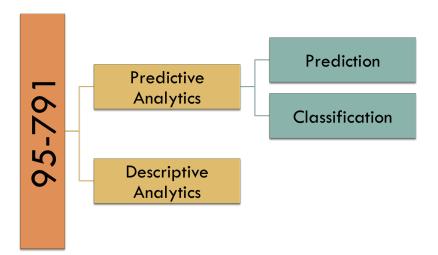
Lecture 3: Model Selection and Classification

Part I: Variable selection, Bootstrap method Part II: Introduction to Classification

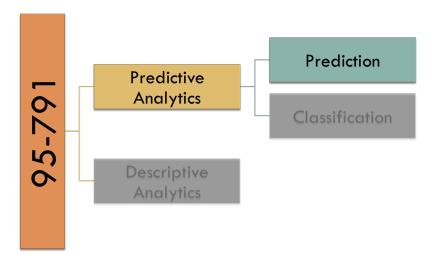
Prof. Alexandra Chouldechova 95-791: Data Mining

November 6, 2017

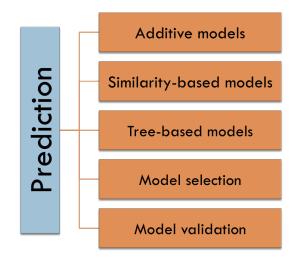
Course Roadmap



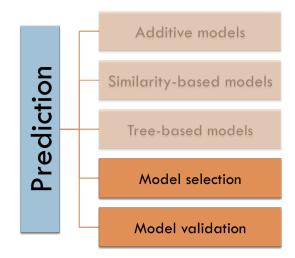
Course Roadmap



Prediction topics



Prediction topics



Agenda for Part I

• Reminder of last class

Stepwise/Criteria-based methods

- Best subset selection
- Stepwise model selection
- AIC, BIC

Regularized Regression

K-fold Cross-validation (CV)

- The most widely used approach for estimating Test Error
- Error estimates can be used to select the best model, and also reflect the test error of the final chosen model
- Main idea: K-fold Cross-validation
 - 1. Randomly split the data into K equal-sized parts ("folds")
 - 2. Give each part the chance to be the Validation set, treating the other K-1 parts (combined) as the Training set
 - 3. Average the test error over all of the folds
 - 4. Pick the simplest model among those with the lowest CV-error
 - 5. Final model: Refit model on the entire data set.
- Most common choices of K: 5, 10, n
 - $\circ~$ The case K=n is also known as Leave-one-out Cross-validation (LOOCV)

Cross-validation standard error

• The K-fold CV estimate of prediction error is

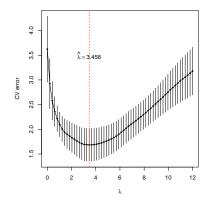
$$CV_{(K)} = \frac{1}{K} \sum_{k=1}^{K} MSE_k$$

where MSE_k is the error calculated on Fold k.

- It is also useful to calculate the standard error of the CV estimate
- The typical way of doing this: Calculate the sample standard deviation of $\{MSE_1..., MSE_K\}$, then divide by \sqrt{K} :¹

$$\operatorname{SE}(\operatorname{CV}_{(K)}) = \frac{1}{\sqrt{K}} \operatorname{SD}(\operatorname{MSE}_1 \dots, \operatorname{MSE}_K)$$

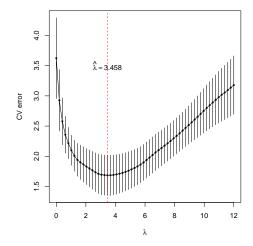
¹This calculation isn't quite right, but it's a widely accepted approach for calculating standard errors for CV error estimates.



10-fold CV error curve as the tuning parameter λ varies

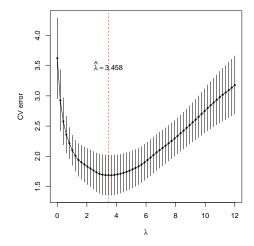
This plot shows CV error estimates and 1-standard-error bars for a bunch of different choices of a tuning parameter λ .²

²You can think of λ as the smoothing spline penalty. Large $\lambda \Rightarrow$ simpler model.



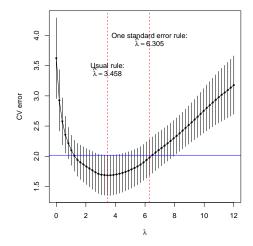
10-fold CV error curve as the tuning parameter λ varies

- $\lambda = 3.458$ gives us the model with the smallest estimated CV error.
- But we can see from the wide error bars that our prediction error estimates have high uncertainty.



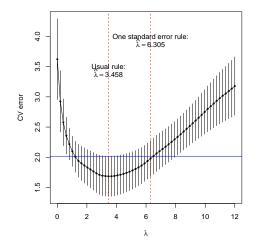
10-fold CV error curve as the tuning parameter λ varies

• The 1-standard error rule tells us to pick the *simplest model* whose CV error falls inside the 1-SE error bars of the lowest CV error model.



10-fold CV error curve as the tuning parameter λ varies

• The 1-standard error rule tells us to pick the *simplest model* whose CV error falls inside the I-SE error bars of the lowest CV error model.

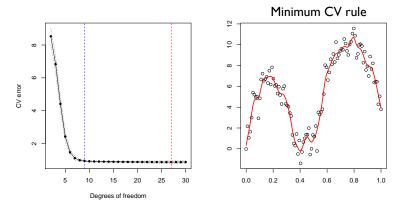


10-fold CV error curve as the tuning parameter λ varies

• Basic idea: We can't be certain that the $\lambda = 6.305$ model actually has higher prediction error than the $\lambda = 3.458$ model, so let's err on the side of caution and go with the simpler $\lambda = 6.305$ model.

