Lecture 2: Prediction

Part I: Splines, Additive Models Part II: Model Selection and Validation

Prof. Alexandra Chouldechova 95-791: Data Mining

Course Roadmap

Course Roadmap

Recap of last class

• The goal of prediction is to estimate the true, unknown regression function, \boldsymbol{f}

Recap of last class

- Linear regression imposes two key restrictions on the model: We assume the relationship between the response Y and the predictors X_1, \ldots, X_p is:
 - Linear
 - Additive
- The truth is almost never linear; but often the linearity and additivity assumptions are *good enough*
- When we think linearity might not hold, we can try...
 - Polynomials
 - Step functions
 - Splines
 - Local regression
 - Generalized additive models
- When we think the additivity assumption doesn't hold, we can incorporate interaction terms
- These variants offer increased flexibility, while retaining much of the ease and interpretability of ordinary linear regression

Recap of last class

Polynomials

 $lm(wage \sim poly(age, 4), data = Wage) \qquad lm(wage \sim cut(age, breaks = c(-Inf, 25, 35, 65, Inf)),$ data = Wage)

- We can think of polynomials and step functions as simple forms of feature engineering
- These extensions of linear regression enable us to fit much more flexible models

Agenda for Part I

• Piecewise polynomial fits

• Splines

• Additive models

Some motivation

- If the true regression function *f* is non-linear, ordinary linear regression cannot estimate it consistently
- No matter how much data you get, the best ordinary linear regression can do is converge to the best linear approximation to *f*

- The same problem persists with polynomial regression
- No matter how much data you get, the best degree-k polynomial regression can do is converge to the best degree-k approximation to f

Consistency

Consistent estimator

An estimator $\hat{f}(x)$ is consistent if, as our sample size grows, $\hat{f}(x)$ converges to the true regression function $f(x) = \mathbb{E}(Y \mid X = x)$

• Unless f(x) is a polynomial of degree $\leq k$, degree-k polynomial regression is not consistent

Q: Can we get a consistent estimator of a generic regression function f?

A: If we're willing to assume f is smooth, then **YES**

Use splines!

Piecewise polynomials

To understand splines, we first need to understand piecewise polynomials

- We can think of step functions as piecewise constant models
- It's easy to generalize this idea to:
 - Piecewise linear
 - Piecewise quadratic ...
 - Piecewise polynomial

Piecewise Cubic

Piecewise Polynomial vs. Regression Splines

Age

Age

Piecewise polynomial vs. Regression splines

Piecewise Cubic

Cubic Spline

$1 \ \mathrm{break}$ at $\mathrm{Age} = 50$

Definition: Cubic spline

A cubic spline with knots at x-values ξ_1, \ldots, ξ_K is a continuous piecewise cubic polynomial with continuous derivates and continuous second derivatives at each knot.

Cubic Splines

- Turns out, cubic splines are sufficiently flexible to consistently estimate smooth regression functions f
- You can use higher-degree splines, but there's no need to
- To fit a cubic spline, we just need to pick the knots

- In polynomial regression, we had to choose the degree
- For cubic splines, we need to choose the knots
- Q: How complex is a cubic spline with K knots?
- Paraphrasing...A cubic spline with K knots is as complex as a polynomial of degree ____?
 - $\,\circ\,$ Turns out, there exist functions $b_k(x)^{\,\rm I}$ such that a cubic spline with K knots can be modeled as

$$y = \beta_0 + \beta_1 b_1(x) + \beta_2 b_2(x) + \dots + \beta_{K+3} b_{K+3}(x) + \epsilon$$

• So...A: A cubic spline with K knots is as complex as a polynomial of degree K + 3.

See ISLR pg. 273 for details

Degrees of freedom

- Degrees of freedom capture the complexity of a regression model
- A linear regression model with p independent predictors is said to have $p \ \rm degrees \ \rm of \ \rm freedom^2$
- Take-away from the previous slide:

Model	# knots	Degrees of freedom
Regression, p predictors		p
Degree- k polynomial regression		k
Cubic spline	k	k+3
Degree-d Spline	k	k+d

 In the following slides, we compare cubic splines to polynomial regression, allowing each method the same degrees of freedom

²Technically, p + 1 if you count the intercept. To be consistent with R's df arguments, here we *do not* count the intercept.

