Week I Lectures

Part I: Introduction to data mining Part II: Regression

Prof. Alexandra Chouldechova 95-791: Data Mining

Spring 2019

What is data mining?

Data mining is the science of discovering structure and making predictions in large or complex data sets

Spam filtering, Fraud detection, Event detection

Spam filtering, Fraud detection, Outbreak detection

- How can we tell apart spam from real emails?
- How do we identify fraudulent transactions?
- Is the president's tweet going viral?

Spam filtering, Fraud detection, Outbreak detection

- How can we tell apart spam from real emails?
- How do we identify fraudulent transactions?
- Is the president's tweet going viral? Is the flu going viral?

Recommendation systems

How Our Fix ${ }^{T M}$ Service Works

Recommendation systems

- Which movies should I recommend to my customers?
- How can I identify individuals with similar viewing/purchasing preferences?
- Which products should I recommend to my customers?
- Which promotional offers should I send out, and to whom?

Precision medicine, health analytics

The Digital Mammography DREAM
Challenge.
Spring 2016 (Pre-registration Opens October 7)
This Challenge, one of two large prize Coding4Cancer
Challenges, seeks to improve the accuracy of breast cancer detection and reduce the current rate of patient callbacks.

AstraZeneca-Sanger Drug
 Combination Prediction DREAM
 Challenge
 Fall 2015 (Now Open!)

[^0]
Search

00 cmu data mining - Coogle Search					
\Leftrightarrow In .\#\# Apple Yahool Coogle Maps YouTube Wikipedia News (2,325) - Popular					
+You Search Images Videos Maps News Shopping Gmail More - ryantibe@gmail.com					
Coogle amu data mining					
Search	About 1,410,000 results (0.26 seconds)		$\stackrel{\square}{-}$		
Everything Images	Andrew W. Moore's Home Page www.cs.cmu.edu/~awm/				
	During my teaching at CMU I've accumulated quite a number of introductory and advanced teaching materials about Data Mining, Machine Learning and ...				
Maps	10-701 and 15-781 Machine ... Reinforcement Learning Simulator - Vizier You visited this page on $1 / 15 / 12$.				
News	Statistics 36-350: Data Mining (Fall 2009)-stat.cmu.edu - (13) www.stat.cmu.edu/-cshaliz//350/ The rapid growth of computerized data, and the computer power available to analyze it, creates great opportunities for data mining in business, medicine, ... You've visited this page 6 times. Last visit: 1/3/12				
Shopping					
Pittsburgh, PA Change location	Machine Leaming Department - Carnegie Mellon University wuv.ml.cmu.edu/				
	Submit Carnegie Mellon University Search ... with new experimental data to automatically produce refined scientific hypotheses that better fit observed data. ...				
All results People - Prospective Students - Research - MLGoogle Seminar Related searches You've visited this page 7 times. Last visit: 11/3/11 Visited pages					
Visited pages Not yet visited \quad Databases @ CMU	Databases @ CMU				
\qquad					

Content Tagging, Text mining

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with legos toy."

"boy is doing backflip on wakeboard."

In what sense can we think of images and text as data?

Agenda for Part I of this lecture

(1) Course logistics
(2) Goals and scope
(3) A preview of recurring themes

Logistics: Class breakdown

There are two class components: Lecture(s) and I Lab session

- Lectures
- Lab: Friday 4:30PM - 5:30PM in HBH 1002
- Hands-on data analysis practice designed to reinforce the week's lectures
- Supervised by teaching staff
- Attendance is mandatory
- Teaching Staff:
- Instructor: Prof. Alexandra Chouldechova (HBH 2224)
- TAs: Alton Lu, Andrew Olson, Min Heng (David) Wang, Jun Zhang

Logistics: Evaluation

- Homework: 5 weekly assignments
- Due 2:50PM on Thursdays
- Late Homework is not accepted
- Lowest homework score gets dropped
- Lab participation: Friday lab attendance
- There will be 5 regular lab sessions + I midterm lab session
- Each regular lab you attend is worth 2.5 points
- Your Lab score $=\min (10, \#$ regular labs attended $\times 2.5)$
- Midterm exam: Friday during Lab
- Final exam: Written, closed book
- Final project: Team project