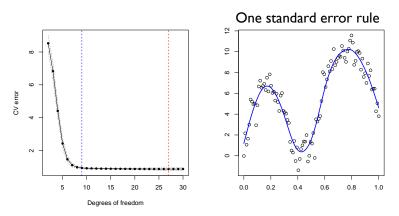
Smoothing spline example

These plots show the results of applying 5-fold cross-validation to select the effective degrees of freedom for a smoothing spline fit to the points in the right panel.



- Even at very large degrees of freedom, the smoothing spline is nicely behaved and has low CV error
- The minimum CV error rule selects a model with 27 degrees of freedom

Smoothing spline example



The one standard error rule selects a model with 9 degrees of freedom

Summary: Cross-validation

- We started with the question: How do we pick the best model?
- One answer: Pick the model with the lowest prediction error.
- The Validation set approach and K-fold Cross-validation are two resampling-based methods for estimating the *prediction error* of a model
- *K*-fold Cross-validation gives much more *stable* and *accurate* estimates of prediction error
- Once we get CV error estimates for the models we're considering, we can either:
 - Pick the model that has the minimum CV error; or
 - $\circ~$ Use 1-SE rule and pick the simplest model whose error is within 1~ standard error of the minimum CV error.
- From this we get: Our chosen model \hat{f} , and an estimate of its prediction error

Model Selection: Variable Selection in Regression

- Setup: Response Y, predictors X_1, \ldots, X_p
- We'd like to use a linear model

$$Y = \beta_0 + \beta_1 X_1 + \dots \beta_p X_p + \epsilon$$

• We want to identify a small subset of the predictors that we believe to be relevant for predicting Y: i.e., want a simpler model

$$Y = \beta_0 + \sum_{j \in \mathcal{S}} \beta_j X_j + \epsilon$$

for some small subset of predictors $\mathcal{S} \subset \{1,\ldots,p\}$

- E.g., Y is life expectancy, $X_1, \ldots, X_{20,000}$ are p = 20,000 genetic measurements.
- Question: Can we identify a small subset of biomarkers (predictors) that accurately predict *Y*?
- We care about variable selection a lot when getting input measurements is *difficult* or *expensive*

Model Selection: Subset Selection

One approach: Best Subset Selection

 $1. \ \mbox{Let} \ \mathcal{M}_0$ denote the null model: The intercept-only model.

2. For
$$k = 1, 2, \ldots, p$$

- (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors
- (b) Among these, pick the best model: The one having the smallest RSS, or (equivalently) the largest R^2
- 3. Select the single best model from $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$ using e.g.,: Cross-validated prediction error, C_p (AIC), BIC, adjusted R^2 , etc.

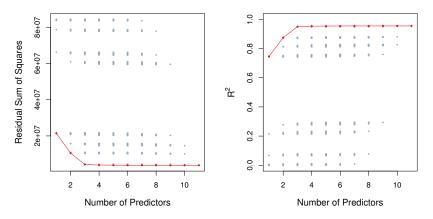
- In Step 2., we find the best model of each size
- In Step **3**., we put the models on *equal footing*, by looking at prediction error or explicitly adjusting for model complexity

Example: Credit data set

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓							ables			
	х	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Mar
1	1	14.891	3606	283	2	34	11	Male	No	Yes
2	2	106.025	6645	483	3	82	15	Female	Yes	Yes
3	3	104.593	7075	514	4	71	11	Male	No	No
4	4	148.924	9504	681	3	36	11	Female	No	No
5	5	55.882	4897	357	2	68	16	Male	No	Yes
6	6	80.180	8047	569	4	77	10	Male	No	No
7	7	20.996	3388	259	2	37	12	Female	No	No
8	8	71.408	7114	512	2	87	9	Male	No	No
9	9	15.125	3300	266	5	66	13	Female	No	No

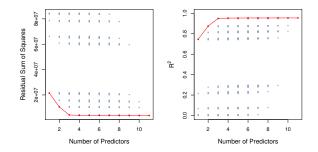
In the Credit data example, we wish to figure out which of the p = 11 predictors are useful in predicting Balance, the individual's average credit card debt.

Example: Credit data set



- At x = k, there are $\binom{p=11}{k}$ grey points, each corresponding to the RSS from one of the $\binom{11}{k}$ possible models with k predictors.
- Red curves indicate minimum RSS (maximum R^2) attained by the best model of each size.

Which model do we pick?



 Criterion-based selection: Choose the final model M_k according to whichever model on the red curve has the smallest AIC (same as C_p here) or BIC.

Method	Criterion
AIC (C_p)	$\frac{1}{n}(RSS + 2k\hat{\sigma}^2)$
BIC	$\frac{1}{n}(RSS + \log(n)k\hat{\sigma}^2)$

AIC and BIC

Method	Criterion
AIC (C_p)	$\frac{1}{n}(RSS + 2k\hat{\sigma}^2)$
BIC	$\frac{1}{n}(RSS + \log(n)k\hat{\sigma}^2)$

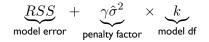
 $\hat{\sigma}^2$ is an estimate of the variance of the error terms ϵ . It is typically estimated using the *saturated model*, the model with all p predictors included.