 $\label{eq:lm} \begin{array}{l} \texttt{lm(wage} \sim \texttt{bs(age, df = 3))} \\ \texttt{lm(wage} \sim \texttt{poly(age, degree = 3))} \end{array}$

 $\label{eq:lm} \begin{array}{l} \texttt{lm(wage} \sim \texttt{bs(age, df = 5))} \\ \texttt{lm(wage} \sim \texttt{poly(age, degree = 5))} \end{array}$

 $\label{eq:lm} \begin{array}{l} \mbox{lm(wage} \sim \mbox{bs(age, df = 10))} \\ \mbox{lm(wage} \sim \mbox{poly(age, degree = 10))} \end{array}$

lm(wage \sim poly(age, degree = 15))

Natural Cubic Splines

Figure: 7.4 from ISLR. Natural cubic splines are cubic splines that extrapolate linearly beyond the boundary knots. A NCS with K knots uses just K + 1 degrees of freedom — the same as a cubic spline with 2 fewer knots

Natural Cubic Splines vs Polynomial regression

Figure: 7.7 from ISLR. Natural cubic splines are very nicely behaved at the tails of the data. Polynomial regression shows erratic behaviour. (14 degrees of freedom used for both)

Summary: Cubic Splines vs Polynomial regression

- Polynomial regression must use a high degree in order to produce flexible fits
- With splines, we can keep the degree fixed, an increase flexibility by adding knots
- Splines generally tend to be better behaved at the same level of *model* complexity

Knot placement: Rules of thumb

- Place more knots where f appears to be changing rapidly
- Place fewer knots where f appears to be slowly varying

R's defaults:

The most common way of specifying splines in \mathbb{R} is in terms of the spline's degrees of freedom (df). \mathbb{R} then places knots at suitably chosen *quantiles* of the x variable.

Model	R command	# internal knots
Cubic Spline	\sim bs(x, df)	df - 3
Natural Cubic Spline	\sim ns(x, df)	df - 1
Degree-d Spline	\sim bs(x, df, degree = d)	df - d

You may also specify the internal knots manually for ns and bs by specifying the knots = argument directly. E.g., lm(wage ~ bs(age, knots = c(25, 40, 60)), data = Wage)

Smoothing splines

- Q: What is the best way to automatically place knots?
- Paraphrasing...If I know how many degrees of freedom I want my spline to have, is there a method for automatically choosing the best locations for the knots?
- A: Smoothing splines

Smoothing splines

• The smoothing spline estimator is the solution \hat{g} to the problem

$$\underset{\text{RSS}}{\text{minimize}} \quad \underbrace{\sum_{i=1}^{n} (y_i - g(x_i))^2}_{\text{RSS}} + \underbrace{\lambda \int g''(t)^2 dt}_{\text{Roughness penalty}}$$

- This is a penalized regression problem³
- We're saying we want a function that:
 - Fits the data well; and
 - isn't too wiggly
- Large $\lambda \implies \hat{g}$ will have low variability (& higher bias)
- Small $\lambda \implies \hat{g}$ will have high variability (& lower bias)

How is this at all related to splines?

³We'll see more examples of penalized regression next class.

Smoothing splines

It turns out...

- The solution to (*) is a natural cubic spline
- The solution has knots at every unique value of x
- The effective degrees of freedom of the solution is calculable
- $\lambda \longleftrightarrow df$

Coding tip: In **R** with the gam library you can use the syntax s(x, df) in your regression formula to fit a smoothing spline with df effective degrees of freedom.