Logistics: Resources

- Course website
- Canvas for gradebook and turning in homework
- Piazza for forum
- Required textbook:

An Introduction to Statistical Learning (ISLR)
by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani

- Available for FREE! here: http://www-bcf.usc.edu/~gareth/ISL/
- Supplementary video lectures, slides available here:
http://tinyurl.com/k7pq879

Logistics: Resources

- Highly recommended textbook:

```
mamen
Applied
Predictive
Modeling
```

© Springer

Applied Predictive Modeling (APM)

by Max Kuhn and Kjell Johnson

- Available for free from the CMU network through SpringerLink: http://tinyurl.com/zshm24z
- SpringerLink will print you a black-and-white Softcover version for \$24.99
- Supplementary materials available here:
http://appliedpredictivemodeling.com/

Logistics: Computing

- We'll use R / RStudio / R Markdown in this class

TOP 10
CHALLENGEROCKET.COM RANKING
OF PROJECTED EARNINGS IN 2017 BY A PROGRAMMING LANGUAGE

- I have posted a number of learning resources on the course website to help those of you who aren't yet familiar with R

Scope of this class

The Data Analytics Cycle

Descriptive Analysis

Scope of this class

The Data Analytics Cycle

Descriptive Analysis

Prescriptive Analysis

Thinking about Data Mining problems

Data mining problems are often divided into Predictive tasks and
Descriptive tasks.

- Predictive Analytics (Supervised learning):

Given observed data $\left(X_{1}, Y_{1}\right), \ldots\left(X_{n}, Y_{n}\right)$, learn a model to predict Y from X.

- If Y_{i} is a continuous numeric value, this task is called prediction (E.g., $Y_{i}=$ stock price, income, survival time)
- If Y_{i} is a discrete or symbolic value, this task is called classification (E.g., $Y_{i} \in\{0,1\}, Y_{i} \in\{$ spam, email $\}, Y_{i} \in\{1,2,3,4\}$)
- Descriptive Analytics (Unsupervised learning):

Thinking about Data Mining problems

Data mining problems are often divided into Predictive tasks and Descriptive tasks.

- Predictive Analytics (Supervised learning):

Given observed data $\left(X_{1}, Y_{1}\right), \ldots\left(X_{n}, Y_{n}\right)$, learn a model to predict Y from X.

- If Y_{i} is a continuous numeric value, this task is called prediction (E.g., $Y_{i}=$ stock price, income, survival time)
- If Y_{i} is a discrete or symbolic value, this task is called classification (E.g., $Y_{i} \in\{0,1\}, Y_{i} \in\{$ spam, email $\}, Y_{i} \in\{1,2,3,4\}$)
- Descriptive Analytics (Unsupervised learning): Given data $X_{1}, \ldots X_{n}$, identify some underlying patterns or structure in the data.

Thinking about Data Mining problems

Data mining problems are often divided into Predictive tasks and Descriptive tasks.

- Predictive Analytics (Supervised learning):

Q: To whom should I extend credit?

- Task: Predict how likely an applicant is to repay loan.

Q: What characterizes customers who are likely to churn?

- Task: Identify variables that are predictive of churn.

Q: How profitable will this subscription customer be?

- Task: Predict how long customer will remain subscribed.
- Descriptive Analytics (Unsupervised learning):
- Clustering customers into groups with similar spending habits
- Learning association rules: E.g., 50\% of clients who \{recently got promoted, had a baby\} want to \{get a mortgage\}

Over the course of this class, you will:

- Become familiar with common terminology
- Gain a working understanding of many of the most widely used data mining methods
- Learn about the advantages and disadvantages of the various methods
- Gain experience implementing various methods on real data using \mathbf{R}
- Learn to compare the performance of different methods and to validate models

You will learn about:

- Supervised learning methods for prediction and classification (e.g., linear models, additive models, support vector machines, generative models, tree-based methods)
- Unsupervised learning methods (e.g., clustering, mixture models)
- Feature selection and Dimensionality reduction (e.g., PCA, MDS, featurizing text, regularized regression)
- Model validation and selection (e.g., Cross-validation, training-testing, ROC, precision-recall, bootstrap, permutation methods)

Central themes of this class

Predictive analytics: What are we trying to do?