- Step 2. of the Best Subset Selection procedure gives us a list of models $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$, where \mathcal{M}_k has the *lowest* RSS of any model with exactly k predictors
- AIC and BIC are two criteria for choosing the best model among these p+1 candidate models

AIC and BIC

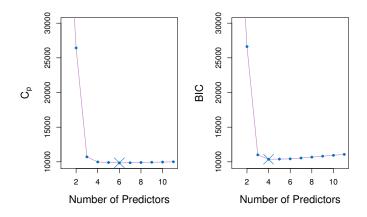
Method	Criterion
AIC (C_p)	$\frac{1}{n}(RSS + 2k\hat{\sigma}^2)$
BIC	$\frac{1}{n}(RSS + \log(n)k\hat{\sigma}^2)$

• Ignoring the $\frac{1}{n}$ factors, both criteria have the form:



- The best model is one that minimizes this trade-off between model error (RSS) and model complexity
- For $n \ge 8$, $\log(n) > 2$, and so the BIC penalty factor is larger than the AIC penalty factor \Longrightarrow BIC selects *smaller* models
- Unlike in Cross-validation, we're not directly trying to pick the model with the best predictive accuracy

Back to the Credit data



- Figure shows AIC (C_p) and BIC curves for the Credit data
- AIC: Model \mathcal{M}_6 is the best model
- BIC: Model \mathcal{M}_4 is the best model

Best subset selection

• To apply the Best Subset Selection approach, we need to fit:

$$1 + {p \choose 1} + {p \choose 2} + \dots + {p \choose p-1} + 1 = \sum_{k=0}^{p} {p \choose k} = 2^{p}$$

regression models

- With p = 11, we're already fitting $2^{11} = 2048$ models.
- With p = 30, that's $2^{30} = 1,073,741,824$ models
- How will we ever fit all 2^{20,000} models to find the best subset of biomarkers for predicting life expectancy?
- Best Subset Selection is computationally prohibitive for even moderate numbers of predictors
 - Actually, recent algorithmic advances in non-convex optimization now enable us to perform BSS on reasonably large data.
- A more computationally efficient approach: Stepwise model selection

Forward Stepwise Selection

- There are three commonly used stepwise methods for model selection
 - Forward stepwise
 - Backward stepwise
 - Forward/Backward stepwise
- Forward stepwise selection begins with model \mathcal{M}_0 , containing just the intercept, and adds predictors to the model one at a time until all p predictors are in the model
- At each step, the variable that gives the greatest additional improvement to the fit is added to the model

Forward Stepwise Selection

- I. Let \mathcal{M}_0 denote the intercept-only model
- 2. For $k = 0, \dots, p 1$:
 - (a) Consider all the models that can be formed by adding one of the remaining p-k predictors to the current model \mathcal{M}_k
 - (b) Form \mathcal{M}_{k+1} by adding the best new predictor to \mathcal{M}_k : the predictor that gives the *smallest* RSS
- 3. Select the best model among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$ using e.g.,: Cross-validated prediction error, C_p (AIC), BIC, adjusted R^2 , etc.

Forward Stepwise vs. Best Subset Selection

- With Forward Stepwise Selection, we consider just p-k models at each step, not $\binom{p}{k}$
- This is more computationally efficient, but is *not* guaranteed to give us the best model of size k at each step.

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

The first four selected models for best subset selection and forward stepwise selection on the **Credit** data set. The first three models are identical but the fourth models differ.

Regularized Regression

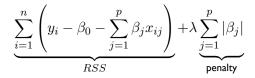
- The subset selection methods all try to find the best choice of predictors to use, and then fit the model with least squares
- There's an alternative (better) class of methods that fit a model using all *p* predictors, and constrain or regularize the coefficient estimates, "shrinking" them towards zero.
- These methods are referred to as Shrinkage Methods or Regularized Regression methods.
- Ridge Regression and the Lasso are two popular regularized regression methods

The Lasso

• The Lasso method estimates coefficients $\hat{\beta}_{\lambda}$ by minimizing the ℓ_1 penalized RSS:

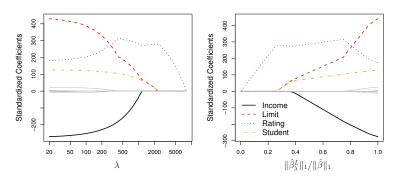
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right) + \lambda \sum_{j=1}^{p} |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|$$

- The quantity $\sum_{j=1}^p |\beta_j|$ is typically denoted $\|\beta\|_1$, which is called the ℓ_1 ("ell I") norm
- For this reason, the Lasso is also called ℓ_1 -regularized regression



- We saw this RSS + model complexity penalty structure before when we talked about smoothing splines
- The Lasso measures model complexity according to $|eta_j|$
- The tuning parameter λ allows us to control the overall complexity of the model
- $\lambda = 0$ takes us back to least squares
- $\lambda = \infty$ gives us $\hat{\beta}_{\lambda} = \mathbf{0}$
- The Lasso has the amazing property that for intermediate values of λ , $\hat{\beta}_{\lambda}$ will have entries *shrunk* towards 0, and some will actually be estimated exactly as 0. i.e., Lasso automatically performs variable selection!

The Lasso Regularization Plot: Credit Data



- *x*-axis indicates the value of the penalty parameter (or some similar quantity)
- The curves trace out $\hat{\beta}_{\lambda,j}$ for each predictor X_j
- For large λ , most coefficient are 0
- As λ decreases, more coefficients get estimated as non-zero, and the coefficient estimates $\hat{\beta}_{\lambda,j}$ can grow

More about the Lasso

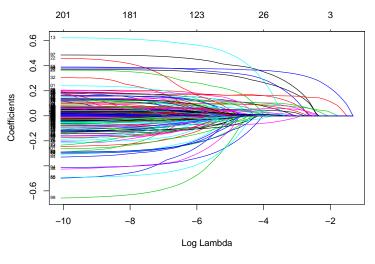
- Lasso: "Least Absolute Shrinkage and Selection Operator"
- The tuning parameter λ allows us to trade off between bias and variance:
 - Large λ : Many $\hat{\beta}_j$ estimated at exactly 0 or are pulled a lot toward 0 (Low Variance, High Bias)
 - Small λ : $\hat{\beta}_j$ close to the least squares solution, but still shrunk toward 0 (Higher Variance, Lower Bias)
- Lasso can be used even if n < p, and can still give good results!
- To choose λ : Use Cross-validation!
 - I. Choose a sequence of λ values
 - 2. Calculate the $K\text{-fold}\ {\rm CV}$ error at each λ
 - 3. Use the minimum CV error or 1-SE rule to pick $\hat{\lambda}$, and then refit the Lasso on the entire data with $\lambda = \hat{\lambda}$

Coding tip: In **R**, the glmnet package makes fitting the Lasso and running Cross-validation super fast and easy.