Smoothing Spline

Figure: 7.8 from ISLR. We'll introduce LOOCV (leave-one-out cross-validation) in Part II of today's class

Another method people like: Local regression

Local Regression

Figure: 7.9 from ISLR. Local regression (enabled as lo(x) and loess(x))

Local Linear Regression

Putting everything together: Additive Models

• Recall the Linear Regression Model

$$Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$$

• We can now extend this to the far more flexible Additive Model

$$Y = \beta_0 + \sum_{j=1}^p f_j(X_j) + \epsilon$$

- Each f_j can be any of the different methods we just talked about: Linear term $(\beta_j X_j)$, Polynomial, Step Function, Piecewise Polynomial, Degree-k spline, Natural cubic spline, Smoothing spline, Local linear regression fit, ...
- You can mix-and-match different kinds of terms
- The gam and mgcv packages enable Additive Models in R

Additive Models: Boston housing data

Using the gam⁴ library, we fit the model gam(medv ~ s(lstat, 5) + lo(ptratio) + cut(crim, breaks = c(-Inf, 1, 10, 25, Inf)), data = Boston)

• This amounts to an additive model

 $medv = f_1(lstat) + f_2(ptratio) + f_3(crim) + \epsilon$

with terms:

- $f_1(\texttt{lstat})$ smoothing spline with 5 df
- $f_2(ptratio)$ local linear regression
- $f_3(\texttt{crim})$ step function with breaks at crim = 1, 10, 25

⁴You can use lm here instead, but gam has built-in plotting routines to help better visualize the model fits.
Additive Models: Boston housing data

Summary

- Splines are a nice way of modeling smooth regression functions
- To increase the flexibility of a spline, we increase the number of knots
- Natural cubic splines allow us retain the model complexity of a cubic spline while adding two extra interior knots at the cost of restricting our model to be linear outside the range of the observed data
- Smoothing splines enable us to avoid the problem of knot selection altogether, and instead specify a single parameter: the desired effective degrees of freedom for the fit
- We can put everything together into an Additive Model

$$Y = \beta_0 + \sum_{j=1}^p f_j(X_j) + \epsilon$$

where each f_j can be any of the fits we talked about.

Introduction to Model Selection

At this stage, we have a lot of questions.

- How do we choose which variables to include in a linear regression?
- How do we choose the degree k in a polynomial regression?
- How do we choose the cuts in a step function regression?
- How do we decide on how many knots to place and where to place them when fitting regression splines?
- How should we choose λ or the effective degrees of freedom for a smoothing spline?
- Which variables should we include in an additive model, and what form should we pick for each f_j term?

All of these questions are essentially asking the same thing...

How do we pick the best model?

33/I

How do we pick the best statistical model?

End of Part I

10 minute break

Prediction topics: Part II

Prediction topics: Part II

How do we pick the best statistical model?

Resampling methods

- Part II of today's lecture covers several topics that fall into the category of Resampling methods
- These are approaches for using a single observed data set to answer questions such as:
 - Which model generalizes best to unseen data?
 - What is the prediction error of my model?
 - What is the uncertainty of my estimate?
 - How can I form a *confidence interval* for a complex parameter?

Agenda for Part II

- Review: Central Themes
- Test error vs. Training error

• Resampling methods

- Validation set approach (Train/Test split)
- Cross-validation
- Stepwise/Criteria-based methods (Next class)
 - Best subset selection
 - Stepwise model selection
 - AIC, BIC

How should we think about model selection?

Let's remind ourselves of the first Central Theme of this class.

- 1. **Generalizability:** We want to construct models that generalize well to unseen data
- i.e., We want to:
 - Add variables/flexibility as long as doing so helps capture meaningful trends in the data (avoid underfitting)
 - Ignore meaningless random fluctuations in the day (avoid overfitting)

How should we think about model selection?

Let's remind ourselves of the first Central Theme of this class.