Figure: The Advertising data set, which contains data on $n=200$ different markets. Each plot shows a linear regression line of Sales on the x -axis variable.

- Outcome $Y_{i}=$ Sales in 1000's of units
- Covariates/inputs: Budgets for $X_{1}=$ TV, $X_{2}=$ Radio, and $X_{3}=$ Newspaper advertising budgets, in 1000's of dollars

Predictive analytics: What are we trying to do?

- Ideally, we would like to have a joint model of the form

$$
\text { Sales } \approx f(\text { TV, Radio, Newspaper })
$$

- We want to find a function f such that f (TV, Radio, Newspaper) is a good predictor of Sales.

Predictive analytics: What are we trying to do?

What does it mean to be a good predictor?

Central theme I: Generalizability

- We want to construct predictors that generalize well to unseen data
- i.e., we want predictors that:
(1) Capture useful trends in the data (don't underfit)
(2) Ignore meaningless random fluctuations in the data (don't overfit)

- We also want to avoid unjustifiably extrapolating beyond the scope of our data

Central theme I: Generalizability

- We want to construct predictors that generalize well to unseen data
- i.e., we want predictors that:
(1) Capture useful trends in the data (don't underfit)
(2) Ignore meaningless random fluctuations in the data (don't overfit)
- We also want to avoid unjustifiably extrapolating beyond the scope of our data

Central theme I: Generalizability

- We want to construct predictors that generalize well to unseen data
- i.e., we want predictors that:
(1) Capture useful trends in the data (don't underfit)
(2) Ignore meaningless random fluctuations in the data (don't overfit)
- We also want to avoid unjustifiably extrapolating beyond the scope of our data

My HOBBY: EXTRAPOLATING

Randall Munroe, xkcd

Central theme 2: Bias-Variance Tradeoff

- We'll talk a lot about the Bias-Variance tradeoff, which relates to the fact that given a predictor \hat{f},

Expected-prediction-error $(\hat{f})=\operatorname{Variance}(\hat{f})+\operatorname{Bias}^{2}(\hat{f})+$ Noise

- In the language of Theme I:

Central theme 2: Bias-Variance Tradeoff

- We'll talk a lot about the Bias-Variance tradeoff, which relates to the fact that given a predictor \hat{f},

Expected-prediction-error $(\hat{f})=\operatorname{Variance}(\hat{f})+\operatorname{Bias}^{2}(\hat{f})+$ Noise

- In the language of Theme I:

Central theme 2: Bias-Variance Tradeoff

- We'll talk a lot about the Bias-Variance tradeoff, which relates to the fact that given a predictor \hat{f},

$$
\text { Expected-prediction-error }(\hat{f})=\operatorname{Variance}(\hat{f})+\operatorname{Bias}^{2}(\hat{f})+\text { Noise }
$$

- In the language of Theme I:

Central theme 3: Interpretability-Flexibility Tradeoff

- In this class we'll encounter both highly structured, interpretable models and highly flexible models
- The best predictor for a problem may turn out to be an uninterpretable or hard-to-interpret black box
- Depending on the purpose of the prediction, we may prefer a more interpretable, worse-performing model to a better-performing "black box".

Central theme 3: Interpretability-Flexibility Tradeoff

Figure: 2.7 from ISLR

Central theme 4: Feature engineering

"...some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used."

