
Lecture 2: Prediction

Part I: Splines, Additive Models
Part II: Model Selection and Validation

Prof. Alexandra Chouldechova
95-791: Data Mining
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Recap of last class
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• The goal of prediction is to estimate the true, unknown regression
function, f
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Recap of last class
• Linear regression imposes two key restrictions on the model: We
assume the relationship between the response Y and the predictors
X1, . . . , Xp is:
1 Linear
2 Additive

• The truth is almost never linear; but often the linearity and additivity
assumptions are good enough

• When we think linearity might not hold, we can try…
◦ Polynomials
◦ Step functions
◦ Splines
◦ Local regression
◦ Generalized additive models

• When we think the additivity assumption doesn’t hold, we can
incorporate interaction terms

• These variants offer increased flexibility, while retaining much of the
ease and interpretability of ordinary linear regression
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Recap of last class
Polynomials Step Functions
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lm(wage ∼ poly(age, 4), data = Wage) lm(wage ∼ cut(age,

breaks = c(-Inf, 25, 35, 65, Inf)),

data = Wage)

• We can think of polynomials and step functions as simple forms of
feature engineering

• These extensions of linear regression enable us to fit much more
flexible models
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Prediction topics: Part I
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Agenda for Part I

• Piecewise polynomial fits

• Splines

• Additive models
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Some motivation
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• If the true regression function f is non-linear, ordinary linear
regression cannot estimate it consistently

• No matter how much data you get, the best ordinary linear
regression can do is converge to the best linear approximation to f
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• The same problem persists with polynomial regression
• No matter how much data you get, the best degree-k polynomial
regression can do is converge to the best degree-k approximation to
f
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Consistency

Consistent estimator

An estimator f̂(x) is consistent if, as our sample size grows, f̂(x)
converges to the true regression function f(x) = E (Y | X = x)

• Unless f(x) is a polynomial of degree ≤ k, degree-k polynomial
regression is not consistent

Q: Can we get a consistent estimator of a generic regression function f ?

A: If we’re willing to assume f is smooth, then YES

Use splines!
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Piecewise polynomials
To understand splines, we first need to understand piecewise
polynomials
• We can think of step functions as piecewise constant models
• It’s easy to generalize this idea to:
◦ Piecewise linear
◦ Piecewise quadratic …
◦ Piecewise polynomial
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Piecewise Polynomial vs. Regression Splines
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Piecewise polynomial vs. Regression splines

20 30 40 50 60 70

5
0

1
0
0

1
5
0

2
0
0

2
5
0

Age

W
a
g
e

Piecewise Cubic

20 30 40 50 60 70

5
0

1
0
0

1
5
0

2
0
0

2
5
0

Age

W
a
g
e

Continuous Piecewise Cubic

20 30 40 50 60 70

5
0

1
0
0

1
5
0

2
0
0

2
5
0

Age

W
a
g
e

Cubic Spline

20 30 40 50 60 70

5
0

1
0
0

1
5
0

2
0
0

2
5
0

Age

W
a
g
e

Linear Spline

20 30 40 50 60 70

5
0

1
0

0
1

5
0

2
0

0
2

5
0

Age

W
a

g
e

Piecewise Cubic

20 30 40 50 60 70

5
0

1
0

0
1

5
0

2
0

0
2

5
0

Age

W
a

g
e

Continuous Piecewise Cubic

20 30 40 50 60 70

5
0

1
0

0
1

5
0

2
0

0
2

5
0

Age

W
a

g
e

Cubic Spline

20 30 40 50 60 70

5
0

1
0

0
1

5
0

2
0

0
2

5
0

Age

W
a

g
e

Linear Spline

1 break at Age = 50 1 knot at Age = 50

Definition: Cubic spline
A cubic spline with knots at x-values ξ1, . . . , ξK is a continuous
piecewise cubic polynomial with continuous derivates and continuous
second derivatives at each knot.
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• Turns out, cubic splines are sufficiently flexible to consistently estimate
smooth regression functions f

• You can use higher-degree splines, but there’s no need to

• To fit a cubic spline, we just need to pick the knots

14 / 1



Polynomial regression vs. Cubic splines

• In polynomial regression, we had to choose the degree

• For cubic splines, we need to choose the knots

• Q: How complex is a cubic spline with K knots?