Lasso example: HIV drug resistance data

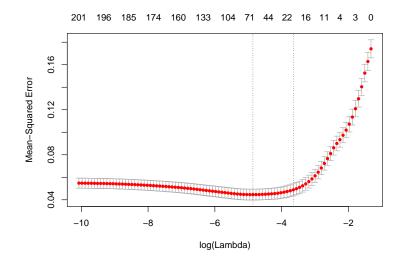
- Data on the presence/absence of $p=202~{\rm genetic}$ mutations for $n=1005~{\rm patients}$
- Response Y is a numeric measure of resistance to a particular HIV drug
- We want to identify which mutations are associated with drug resistance
- Approach: Use Cross-validation to fit the Lasso, and look at which coefficients are non-zero

Regularization plot: HIV drug resistance data



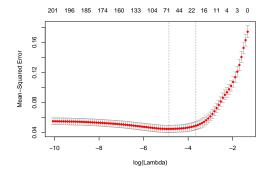
Yikes!

10-fold Cross-validation plot: HIV drug resistance data



• Using the 1-SE rule, we choose the model with $\log(\lambda) = -3.65$

10-fold Cross-validation plot: HIV drug resistance data

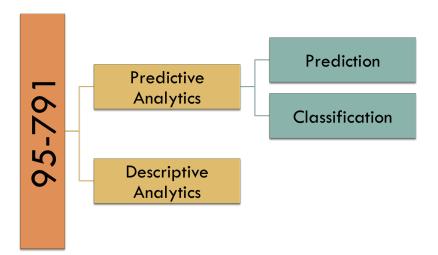


- Using the 1-SE rule, we choose the model with $\log(\lambda) = -3.65$
- At this choice of $\lambda,$ just 20 of the 202 predictors have non-zero coefficients
- Of these 20 genetic mutations, 15 have been experimentally verified (in biological scientific studies) as being associated with HIV drug resistance

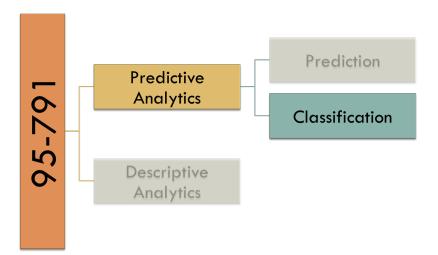
End of Part I

10 minute break

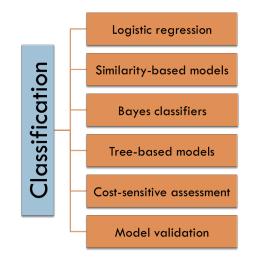
Course Roadmap



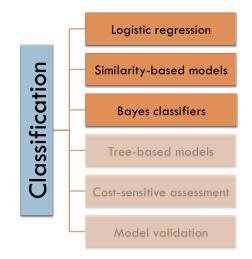
Course Roadmap



Prediction topics

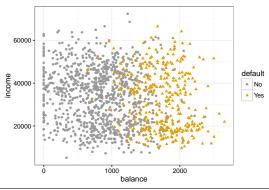


Prediction topics



- What is Classification?
- Logistic Regression
- Nearest-Neighbours methods
- A brief introduction to Bayes Methods

Some motivation: Default data



default	Has the customer defaulted on their debt? (values: Yes, No)
student	Is the customer a student? (values: Yes, No)
balance	Average credit card balance remaining after monthly payment
income	Income of customer

Goal: Use student, balance and income information to predict whether a customer is likely to default on their debts.

Classification

While introductory classes in statistics tend to focus on Prediction, most real world tasks are actually Classification problems.

- An online banking service needs to determine whether a particular transaction is fraudulent or not.
- A firm running a phone marketing campaign needs to identify which individuals would be most likely to adopt their product if contacted
- A law firm has obtained all the incoming and outgoing emails from a large corporation accused of discriminatory hiring and promotion practices. They must identify which documents are *responsive* (relevant to the case), and which are irrelevant.
- A judge deciding whether to release a defendant on bail may want to know the likelihood that the defendant will show up for their trial.
- A client using satellite imaging wants to classify patches of images according to whether they're water, rural, or urban.

What is the classification task?

- For the purpose of this discussion, we'll assume that we're doing binary classification: Our response Y has two possible values $\{0, 1\}$
- E.g., in the Default classification task,

$$Y = \begin{cases} 0 & \text{if No} \\ 1 & \text{if Yes} \end{cases}$$

• Our goal is to predict Y using the input variables $\verb+student, balance$ and income

Is there an "ideal" classifier?

• When we talked about Prediction, our goal was to minimize the (test) Mean-Squared-Error, and we saw that the best we could ever do at modeling an outcome Y from inputs $X = (X_1, X_2, \ldots, X_p)$, is to use the regression function

$$f(x) = \mathbb{E}\left(Y \mid X = x\right)$$

• In Classification, our goal is now to minimize the (test) error rate:

$$\frac{1}{n}\sum_{i=1}^{n}I(y_i\neq\hat{y}_i)$$

• It turns out that the ideal classifier assigns a test observation with predictor values x_0 to the class j that has the *largest* value of:

$$\mathbf{P}(Y=j \mid X=x_0)$$

i.e., the class that has the highest probability (is the most likely) given the observed predictor vector x_0 .