- Pedro Domingos, "A Few Useful Things to Know about Machine Learning"
"Feature engineering is the process of transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data."
- Jason Brownlee, Machine Learning Mastery

Central theme 4: Feature engineering

- Given unlimited data, sufficiently flexible models will be able to learn nearly arbitrarily complex patterns and structures.
- In reality, we have a limited number of observations, and often a large number of variables.
- We'll see that we can improve the performance of methods by constructing better features

End of Part d

10 ทninute break

Agenda for Part II

- Prediction setup, terminology, notation
- What are models good for?
- What does it mean to "predict Y "?
- Methods: Linear and Additive models

Course Roadmap

Course Roadmap

What is the prediction task?

Figure: 2.I from ISLR. $Y=$ Sales plotted against TV, Radio and Newspaper advertising budgets.

- We want a model, f, that describes Sales as a function of the three advertising budgets.

```
Sales }\approxf(TV,Radio,Newspaper
```


Notation and Terminology

- Sales is known as the response, or target, or outcome. It's the variable we wish to predict. We denote the response variable as Y.
- TV is a feature, or input, or predictor. We denote it by X_{1}
- Similarly, we denote $X_{2}=$ Radio and $X_{3}=$ Newspaper
- We can put all the predictors into a single input vector

$$
X=\left(X_{1}, X_{2}, X_{3}\right)
$$

- Now we can write our model as

$$
Y=f(X)+\epsilon
$$

where ϵ captures measurement errors and other discrepancies between the response Y and the model f

What is $f(X)$ useful for?

With a good model f, we can:

- Make predictions of Y at new points $X=x$.
- Understand which components of $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ are important for predicting Y.
- We can look at which inputs are the most important in the model
- E.g., If $Y=$ Income and $X=$ (Age, Industry, Favorite Color, Education), we may find that $X_{3}=$ Favorite Color doesn't help with predicting Y at all
- If f isn't too complex, we may be able to understand how each component X_{j} affects Y.'

[^1]
What does it mean to 'predict Y^{\prime} ?

Here's some simulated data.

- Look at $X=5$. There are many different Y values at $X=5$.
- When we say predict Y at $X=5$, we're really asking:

What is the expected value (average) of Y at $X=5$?

The regression function

Definition: Regression function

Formally, the regression function is given by $\mathrm{E}(Y \mid X=x)$. This is the expected value of Y at $X=x$.

- The ideal or optimal predictor of Y based on X is thus

$$
f(x)=\mathrm{E}(Y \mid X=x)
$$

The prediction problem

regression function f linear regression \hat{f} 50-nearest-neighbours \hat{f}
The prediction problem
We want to use the observed data to construct a predictor $\hat{f}(x)$ that is a good estimate of the regression function $f(x)=\mathrm{E}(Y \mid X=x)$.

Summary

- The ideal predictor of a response Y given inputs $X=x$ is given by the regression function

$$
f(x)=\mathrm{E}(Y \mid X=x)
$$

- We don't know what f is, so the prediction task is to estimate the regression function from the available data.
- The various prediction methods we will talk about in this class are different ways of using data to construct estimators \hat{f}

Prediction topics

Prediction topics

Why are we learning about all these different methods?

Some of you might be thinking...

Prof C., can't you just teach us the best method?

Well...as it turns out...

Broad paraphrasing of Wolpert's No Free Lunch Theorem

Without any prior information about the modelling problem, there is no single model that will always do better than any other model. ${ }^{a}$

Alternatively: If we know nothing about the true regression function, all methods on average perform equally well (or poorly).

[^2]
Data mining in a No Free Lunch Theorem world

The reason we may prefer some methods over others is because we have found them to be good at capturing the types of structure that tend to arise in the problems we encounter.

- If the data you work with tends to have linear associations, you may be well-served by a linear model
- If you know that similar people like similar things, you may be well-served by a nearest-neighbours method
- Indeed, if we lived in a universe in which all relationships are linear, then linear regression would be all we'd ever really need

Linear models don't work for everything in our world, but they do work well in many cases. So today we're going to ...