• Paraphrasing…A cubic spline with K knots is as complex as a
polynomial of degree ?
◦ Turns out, there exist functions bk(x)1 such that a cubic spline with K

knots can be modeled as

y = β0 + β1b1(x) + β2b2(x) + · · ·βK+3bK+3(x) + ϵ

• So…A: A cubic spline with K knots is as complex as a polynomial of
degree K + 3.
1See ISLR pg. 273 for details
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Degrees of freedom

• Degrees of freedom capture the complexity of a regression model
• A linear regression model with p independent predictors is said to
have p degrees of freedom2

• Take-away from the previous slide:

Model # knots Degrees of freedom

Regression, p predictors p
Degree-k polynomial regression k

Cubic spline k k + 3
Degree-d Spline k k + d

• In the following slides, we compare cubic splines to polynomial
regression, allowing each method the same degrees of freedom

2Technically, p + 1 if you count the intercept. To be consistent with R’s df
arguments, here we do not count the intercept.
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Polynomial regression vs. Cubic splines
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Polynomial regression vs. Cubic splines
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Polynomial regression vs. Cubic splines
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Polynomial regression vs. Cubic splines
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Natural Cubic Splines
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Figure: 7.4 from ISLR. Natural cubic splines are cubic splines that extrapolate
linearly beyond the boundary knots. A NCS with K knots uses just K + 1
degrees of freedom — the same as a cubic spline with 2 fewer knots
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Natural Cubic Splines vs Polynomial regression
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Figure: 7.7 from ISLR. Natural cubic splines are very nicely behaved at the tails
of the data. Polynomial regression shows erratic behaviour. (14 degrees of
freedom used for both)
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Summary: Cubic Splines vs Polynomial regression
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• Polynomial regression must use a high degree in order to produce
flexible fits

• With splines, we can keep the degree fixed, an increase flexibility by
adding knots

• Splines generally tend to be better behaved at the same level of model
complexity 20 / 1



Knot placement: Rules of thumb
• Place more knots where f appears to be changing rapidly

• Place fewer knots where f appears to be slowly varying

R’s defaults:
The most common way of specifying splines in R is in terms of the
spline’s degrees of freedom (df). R then places knots at suitably chosen
quantiles of the x variable.

Model R command # internal knots

Cubic Spline ∼ bs(x, df) df − 3
Natural Cubic Spline ∼ ns(x, df) df − 1
Degree-d Spline ∼ bs(x, df, degree = d) df − d

• You may also specify the internal knots manually for ns and bs by
specifying the knots = argument directly. E.g.,
lm(wage ∼ bs(age, knots = c(25, 40, 60)), data = Wage)
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Smoothing splines

• Q: What is the best way to automatically place knots?

• Paraphrasing…If I know how many degrees of freedom I want my
spline to have, is there a method for automatically choosing the best
locations for the knots?

• A: Smoothing splines
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Smoothing splines

• The smoothing spline estimator is the solution ĝ to the problem

minimize
n∑

i=1
(yi − g(xi))2

︸ ︷︷ ︸
RSS

+ λ

∫
g′′(t)2dt︸ ︷︷ ︸

Roughness penalty

• This is a penalized regression problem3

• We’re saying we want a function that:
1 Fits the data well; and
2 isn’t too wiggly

• Large λ =⇒ ĝ will have low variability (& higher bias)
• Small λ =⇒ ĝ will have high variability (& lower bias)

How is this at all related to splines?