• This classification rule is called the Bayes classifier

Ideal predictor vs. Ideal classifier

- The Bayes classifier in classification plays the same role as the regression function in prediction: They are they best we could ever hope to do, but are unknown functions that we seek to estimate from the data
- It is interesting to note that when Y is binary, $\mathbb{E}(Y \mid X = x) = P(Y = 1 \mid X = x)$, so our target becomes

$$p(x) = \mathbb{E}\left(Y \mid X = x\right) = \mathcal{P}(Y = 1 \mid X = x)$$

so by accurately estimating the *regression function* we would be able to mimic the Bayes classifier.

- We can think of our intermediate goal as one of constructing good estimators of the unknown true conditional probability function p(x).³
- Once we have an estimator $\hat{p}(x)$, we can classify an observation by predicting default = Yes if $\hat{p}(x) > \alpha$ for some choice of α

 $\circ~$ We'll see in a future class why we may want to use $\alpha \neq 0.5$

³While there exist classification methods that *do not* proceed by first estimating p(x), most methods do.

Is there an "ideal" classifier? Part II

• We just argued that we want to construct $\hat{p}(x)$ that are good estimators of the true conditional probability function

$$p(x) = \mathbb{E}\left(Y \mid X = x\right) = \mathcal{P}(Y = 1 \mid X = x)$$

- If we could do this, we could use $\hat{p}(x)$ to classify inputs according to the rule:

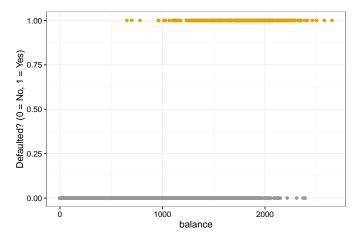
$$\hat{Y} = \begin{cases} 1 & \text{if } \hat{p}(x) > \alpha \\ 0 & \text{if } \hat{p}(x) <= \alpha \end{cases}$$

 $\alpha=0.5$ is a popular choice, and is what the Bayes classifier uses.

- Now... suppose we define $\tilde{p}(x) = \frac{1}{10}\hat{p}(x)$
- The rule $\hat{p}(x) > \alpha$ is the same as $\tilde{p}(x) > \frac{1}{10}\alpha$, so both $\hat{p}(x)$ and $\tilde{p}(x)$ classify the same way
- Thus we can have estimators $\hat{p}(x)$ that result in good classification rules, but which aren't actually good estimators of p(x)

The Default data set

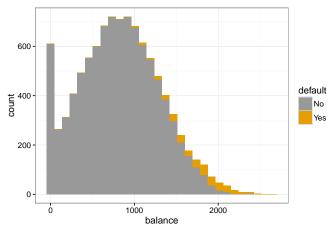
Let's look at a scatterplot of default (0 = No, I = Yes) vs. balance



This is really hard to make sense of. Since the outcome Y is binary, we don't get a good sense of the trends in the data from looking at scatterplots like this.

The Default data set

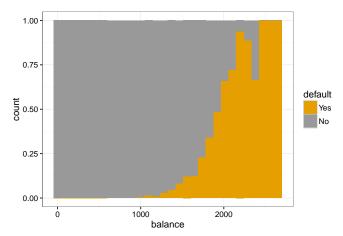
How about a histogram, where the bars are partitioned by default status?



That's a little better. It clearly shows that most of the individuals in our data set *did not* default. And it looks like the greater the average monthly balance an individual carries, the more likely they are to default.47/79

The Default data set

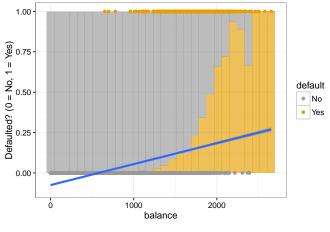
Here's what's called a conditional density plot. This plot is formed by first binning the x-axis variable (balance), and then calculating the probability of default within each bin.



Now we can clearly see what P(default = Yes | balance) looks like

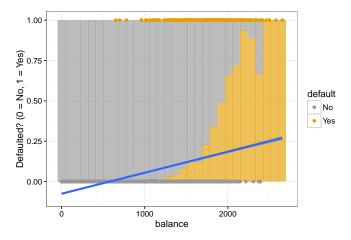
Does linear regression work?

We can run the lm command with any numeric choice of outcome variable Y, so what happens if we simply run linear regression here?



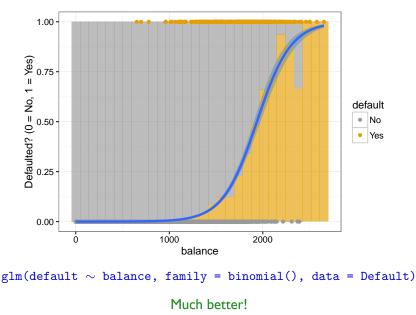
lm(default \sim balance, data = Default)

An issue with linear regression

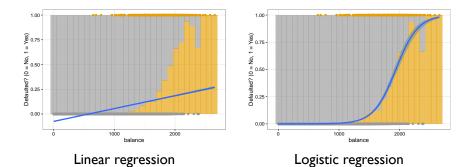


- For balance < 500, the probability estimates are negative!
- Linear regression appears to do a poor job of estimating p(x)
- However, it's actually going to perform OK as a classifier. We'll see this when we talk about LDA.

Logistic regression



Linear regression vs. Logistic regression



- Logistic regression does a much better job of estimating the conditional probability of default
- However, the Linear regression fit may still produce good classifications.