MAKE REGRESSION GREAT AGAIN

Regression topics

- Linear regression from a prediction point of view
- Polynomial regression
- Step functions
- Next class: Splines
- Next class: Additive models

Linear regression refresher

- Linear regression is a supervised learning approach that models the dependence of Y on the covariates $X_{1}, X_{2}, \ldots, X_{p}$ as being linear:

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}+\epsilon \\
& =\underbrace{\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{j}}_{f_{L}(X)}+\underbrace{\epsilon}_{\text {error }}
\end{aligned}
$$

- The true regression function $\mathrm{E}(Y \mid X=x)$ might not be linear (it almost never is)
- Linear regression aims to estimate $f_{L}(X)$: the best linear approximation to the true regression function

Best linear approximation

Linear regression

- Here's the linear regression model again:

$$
Y=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{j}+\epsilon
$$

- The $\beta_{j}, j=0, \ldots, p$ are called model coefficients or parameters
- Given estimates $\hat{\beta}_{j}$ for the model coefficients, we can predict the response at a value $x=\left(x_{1}, \ldots, x_{p}\right)$ via

$$
\hat{y}=\hat{\beta}_{0}+\sum_{j=1}^{p} \hat{\beta}_{j} x_{j}
$$

- The hat symbol denotes values estimated from the data

Estimation of the parameters by least squares

- Suppose that we have data $\left(x_{i}, y_{i}\right), i=1, \ldots, n$

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \quad X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right)
$$

- Linear regression estimates the parameters β_{j} by finding the parameter values that minimize the residual sum of squares (RSS):

$$
\begin{aligned}
\operatorname{RSS}(\hat{\beta}) & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\left[\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}\right]\right)^{2}
\end{aligned}
$$

- The quantity $e_{i}=y_{i}-\hat{y}_{i}$ is called a residual

Least squares picture in I-dimension

Figure: 3.1 from ISLR. Blue line shows least squares fit for the regression of Sales onto TV. Lines from observed points to the regression line illustrate the residuals. For any other choice of slope or intercept, the sum of squared vertical distances between that line and the observed data would be larger than that of the line shown here.

Least squares picture in 2-dimensions

Figure: 3.4 from ISLR. The 2-dimensional place is the least squares fit of Y onto the predictors X_{1} and X_{2}. If you tilt this plane in any way, you would get a larger sum of squared vertical distances between the plane and the observed data.

Summary

- Linear regression aims to predict the response Y by estimating the best linear predictor: the linear function that is closest to the true regression function f.
- The parameter estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$ are obtained by minimizing the residual sum of squares

Summary

- Linear regression aims to predict the response Y by estimating the best linear predictor: the linear function that is closest to the true regression function f.
- The parameter estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$ are obtained by minimizing the residual sum of squares

$$
\operatorname{RSS}(\hat{\beta})=\sum_{i=1}^{n}\left(y_{i}-\left[\hat{\beta}_{0}+\sum_{j=1}^{p} \hat{\beta}_{j} x_{i j}\right]\right)^{2}
$$

- Once we have our parameter estimates, we can predict y at a new volun of $r-(r$.

Linear regression is easily* interpretable

(${ }^{*}$ As long as the \# of predictors is small)

- In the Advertising data, our model is

$$
\text { sales }=\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times \text { newspaper }+\epsilon
$$

- The coefficient β_{1} tells us the expected change in sales per unit change of the TV budget, with all other predictors held fixed
- Using the lm function in \mathbf{R}, we get:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	<0.0001
TV	0.046	0.0014	32.81	<0.0001
radio	0.189	0.0086	21.89	<0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

- So, holding the other budgets fixed, for every $\$ 1000$ spent on TV advertising, sales on average increase by $(1000 \times 0.046)=46$ units sold ${ }^{2}$
${ }^{2}$ sales is recorded in 1000's of units sold

The perils of over-interpreting regression coefficients

- A regression coefficient β_{j} estimates the expected change in Y per unit change in X_{j}, assuming all other predictors are held fixed
- But predictors typically change together!
- Example: A firm might not be able to increase the TV ad budget without reallocating funds from the newspaper or radio budgets
- Example: ${ }^{3} Y=$ total amount of money in your pocket; $X_{1}=\#$ of $\overline{\text { coins; } X_{2}}=\#$ pennies, nickels and dimes.
- By itself, a regression of $Y \sim \beta_{0}+\beta_{2} X_{2}$ would have $\hat{\beta}_{2}>0$. But how about if we add X_{1} to the model?
${ }^{3}$ Data Analysis and Regression, Mosteller and Tukey 1977

In the words of a famous statistician...