3We’ll see more examples of penalized regression next class.
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Smoothing splines

minimize

n∑
i=1

(yi − g(xi))2

︸ ︷︷ ︸
RSS

+ λ

∫
g′′(t)2dt︸ ︷︷ ︸

Roughness penalty

(∗)

It turns out…

• The solution to (∗) is a natural cubic spline
• The solution has knots at every unique value of x

• The effective degrees of freedom of the solution is calculable
• λ←→ df

Coding tip: In R with the gam library you can use the syntax
s(x, df) in your regression formula to fit a smoothing spline with df
effective degrees of freedom.
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Figure: 7.8 from ISLR. We’ll introduce LOOCV (leave-one-out cross-validation)
in Part II of today’s class 25 / 1



Another method people like: Local regression
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Figure: 7.9 from ISLR. Local regression (enabled as lo(x) and loess(x) )
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Figure: 7.10 from ISLR.
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Putting everything together: Additive Models

• Recall the Linear Regression Model

Y = β0 +
p∑

j=1
βjXj + ϵ

• We can now extend this to the far more flexible Additive Model

Y = β0 +
p∑

j=1
fj(Xj) + ϵ

• Each fj can be any of the different methods we just talked about:
Linear term (βjXj), Polynomial, Step Function, Piecewise
Polynomial, Degree-k spline, Natural cubic spline, Smoothing spline,
Local linear regression fit, …

• You can mix-and-match different kinds of terms
• The gam and mgcv packages enable Additive Models in R
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Additive Models: Boston housing data

Using the gam4 library, we fit the model
gam(medv ∼ s(lstat, 5) + lo(ptratio) +

cut(crim, breaks = c(-Inf, 1, 10, 25, Inf)),
data = Boston)

• This amounts to an additive model

medv = f1(lstat) + f2(ptratio) + f3(crim) + ϵ

with terms:
• f1(lstat) smoothing spline with 5 df
• f2(ptratio) local linear regression
• f3(crim) step function with breaks at crim = 1, 10, 25

4You can use lm here instead, but gam has built-in plotting routines to help better
visualize the model fits.
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Additive Models: Boston housing data
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Summary
• Splines are a nice way of modeling smooth regression functions

• To increase the flexibility of a spline, we increase the number of knots

• Natural cubic splines allow us retain the model complexity of a cubic
spline while adding two extra interior knots at the cost of restricting our
model to be linear outside the range of the observed data

• Smoothing splines enable us to avoid the problem of knot selection
altogether, and instead specify a single parameter: the desired
effective degrees of freedom for the fit

• We can put everything together into an Additive Model

Y = β0 +
p∑

j=1
fj(Xj) + ϵ

where each fj can be any of the fits we talked about.
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Introduction to Model Selection

At this stage, we have a lot of questions.
• How do we choose which variables to include in a linear regression?

• How do we choose the degree k in a polynomial regression?

• How do we choose the cuts in a step function regression?

• How do we decide on how many knots to place and where to place
them when fitting regression splines?

• How should we choose λ or the effective degrees of freedom for a
smoothing spline?

• Which variables should we include in an additive model, and what
form should we pick for each fj term?

All of these questions are essentially asking the same thing...
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How do we pick the best model?
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How do we pick the best statistical model?
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Prediction topics: Part II

36 / 1



Prediction topics: Part II
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How do we pick the best statistical model?
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Resampling methods

• Part II of today’s lecture covers several topics that fall into the
category of Resampling methods

• These are approaches for using a single observed data set to answer
questions such as:
◦ Which model generalizes best to unseen data?

◦ What is the prediction error of my model?

◦ What is the uncertainty of my estimate?

◦ How can I form a confidence interval for a complex parameter?
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Agenda for Part II

• Review: Central Themes

• Test error vs. Training error

• Resampling methods
◦ Validation set approach (Train/Test split)
◦ Cross-validation

• Stepwise/Criteria-based methods (Next class)
◦ Best subset selection
◦ Stepwise model selection
◦ AIC, BIC
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How should we think about model selection?

Let’s remind ourselves of the first Central Theme of this class.