- Logistic regression is an example of a Generalized Linear Model (GLM)
- Remember we have a variable Y that's 0 (if default = No), or 1 (if default = Yes)
- Instead of modeling

$$Y = \beta_0 + \beta_1 \texttt{balance} + \epsilon$$

- The quantity on the LHS of the equation is called the log-odds of default.
- This turns out to be "right scale" on which to view things

- Logistic regression is an example of a Generalized Linear Model (GLM)
- Remember we have a variable Y that's 0 (if default = No), or 1 (if default = Yes)
- Instead of modeling

$$Y = \beta_0 + \beta_1 \texttt{balance} + \epsilon$$

- The quantity on the LHS of the equation is called the log-odds of default.
- This turns out to be "right scale" on which to view things

- Logistic regression is an example of a Generalized Linear Model (GLM)
- Remember we have a variable Y that's 0 (if default = No), or 1 (if default = Yes)
- Instead of modeling

$$Y = \beta_0 + \beta_1 \texttt{balance} + \epsilon$$

$$\log\left(\frac{\mathbf{P}(Y=1 \mid \texttt{balance})}{1 - \mathbf{P}(Y=1 \mid \texttt{balance})}\right) = \beta_0 + \beta_1\texttt{balance}$$

- The quantity on the LHS of the equation is called the log-odds of default.
- This turns out to be "right scale" on which to view things

- Logistic regression is an example of a Generalized Linear Model (GLM)
- Remember we have a variable Y that's 0 (if default = No), or 1 (if default = Yes)
- Instead of modeling

$$Y = \beta_0 + \beta_1 \texttt{balance} + \epsilon$$

$$\log\left(\frac{P(\texttt{default} = \texttt{Yes} \mid \texttt{balance})}{1 - P(\texttt{default} = \texttt{Yes} \mid \texttt{balance})}\right) = \beta_0 + \beta_1 \texttt{balance}$$

- The quantity on the LHS of the equation is called the log-odds of default.
- This turns out to be "right scale" on which to view things

What is logistic regression doing?

$$\log\left(\frac{\mathrm{P}(\texttt{default}=\texttt{Yes}\mid\texttt{balance})}{1-\mathrm{P}(\texttt{default}=\texttt{Yes}\mid\texttt{balance})}\right) = \beta_0 + \beta_1\texttt{balance}$$

- Logistic regression provides us with coefficient estimates \hat{eta}_0 and \hat{eta}_1
- By rearranging the equation $r = \log(p/(1-p))$ to get $p = e^r/(1+e^r)$, we can get an estimate of the conditional probability of default:

$$\hat{\mathrm{P}}(\texttt{default}=\texttt{Yes}\mid\texttt{balance}) = rac{e^{\hat{eta}_0+\hat{eta}_1\texttt{balance}}}{1+e^{\hat{eta}_0+\hat{eta}_1\texttt{balance}}}$$

• i.e., Logistic regression gives us a way of estimating the probability that an individual will default given their average monthly balance.

Making predictions with logistic regression Using the command

glm(default \sim balance, data = Default, family = binomial())

we get

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

• Thus we can predict that the default probability for an individual with an average balance of \$1,000 is

 $\hat{p}(1000) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \text{balance}}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \text{balance}}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.00576$ this is 0.576%.

• For an individual with a balance of \$2,000, the estimated probability of default winds up being 0.586, or 58.6%!

Interpreting Logistic regression coefficients

- We like to use linear regression for prediction because even if the model is likely to be wrong, it's typically interpretable
- Logistic regression is an example of an interpretable classifier
- Recall that the logistic model says

$$\log Odds(Y=1) = \beta_0 + \beta_1 X_1$$

- This says that for every unit increase in $X_1,$ the log-odds that Y=1 increase by β_1

Interpreting Logistic regression coefficients: Odds ratios

• The log-odds scale is a bit awkward for interpretation, so we typically like to *exponentiate* both sides of the model and interpret that equation instead:

$$\exp(\log Odds(Y = 1 \mid X_1 = x)) = \frac{P(Y = 1 \mid X_1 = x)}{1 - P(Y = 1 \mid X_1 = x)} = e^{\beta_0 + \beta_1 x}$$

• What happens if we increment X₁ by one unit?

$$\underbrace{e^{\beta_0+\beta_1(x+1)}}_{\text{odds that }Y=1 \text{ when } X_1=x+1} = \underbrace{e^{\beta_0+\beta_1 x}}_{\text{odds that }Y=1 \text{ when } X_1=x} e^{\beta_1}$$

- This says that for every unit increase in X_1 , the odds that Y=1 increase by a factor of e^{β_1}
- So if X_1 goes up by 3 units, the odds that Y = 1 increase by $e^{3\beta_1}$.
- The exponentiated coefficient e^{β_1} is often called the odds ratio (OR)

Interpreting the coefficient of balance

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

- In this example, $e^{\hat{\beta}_1} = e^{0.0055} = 1.0055$
- Thus we can interpret $\hat{\beta}_1$ as saying that for every additional \$1 of balance, the individual's odds of defaulting on their loans go up by a factor of 1.0055 (i.e., odds of default increase by 0.55%)
- For every additional \$100 of balance, the odds of defaulting increase by a factor of $e^{100\times0.0055} = 1.733$ (i.e., odds of default increase by 73.3%)

Logistic regression with multiple predictors

- Notation: $p(X) = P(Y = 1 \mid X)$, where X can be one or more predictors
- When we have p predictors X_1, \ldots, X_p , the logistic model becomes

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

• Now we get the interpretation: All other predictors in the model held fixed, for every unit increase in X_j the log-odds that Y=1 go up by β_j

glm(default \sim student, data = Default, family = binomial())

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
studentYes	0.4049	0.1150	3.52	0.0004

- student is an indicator of whether the individual is a student.
- The logistic regression tells us that the odds that a student defaults are $e^{0.4049} = 1.50$ times higher than for a non-student
- So if we're trying to figure out whose credit card applications to approve, this suggests that we should **not** extend credit to students
- But wait...