- 1. Generalizability: We want to construct models that generalize well to unseen data
- i.e., We want to:
 - Add variables/flexibility as long as doing so helps capture meaningful trends in the data (avoid underfitting)
 - Ignore meaningless random fluctuations in the day (avoid overfitting)

Assessing Model Accuracy

- Suppose we fit a model $\hat{f}(x)$ to some training data: Train = $\{x_i, y_i\}_{i=1}^n$.
- We want to assess how well \hat{f} performs
- $\bullet\,$ Can compute: Average squared prediction error over ${\rm Train}\,$

$$MSE_{Train} = Ave_{i \in Train} \left[(y_i - \hat{f}(x_i))^2 \right]$$

- But this may push us towards more overfit models.
- Instead, we should compute it using fresh test data: $\text{Test} = \{x_i, y_i\}_{i=1}^m$:

$$\text{MSE}_{\text{Test}} = \operatorname{Ave}_{i \in \text{Test}} \left[(y_i - \hat{f}(x_i))^2 \right]$$

• This would tell us if \hat{f} generalizes well to new data

Here are three different models fit to the same small Train data set. Which of these three is the best model?

23.2

5.2

7.5

 $MSE_{Train} = RSS/n$

43/I

Here are some new observa-

tions, which form our Test data. How well do our models fit the test data?

Solid green points: Test data

Open grey circles: Train data

Model	I	2	3
$\mathrm{MSE}_{\mathrm{Train}}$	23.2	5.2	7.5
$\mathrm{MSE}_{\mathrm{Test}}$	24.6	10.3	7.0

Assessing Model Accuracy

- As we increase the flexibility of our model, our training set error always decreases
- The same is **not** true for test set error
- The test set error will *decrease* as we add flexibility that helps to capture useful trends
- As we add *too much* flexibility, the test set error will begin to *increase* due to model overfitting

How well could we possibly do?

- There is a limit on how well we can do on any given prediction task
- Even if we knew the true regression function $f(x) = \mathbb{E}(Y \mid X = x)$, we would still have error:

$$Y = f(x) + \epsilon$$

- $\epsilon = Y f(x)$ is the irreducible error.
- Even if we knew f(x), we would still make errors in prediction: Because at each value of x, there's typically a distribution of possible Y values
- Our average prediction error will always be at least $Var(\epsilon)$

Let's remind ourselves of the second Central Theme of the class:

- 2. Bias-Variance trade-off: To minimize prediction error, we need to find the right balance between the *bias* and *variance* of our predictor \hat{f}
 - Suppose we some Train data, which we use to build a predictor \hat{f}
 - For any predictor \hat{f} , one can decompose the the expected test MSE^5 at a new data point x_0 as:

$$\mathbb{E}\left[(y_0 - \hat{f}(x_0))^2\right] = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$

⁵For more details, read §2.2.2 of ISL

Let's understand what this equation is saying

$$\mathbb{E}\left[(y_0 - \hat{f}(x_0))^2\right] = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$

- $\mathbb{E}\left[(y_0-\hat{f}(x_0))^2
 ight]$ is the expected test MSE:
 - It's the average test MSE we would get if we repeatedly constructed \hat{f} using a large number of random training sets, and tested each at x_0 , with random realizations of y_0 .
- Var(f̂(x₀)) is the variance of f̂ at x₀.
 It's the variability of f̂(x₀) around E f̂(x₀)
- $\operatorname{Bias}(\widehat{f}(x_0))$ is the bias of \widehat{f} at x_0

$$Bias(\hat{f}(x_0)) = \mathbb{E}\,\hat{f}(x_0) - \mathbb{E}\,(Y \mid X = x_0)$$
$$= \mathbb{E}\,\hat{f}(x_0) - f(x_0)$$

• $Var(\epsilon)$ is the irreducible error

Variance measures how much $\hat{f}(x_0)$ varies around $f_L(x_0)$ Bias measures how far $f_L(x_0)$ is from the true regression function $f(x_0)$

$$\mathbb{E}\left[(y_0 - \hat{f}(x_0))^2\right] = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$

- This quantity is the expected test MSE at a particular value x_0
- The overall test MSE can be calculated by further averaging this quantity over all possible values of x_0 in the test set

Let's think about this equation in practical terms

$$\mathbb{E}\left[(y_0 - \hat{f}(x_0))^2\right] = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$