1. Generalizability: We want to construct models that generalize
well to unseen data

• i.e., We want to:
1 Add variables/flexibility as long as doing so helps capture meaningful

trends in the data (avoid underfitting)
2 Ignore meaningless random fluctuations in the day (avoid overfitting)
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Assessing Model Accuracy

• Suppose we fit a model f̂(x) to some training data:
Train = {xi, yi}ni=1.

• We want to assess how well f̂ performs
• Can compute: Average squared prediction error over Train

MSETrain = Ave
i∈Train

[
(yi − f̂(xi))2

]
• But this may push us towards more overfit models.
• Instead, we should compute it using fresh test data:

Test = {xi, yi}mi=1:

MSETest = Ave
i∈Test

[
(yi − f̂(xi))2

]
• This would tell us if f̂ generalizes well to new data
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Assessing Model Accuracy: Training Error vs. Testing Error

Here are three different models fit to the same small Train data set.
Which of these three is the best model?
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Assessing Model Accuracy: Training Error vs. Testing Error
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Assessing Model Accuracy: Training Error vs. Testing Error
Here are some new observa-
tions, which form our Test data. Howwell do our models fit the test data?
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Assessing Model Accuracy: Training Error vs. Testing Error
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Assessing Model Accuracy

• As we increase the flexibility of our model, our training set error
always decreases

• The same is not true for test set error

• The test set error will decrease as we add flexibility that helps to
capture useful trends

• As we add too much flexibility, the test set error will begin to increase
due to model overfitting
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How well could we possibly do?

• There is a limit on how well we can do on any given prediction task

• Even if we knew the true regression function f(x) = E (Y | X = x),
we would still have error:

Y = f(x) + ϵ

• ϵ = Y − f(x) is the irreducible error.

• Even if we knew f(x), we would still make errors in prediction:
Because at each value of x, there’s typically a distribution of possible
Y values

• Our average prediction error will always be at least Var(ϵ)
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Bias-Variance trade-off in prediction

Let’s remind ourselves of the second Central Theme of the class:

2. Bias-Variance trade-off: To minimize prediction error, we
need to find the right balance between the bias and variance of our
predictor f̂

• Suppose we some Train data, which we use to build a predictor f̂

• For any predictor f̂ , one can decompose the the expected test MSE5

at a new data point x0 as:

E
[
(y0 − f̂(x0))2

]
= Var(f̂(x0)) +

[
Bias(f̂(x0))

]2
+ Var(ϵ)

5For more details, read §2.2.2 of ISL
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Bias-Variance trade-off in prediction
Let’s understand what this equation is saying

E
[
(y0 − f̂(x0))2

]
= Var(f̂(x0)) +

[
Bias(f̂(x0))

]2
+ Var(ϵ)

• E [(y0 − f̂(x0))2] is the expected test MSE:
◦ It’s the average test MSE we would get if we repeatedly constructed f̂

using a large number of random training sets, and tested each at x0, with
random realizations of y0.

• Var(f̂(x0)) is the variance of f̂ at x0.
◦ It’s the variability of f̂(x0) around E f̂(x0)

• Bias(f̂(x0)) is the bias of f̂ at x0

Bias(f̂(x0)) = E f̂(x0)− E (Y | X = x0)
= E f̂(x0)− f(x0)

• Var(ϵ) is the irreducible error
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Bias-Variance trade-off in prediction

E
[
(y0 − f̂(x0))2

]
= Var(f̂(x0)) +

[
Bias(f̂(x0))

]2
+ Var(ϵ)

• This quantity is the expected test MSE at a particular value x0

• The overall test MSE can be calculated by further averaging this
quantity over all possible values of x0 in the test set
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Bias-Variance trade-off in prediction
Let’s think about this equation in practical terms

E
[
(y0 − f̂(x0))2

]
= Var(f̂(x0)) +

[
Bias(f̂(x0))

]2
+ Var(ϵ)