Confounding

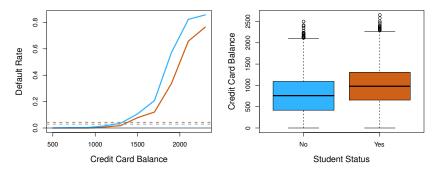


Figure: 4.3 from ISL. Confounding in the Default data Left: Default rates for students (orange) and non-students (blue). Solid lines display the default rate as a function of balance. Horizontal broken lines display the overall default rates within each group. Right: Boxplots of balance for students and non-students

- The overall default rate is higher for students than non-students
- But if we compare students to a non-students with the same balance, students have a lower default rate

Default data: Logistic regression

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	<0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0000	0.37	0.7115
studentYes	-0.6468	0.2363	-2.74	0.0062

- This says that if we compare a student to a non-student with the same balance and income, the odds that the student defaults are $e^{-0.6468} = 0.523$ times those of the non-student.
- 1/0.523 = 1.9, so we can equivalently say: the odds of the *student* defaulting are 1.9 times lower than the odds of the *non-student* defaulting

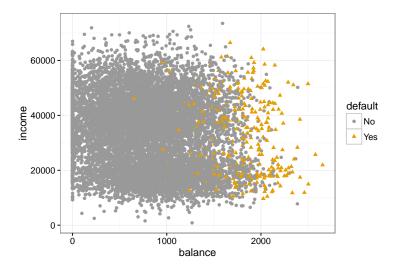
Logistic regression as a classifier

- We now know how to interpret logistic regression
- But what does it look like as a classifier?
- i.e., What does the decision rule

$$\hat{Y} = \begin{cases} 1 & \text{if } \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \text{balance} + \hat{\beta}_2 \text{income}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \text{balance} + \hat{\beta}_2 \text{income}} > \alpha \\ 0 & \text{otherwise} \end{cases}$$

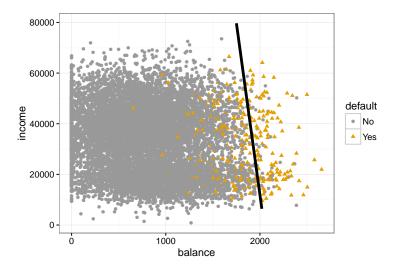
actually look like for various choices of the cutoff α ?

Logistic regression: Decision boundary



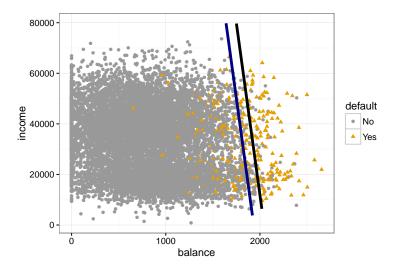
This is what the data actually looks like (previous scatterplot undersampled the default = No group.)

Logistic regression: Decision boundary



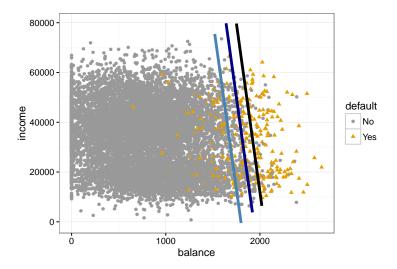
Black line shows decision boundary for the rule: $\hat{Y} = 1$ if $\hat{p}(x) > 0.5$ Points to the right of the boundary get classified as default = Yes

Logistic regression: Decision boundary



Navy line shows decision boundary for the rule: $\hat{Y} = 1$ if $\hat{p}(x) > 0.35$ Points to the right of the boundary get classified as default = Yes

Logistic regression: Decision boundary



Blue line shows decision boundary for the rule: $\hat{Y} = 1$ if $\hat{p}(x) > 0.2$ Points to the right of the boundary get classified as default = Yes

More general decision boundaries

- We see that the decision boundary provided by logistic regression turns out to be linear:
 - $\circ~$ Points on one side of the boundary get classified as $\hat{Y}=1$
 - $\circ~$ Points on the other side get classified as $\hat{Y}=0$
- When we have p>2 covariates, instead of getting a line, we get a (hyper)-plane
- Just as we don't think that linear models are accurate representations of numeric outcomes, we may not believe that a linear decision boundary is the best way to classify points
- Let's look at one method that results in non-linear decision boundaries

k-Nearest Neighbours Classifier

- Setup: Data (x_i, y_i) , $x_i \in \mathbb{R}^p$ vector of inputs, $y_i \in \{0, 1\}$.
- k-Nearest Neighbours (k-NN) classification is an example of a non-parametric "lazy learning" (memory-based) method
- Unlike the methods we've seen before⁴, which estimate parameters in some model, k-NN looks at the training data each time it is queried to make a classification⁵
- Let $\mathcal{N}_k(x)$ denote the k training points that are *closest* to x
- If we want to classify a new individual with covariates X = x, we simply classify it to the majority class of the points in $N_k(x)$
- As an estimator of the conditional probability, we can think of k-NN as

$$\hat{p}_{kNN}(x) = \frac{1}{k} \sum_{x_i \in \mathcal{N}_k(x)} y_i$$

⁴With the exception of local regression, which also has these properties. ⁵k-NN also works for prediction, though we didn't discuss it at the time

k-Nearest Neighbours Classifier: 3-NN example

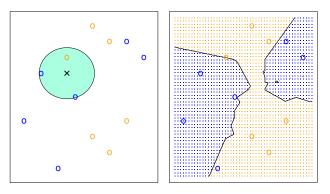
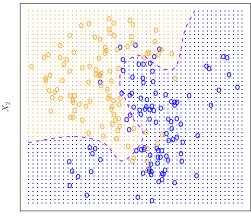


Figure: 2.14 from ISL. Axes represent p = 2 predictors.

- Left: We have two classes: Y ∈ {orange, blue}. 3-NN is used to classify the × as a blue point. 2 of ×'s 3 nearest neighbours are blue, one is orange, so blue wins.
- *Right*: The decision boundary. Any point in the orange shaded region gets classified by 3-NN as orange. Any point in the blue shaded region area gets classified by 3-NN as blue.