- Variance refers to how much \hat{f} would change if we estimated it using a different random set of training data
 - $\circ~$ Training data is random, different Training data will result in different \hat{f}
 - $\circ~$ Ideally, \hat{f} should not change tremendously between different Training sets
 - $\circ~$ If small changes in Training data change \hat{f} by a lot, then \hat{f} would have High Variance
- Bias refers to error introduced by modeling a complex real-world problem by a simpler statistical model
 - $\circ~$ E.g., Linear regression assumes a linear relationship between Y and the inputs $X_1,\ldots,X_p.$ This is almost always an over-simplification
 - $\circ~$ If the true f is very complex and \hat{f} is too inflexible, \hat{f} will have High Bias

Key Picture

Model Complexity

Training Error vs Test Error: Example I

Dashed line on MSE plot shows the irreducible error $Var(\epsilon)$

<u>Left:</u> Models fit to training data. Black curve is the truth. Right: MSE_{Train} in grey, MSE_{Test} in red

Training Error vs Test Error: Example 2

Dashed line on MSE plot shows the irreducible error $Var(\epsilon)$

Truth (black curve) is simpler/smoother (nearly linear), so the smoother fit and linear model both perform really well.

Training Error vs Test Error: Example 3

Dashed line on MSE plot shows the irreducible error $Var(\epsilon)$

Truth is wiggly, but noise level is very low. The more flexible fits perform the best.

Bias-Variance Trade-off for the three examples

How do we estimate the Test Error?

- In reality, we only get one set of data to use for model fitting, model selection, and model assessment
- We will now discuss two methods for estimating Test Error:
 - Validation set approach
 - Cross-validation
- We will explain why Cross-validation is generally the best approach

Validation set approach

 Randomly divide the available data into two parts: a Training set and a Validation or Hold-out set

- 2. Construct \hat{f} by fitting your model on the Training set
- 3. Use \hat{f} to predict responses for all the points in the Validation set, and calculate the resulting MSE
- 4. Pick the simplest model that has among the *lowest* MSE on the Validation set

Example: Automobile data

Figure: 3.8 from ISL. We want to figure out what degree polynomial we want to use to model the relationship between Y = Miles per gallon and $X_1 = Horsepower$

Example: Automobile data

- Want to figure out what degree polynomial to use
- Randomly split the 392 observations into two sets of 196 data points. Train on the *first*, calculate errors on the *second*.

Figure 5.2 from ISL. Left panel shows MSE for a single split. Right panel shows MSE curves for 10 randomly chosen splits.

Example: Automobile data

Figure 5.2 from ISL. Left panel shows MSE for a single split. Right panel shows MSE curves for 10 randomly chosen splits.

- All splits agree that quadratic is much better than linear
- Degree > 2 fits don't seem to perform considerably better than quadratic

Problems with the Validation set approach

- 1. As observed in the right-hand panel, the estimates of Test Error are highly variable. Estimates depend a lot on the randomly chosen split.
- 2. Only a subset of the data (the ones randomized to the Training set) are used to fit the model.
 - Models tend to perform worse when trained on fewer observations
 - The Validation set error tends to overestimate the Test Error for the model trained on the entire data set

Cross-validation is a refinement of the Validation set approach that addresses these two issues.
K-fold Cross-validation (CV)

- The most widely used approach for estimating Test Error
- Error estimates can be used to select the best model, and also reflect the test error of the final chosen model
- Main idea: K-fold Cross-validation
 - 1. Randomly split the data into K equal-sized parts ("folds")
 - 2. Give each part the chance to be the Validation set, treating the other K-1 parts (combined) as the Training set
 - 3. Average the test error over all of the folds
 - 4. Pick the simplest model among those with the lowest CV-error
 - 5. Final model: Refit model on the entire data set.
- Most common choices of K: 5, 10, n
 - $\circ~$ The case K=n is also known as Leave-one-out Cross-validation (LOOCV)

Form 5-fold CV estimate of prediction error: $CV_{(5)} = \frac{1}{5}\sum_{k=1}^{5}MSE_{k}$

Cross-validation standard error

• The K-fold CV estimate of prediction error is

$$CV_{(K)} = \frac{1}{K} \sum_{k=1}^{K} MSE_k$$

where MSE_k is the error calculated on Fold k.