• Variance refers to how much f̂ would change if we estimated it using
a different random set of training data
◦ Training data is random, different Training data will result in different f̂
◦ Ideally, f̂ should not change tremendously between different Training

sets
◦ If small changes in Training data change f̂ by a lot, then f̂ would have

High Variance

• Bias refers to error introduced by modeling a complex real-world
problem by a simpler statistical model
◦ E.g., Linear regression assumes a linear relationship between Y and the

inputs X1, . . . , Xp. This is almost always an over-simplification
◦ If the true f is very complex and f̂ is too inflexible, f̂ will have High Bias
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Training Error vs Test Error: Example 1
Dashed line on MSE plot shows the irreducible error Var(ϵ)
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Left: Models fit to training data. Black curve is the truth.
Right: MSETrain in grey, MSETest in red
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Training Error vs Test Error: Example 2

Dashed line on MSE plot shows the irreducible error Var(ϵ)
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Truth (black curve) is simpler/smoother (nearly linear), so the smoother
fit and linear model both perform really well.
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Training Error vs Test Error: Example 3

Dashed line on MSE plot shows the irreducible error Var(ϵ)
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Truth is wiggly, but noise level is very low. The more flexible fits
perform the best.
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Bias-Variance Trade-off for the three examples

Dashed lines show the irreducible error Var(ϵ)
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How do we estimate the Test Error?

• In reality, we only get one set of data to use for model fitting, model
selection, and model assessment

• We will now discuss two methods for estimating Test Error:
◦ Validation set approach
◦ Cross-validation

• We will explain why Cross-validation is generally the best approach
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Validation set approach

1. Randomly divide the available data into two parts: a Training set and
a Validation or Hold-out set

2. Construct f̂ by fitting your model on the Training set

3. Use f̂ to predict responses for all the points in the Validation set, and
calculate the resulting MSE

4. Pick the simplest model that has among the lowest MSE on the
Validation set
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Example: Automobile data
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Figure: 3.8 from ISL. We want to figure out what degree polynomial we want to
use to model the relationship between Y = Miles per gallon and X1 =
Horsepower
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Example: Automobile data
• Want to figure out what degree polynomial to use
• Randomly split the 392 observations into two sets of 196 data points.
Train on the first, calculate errors on the second.

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Figure 5.2 from ISL. Left panel shows MSE for a single split. Right panel shows MSE curves for
10 randomly chosen splits.
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Example: Automobile data
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Figure 5.2 from ISL. Left panel shows MSE for a single split. Right panel
shows MSE curves for 10 randomly chosen splits.

• All splits agree that quadratic is much better than linear
• Degree > 2 fits don’t seem to perform considerably better than
quadratic
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Problems with the Validation set approach
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1. As observed in the right-hand panel, the estimates of Test Error are
highly variable. Estimates depend a lot on the randomly chosen split.

2. Only a subset of the data (the ones randomized to the Training set)
are used to fit the model.
◦ Models tend to perform worse when trained on fewer observations
◦ The Validation set error tends to overestimate the Test Error for the

model trained on the entire data set

Cross-validation is a refinement of the Validation set approach that
addresses these two issues.
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K-fold Cross-validation (CV)

• The most widely used approach for estimating Test Error

• Error estimates can be used to select the best model, and also reflect
the test error of the final chosen model

• Main idea: K-fold Cross-validation
1. Randomly split the data into K equal-sized parts (“folds”)

2. Give each part the chance to be the Validation set, treating the other
K − 1 parts (combined) as the Training set

3. Average the test error over all of the folds

4. Pick the simplest model among those with the lowest CV-error

5. Final model: Refit model on the entire data set.

• Most common choices of K : 5, 10, n
◦ The case K = n is also known as Leave-one-out Cross-validation

(LOOCV)
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The Picture for 5-fold Cross-validation
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The Picture for 5-fold Cross-validation
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The Picture for 5-fold Cross-validation
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The Picture for 5-fold Cross-validation
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The Picture for 5-fold Cross-validation
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The Picture for 5-fold Cross-validation
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The Picture for 5-fold Cross-validation
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Cross-validation standard error

