralBTB","OldSpiceSC"), 
+   c(), 
+   c(), 
+   c(), 
. 
 
# Many similar rows have been deleted here 
 
. 
. 
+   c(), 
+   c(), 
+   c(), 
+   c(), 
+   c() 
+    
+   ) 
>  
> #Set transaction names 
>  
> names(a_list) <- paste("Tr",c(1:100), sep = "") 
> a_list 
$Tr1 
[1] "CrestTP" "CrestTB" 
$Tr2 
[1] "OralBTB" 
 

• A subset of drug store transactions is displayed above
• First transaction: Crest ToothPaste, Crest ToothBrush
• Second transaction: OralB ToothBrush
• etc…

[source: Stephen B. Vardeman, STAT502X at Iowa State University]
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4�
�

17  {OralBTB}            Tr17  
18  {AIMTP,                    
     OldSpiceSC,               
     OralBTB}            Tr18  
19  {ColgateTP,                
     GilletteSC}         Tr19  
20  {OldSpiceSC,               
     OralBTB}            Tr20  
21  {}                   Tr21  
22  {}                   Tr22  
23  {}                   Tr23  
. 
#Many similar rows deleted here 
. 
. 
98  {}                   Tr98  
99  {}                   Tr99  
100 {}                   Tr100 
>  
> rules<-apriori(trans,parameter=list(supp=.02, conf=.5, target="rules")) 
 
parameter specification: 
 confidence minval smax arem  aval originalSupport support minlen maxlen target   ext 
        0.5    0.1    1 none FALSE            TRUE    0.02      1     10  rules FALSE 
 
algorithmic control: 
 filter tree heap memopt load sort verbose 
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE 
 
apriori - find association rules with the apriori algorithm 
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt 
set item appearances ...[0 item(s)] done [0.00s]. 
set transactions ...[9 item(s), 100 transaction(s)] done [0.00s]. 
sorting and recoding items ... [9 item(s)] done [0.00s]. 
creating transaction tree ... done [0.00s]. 
checking subsets of size 1 2 3 done [0.00s]. 
writing ... [5 rule(s)] done [0.00s]. 
creating S4 object  ... done [0.00s]. 
>  
> inspect(head(sort(rules,by="lift"),n=20)) 
  lhs             rhs          support confidence     lift 
1 {GilletteSC} => {ColgateTP}     0.03  1.0000000 20.00000 
2 {ColgateTP}  => {GilletteSC}    0.03  0.6000000 20.00000 
3 {CrestTB}    => {CrestTP}       0.03  0.7500000 15.00000 
4 {CrestTP}    => {CrestTB}       0.03  0.6000000 15.00000 
5 {GUMTB}      => {AIMTP}         0.02  0.6666667 13.33333 

�

• This says: Consider only those rules where the item sets have
support at least 0.02, and confidence at least 0.5

• Here's what we wind up with

4�
�

17  {OralBTB}            Tr17  
18  {AIMTP,                    
     OldSpiceSC,               
     OralBTB}            Tr18  
19  {ColgateTP,                
     GilletteSC}         Tr19  
20  {OldSpiceSC,               
     OralBTB}            Tr20  
21  {}                   Tr21  
22  {}                   Tr22  
23  {}                   Tr23  
. 
#Many similar rows deleted here 
. 
. 
98  {}                   Tr98  
99  {}                   Tr99  
100 {}                   Tr100 
>  
> rules<-apriori(trans,parameter=list(supp=.02, conf=.5, target="rules")) 
 
parameter specification: 
 confidence minval smax arem  aval originalSupport support minlen maxlen target   ext 
        0.5    0.1    1 none FALSE            TRUE    0.02      1     10  rules FALSE 
 
algorithmic control: 
 filter tree heap memopt load sort verbose 
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE 
 
apriori - find association rules with the apriori algorithm 
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt 
set item appearances ...[0 item(s)] done [0.00s]. 
set transactions ...[9 item(s), 100 transaction(s)] done [0.00s]. 
sorting and recoding items ... [9 item(s)] done [0.00s]. 
creating transaction tree ... done [0.00s]. 
checking subsets of size 1 2 3 done [0.00s]. 
writing ... [5 rule(s)] done [0.00s]. 
creating S4 object  ... done [0.00s]. 
>  
> inspect(head(sort(rules,by="lift"),n=20)) 
  lhs             rhs          support confidence     lift 
1 {GilletteSC} => {ColgateTP}     0.03  1.0000000 20.00000 
2 {ColgateTP}  => {GilletteSC}    0.03  0.6000000 20.00000 
3 {CrestTB}    => {CrestTP}       0.03  0.7500000 15.00000 
4 {CrestTP}    => {CrestTB}       0.03  0.6000000 15.00000 
5 {GUMTB}      => {AIMTP}         0.02  0.6666667 13.33333 

�

[source: Stephen B. Vardeman, STAT502X at Iowa State University]
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