- It is also useful to calculate the standard error of the CV estimate
- The typical way of doing this: Calculate the sample standard deviation of $\{MSE_1..., MSE_K\}$, then divide by \sqrt{K} :⁶

$$\operatorname{SE}(\operatorname{CV}_{(K)}) = \frac{1}{\sqrt{K}} \operatorname{SD}(\operatorname{MSE}_1 \dots, \operatorname{MSE}_K)$$

⁶This calculation isn't quite right, but it's a widely accepted approach for calculating standard errors for CV error estimates.

Back to the Automobile data

Figure: 3.8 from ISL. We want to figure out what degree polynomial we want to use to model the relationship between Y = Miles per gallon and $X_1 = Horsepower$

Example: Automobile data

Figure 5.4 from ISL. Left panel shows estimated Test Error for LOOCV. Right panel shows estimated Test Error for 10-fold CV run nine separate times.

Same conclusion as Validation set approach: We should use a quadratic model

Validation set approach vs. 10-fold CV

10-fold CV

Validation set approach

10-fold CV

- Each plot shows estimated Test Error curves for multiple random splits of the data.
- The 10-fold CV error estimates are much more stable
- The Validation set error estimates are highly variable

CV error estimate vs. Actual test error

Blue curve: True Test Error Dashed black curve: LOOCV estimate Orange curve: 10-fold CV estimate ×'s: indicate *minimum* of each of the curves

10-fold CV error curve as the tuning parameter λ varies

This plot shows CV error estimates and 1-standard-error bars for a bunch of different choices of a tuning parameter λ .⁷

⁷You can think of λ as the smoothing spline penalty. Large $\lambda \Rightarrow$ simpler model.

10-fold CV error curve as the tuning parameter λ varies

- $\lambda = 3.458$ gives us the model with the smallest estimated CV error.
- But we can see from the wide error bars that our prediction error estimates have high uncertainty.

10-fold CV error curve as the tuning parameter λ varies

• The 1-standard error rule tells us to pick the *simplest model* whose CV error falls inside the 1-SE error bars of the lowest CV error model.

10-fold CV error curve as the tuning parameter λ varies

• The 1-standard error rule tells us to pick the simplest model whose CV error falls inside the I-SE error bars of the lowest CV error model.

10-fold CV error curve as the tuning parameter λ varies

• Basic idea: We can't be certain that the $\lambda = 6.305$ model actually has higher prediction error than the $\lambda = 3.458$ model, so let's err on the side of caution and go with the simpler $\lambda = 6.305$ model.

Smoothing spline example

These plots show the results of applying 5-fold cross-validation to select the effective degrees of freedom for a smoothing spline fit to the points in the right panel.

- Even at very large degrees of freedom, the smoothing spline is nicely behaved and has low CV error
- The minimum CV error rule selects a model with 27 degrees of freedom

Smoothing spline example

The one standard error rule selects a model with 9 degrees of freedom

Summary: Cross-validation

- We started with the question: How do we pick the best model?
- One answer: Pick the model with the lowest prediction error.
- The Validation set approach and K-fold Cross-validation are two resampling-based methods for estimating the *prediction error* of a model
- *K*-fold Cross-validation gives much more *stable* and *accurate* estimates of prediction error
- Once we get CV error estimates for the models we're considering, we can either:
 - Pick the model that has the minimum CV error; or
 - $\circ~$ Use 1-SE rule and pick the simplest model whose error is within 1~ standard error of the minimum CV error.
- From this we get: Our chosen model \hat{f} , and an estimate of its prediction error

Acknowledgements

All of the lectures notes for this class feature content borrowed with or without modification from the following sources:

- 36-462/36-662 Lecture notes (Prof. Tibshirani, Prof. G'Sell, Prof. Shalizi)
- 95-791 Lecture notes (Prof. Dubrawski)
- An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
- Applied Predictive Modeling, (Springer, 2013), Max Kuhn and Kjell Johnson