• The K-fold CV estimate of prediction error is

CV(K) = 1
K

K∑
k=1

MSEk

where MSEk is the error calculated on Fold k.
• It is also useful to calculate the standard error of the CV estimate
• The typical way of doing this: Calculate the sample standard deviation
of {MSE1 . . . , MSEK}, then divide by

√
K :6

SE(CV(K)) = 1√
K

SD(MSE1 . . . , MSEK)

6This calculation isn’t quite right, but it’s a widely accepted approach for calculating
standard errors for CV error estimates.
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Back to the Automobile data
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Figure: 3.8 from ISL. We want to figure out what degree polynomial we want to
use to model the relationship between Y = Miles per gallon and X1 =
Horsepower
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Example: Automobile data
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Figure 5.4 from ISL. Left panel shows estimated Test Error for LOOCV. Right
panel shows estimated Test Error for 10-fold CV run nine separate times.

Same conclusion as Validation set approach: We should use a quadratic
model
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Validation set approach vs. 10-fold CV
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Validation set approach 10-fold CV

• Each plot shows estimated Test Error curves for multiple random
splits of the data.

• The 10-fold CV error estimates are much more stable
• The Validation set error estimates are highly variable
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CV error estimate vs. Actual test error
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Blue curve: True Test Error
Dashed black curve: LOOCV estimate
Orange curve: 10-fold CV estimate
×’s: indicate minimum of each of the curves
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The 1-standard error rule
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10-fold CV error curve as the tuning parameter λ varies

This plot shows CV error estimates and 1-standard-error bars for a
bunch of different choices of a tuning parameter λ.7

7You can think of λ as the smoothing spline penalty. Large λ ⇒ simpler model.
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The 1-standard error rule
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10-fold CV error curve as the tuning parameter λ varies

• λ = 3.458 gives us the model with the smallest estimated CV error.
• But we can see from the wide error bars that our prediction error
estimates have high uncertainty.

73 / 1



The 1-standard error rule
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10-fold CV error curve as the tuning parameter λ varies

• The 1-standard error rule tells us to pick the simplest model whose
CV error falls inside the 1-SE error bars of the lowest CV error
model.
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The 1-standard error rule
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λ̂ = 3.458

One standard error rule:
λ̂ = 6.305

10-fold CV error curve as the tuning parameter λ varies

• The 1-standard error rule tells us to pick the simplest model whose
CV error falls inside the 1-SE error bars of the lowest CV error
model.

75 / 1



The 1-standard error rule
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Usual rule:
λ̂ = 3.458

One standard error rule:
λ̂ = 6.305

10-fold CV error curve as the tuning parameter λ varies

• Basic idea: We can’t be certain that the λ = 6.305 model actually has
higher prediction error than the λ = 3.458 model, so let’s err on the
side of caution and go with the simpler λ = 6.305 model.
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Smoothing spline example
These plots show the results of applying 5-fold cross-validation to select the
effective degrees of freedom for a smoothing spline fit to the points in the right
panel.

Minimum CV rule
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• Even at very large degrees of freedom, the smoothing spline is nicely
behaved and has low CV error

• The minimum CV error rule selects a model with 27 degrees of freedom
77 / 1



Smoothing spline example

One standard error rule
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• The one standard error rule selects a model with 9 degrees of
freedom
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Summary: Cross-validation
• We started with the question: How do we pick the best model?

• One answer: Pick the model with the lowest prediction error.

• The Validation set approach and K-fold Cross-validation are two
resampling-based methods for estimating the prediction error of a
model

• K-fold Cross-validation gives much more stable and accurate
estimates of prediction error

• Once we get CV error estimates for the models we’re considering,
we can either:
◦ Pick the model that has the minimum CV error; or
◦ Use 1-SE rule and pick the simplest model whose error is within 1

standard error of the minimum CV error.

• From this we get: Our chosen model f̂ , and an estimate of its
prediction error
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