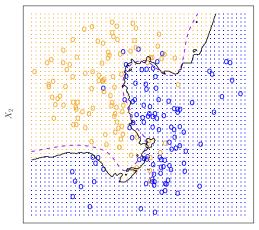
- When we discussed prediction, we relied a lot on simulation experiment to see how well our estimates $\hat{f}(x)$ approximated the true regression function f(x)
- The next few slides demonstrate how well k-NN works on a simulated data set where the true Bayes classifier decision boundary is non-linear



 X_1

Figure 2.15 from ISL. Dashed purple line is the Bayes classifier "optimal" decision boundary.

KNN: K=10



 X_1

Figure 2.15 from ISL. Dashed purple line is the Bayes classifier "optimal" decision boundary. Solid black line is 10-NN decision boundary.

KNN: K=1

KNN: K=100

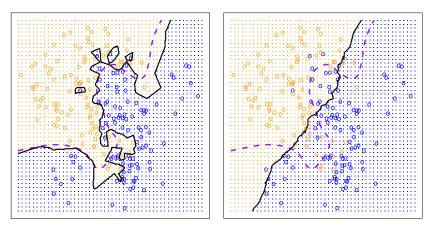


Figure 2.15 from ISL. Dashed purple line is the Bayes classifier "optimal" decision boundary. Solid black lines are 1-NN and 100-NN classifiers.

Can we get non-linear boundaries from Logistic regression?

- When we discussed Linear models, we saw that we could easily extend them to Additive models and Regularized regression models
- The same is true of Logistic regression
- To fit Additive Logistic models: Specify family = binomial() in a gam() command
- To fit l-l regularized Logistic regression: Specify family = "binomial" in a glmnet command
- Indeed, Google famously uses *massive* regularized logistic regressions as a core component of their AdClick prediction system. This system is trained on many *billions* of observations, with potentially *millions* of predictors

Multi-class classification

- The examples we have considered thus far have all been cases of binary classification
- Y could take on one of two possible values: $\{0, 1\}$, {orange, blue}, etc.
- Going forward, it will be just as straightforward to consider the multi-class case where we have $J\geq 2$ classes
- Our goal is to use inputs X = x to classify Y to one of $\{1, 2, ..., J\}$, seeing to minimize the (test) error rate

$$\frac{1}{n}\sum_{i=1}^{n}I(y_i\neq\hat{y}_i)$$

• As we said earlier, the best any classifier whatsoever could do is to classify to the group j that has the largest value of

$$\mathbf{P}(Y=j \mid X=x)$$

Multi-class classification

• We can now think of our intermediate goal as getting good estimates of the conditional probability functions

$$\mathbf{P}(Y=j \mid X=x)$$

- There is a multi-class version of Logistic regression, which typically goes by the name Multinomial regression
- We will not discuss this method here, because it's not a particularly popular approach
- For $k\text{-}\mathsf{NN},$ there's really no generalization that needs to take place to go from J=2 classes to $J\geq 2$ classes
 - We find that k closest points to x, and classify to the plurality class: the class that appears most often among x's k nearest neighbours

Multi-class classification: Generative models

- Logistic regression is an example of what is called a Discriminative model
- Such models estimate P(Y = j | X = x), but do not try to model the *joint distribution* between the inputs and the response Y
- Since the Bayes classifier itself only uses $P(Y = j \mid X = x)$, it may seem that to model anything beyond that is too much work and seemingly unnecessary
- However, there are some nice classification methods that do proceed by modeling the joint distribution of (Y, X_1, \ldots, X_p) .
- Such methods are called Generative models

Generative models: A toy example

- We will go into more detail on Generative models next class
- To whet your appetite, let's look at a simple toy example

- Canadians and Americans keep insisting that they're "different people", but you can't tell them apart
- Lately, though, you've noticed that Canadian men tend to be somewhat *shorter* than American men
- Sure enough, some internet browsing reveals that:
 - \circ American men are on average 178.2cm tall (St Dev = 4.7cm)
 - Canadian men are on average 173cm tall (St Dev = 3.3cm)
 - Heights are generally Normally distributed

Canadian or American?

- Neil, the next "American sounding" guy you come across, turns out to be 171cm tall.
- Question: Is Neil American or Canadian?
- Let ${\cal H}$ denote a man's height. From your internet search, you found that:

$$H \mid \text{American} \sim \text{Normal}(178.2, \sigma = 4.7)$$
$$H \mid \text{Canadian} \sim \text{Normal}(173, \sigma = 3.3)$$

- But we want: P(American | H = 171)...Hmmm...
- Luckily an 18th century Presbyterian minister tells you that

$$P(\text{American} \mid H = 171) = \frac{P(H = 171 \mid \text{American})P(\text{American})}{P(H = 171)}$$

 $P(\text{American} \mid H = 171) = \frac{P(H = 171 \mid \text{American})P(\text{American})}{P(H = 171)}$

• Since $H \mid \text{American} \sim \text{Normal}(178.2, \sigma = 4.7)$, we can calculate that

 $P(H = 171 \mid \text{American}) = 0.026$

- How about P(American)? This is the proportion of "American sounding" males on campus who are actually American. You do more research, and find that this proportion is 0.85.
- Finally, the Law of Total Probability tells us that

$$P(H = 171) = P(H = 171 | A) \cdot P(A) + P(H = 171 | C) \cdot P(C)$$

= 0.026 \cdot 0.85 + 0.10 \cdot 0.15
= 0.0371

- So according to the minister's rule, P(American | H = 171) = $0.026 \times 0.85/0.0371 = 0.60 = 60\%$
- So chances are, Neil is just a short American!

Acknowledgements

All of the lectures notes for this class feature content borrowed with or without modification from the following sources:

- 36-462/36-662 Lecture notes (Prof. Tibshirani, Prof. G'Sell, Prof. Shalizi)
- 95-791 Lecture notes (Prof. Dubrawski)
- An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
- Applied Predictive Modeling, (Springer, 2013), Max Kuhn and Kjell Johnson