"Essentially, all models are wrong, but some are useful." -George Box

- As an analyst, you can make your models more useful by
(1) Making sure you're solving useful problems
(2) Carefully interpreting your models in meaningful, practical terms
- So that just leaves one question...

How can we make our models less wrong?

Making linear regression great (again)

- Linear regression imposes two key restrictions on the model: We assume the relationship between the response Y and the predictors X_{1}, \ldots, X_{p} is:
(1) Linear
(2) Additive
- The truth is almost never linear; but often the linearity and additivity assumptions are good enough
- When we think linearity might not hold, we can try...
- Polynomials
- Step functions
- Splines (Next class)
- Local regression
- Generalized additive models (Next class)
- When we think the additivity assumption doesn't hold, we can incorporate interaction terms
- These variants offer increased flexibility, while retaining much of the ease and interpretability of ordinary linear regression

Polynomial regression, Step functions

Polynomials and Step functions are simple forms of feature engineering

(a) Degree-4 polynomial

(b) Step function (cuts at 35,65)

Polynomial regression

- Start with a variable X. E.g., $X=$ Age
- Create new variables ("features")

$$
X_{1}=X, \quad X_{2}=X^{2}, \quad \ldots, X_{k}=X^{k}
$$

- Fit linear regression model with new variables $x_{1}, x_{2}, \ldots, x_{k}$

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+\epsilon_{i} \\
& =\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\ldots+\beta_{k} x^{k}+\epsilon_{i}
\end{aligned}
$$

Coding tip: In \mathbf{R} you can use the syntax poly (x, k) in your regression formula to fit a degree-k polynomial in the variable x .

Polynomial regression

Step functions

- Start with a variable X. E.g., $X=$ Age
- Create new dummy indicator variables by cutting or binning X :

$$
\begin{aligned}
& C_{1}=I\left(X<t_{1}\right), \\
& C_{2}=I\left(t_{1} \leq X<t_{2}\right), \ldots, \\
& C_{k}=I\left(X>t_{k-1}\right)
\end{aligned}
$$

- $I(\cdot)$ is called the indicator function
- $I(\cdot)=1$ if the condition holds, and 0 if it doesn't

Step functions: Example

- $C_{1}=I($ Age $<35)$
- $C_{2}=I(35 \leq$ Age $<65)$
- $C_{3}=I($ Age $\geq 65)$

Age	C_{1}	C_{2}	C_{3}
I8	I	0	0
24	I	0	0
45	0	I	0
67	0	0	I
54	0	I	0
\vdots	\vdots	\vdots	\vdots

Coding tip: In \mathbf{R} you can use the syntax cut (x , breaks) in your regression formula to fit a step function in the variable x with breakpoints given by the vector breaks.

Step functions

Step functions

$\operatorname{lm}($ wage \sim cut (age, breaks $=c(-\operatorname{Inf}, 35,65, \operatorname{Inf}))$, data $=$ Wage)

Step functions

$\operatorname{lm}($ wage \sim cut (age, breaks $=c(-\operatorname{Inf}, 25,35,65, \operatorname{Inf}))$, data $=$ Wage)

Acknowledgements

All of the lectures notes for this class feature content borrowed with or without modification from the following sources:

- 36-462/36-662 Lecture notes (Prof. Tibshirani, Prof. G’Sell, Prof. Shalizi)
- 95-79I Lecture notes (Prof. Dubrawski)
- An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani

[^0]: This Challenge is designed to explore fundamental traits that underlie effective combination treatments and synergistic drug behavior using baseline genomic data, i.e. data collected pretreatment.

[^1]: 'In this class, the statement " X_{j} affects Y " should not be interpreted as a causal claim.

[^2]: ${ }^{a}$ To learn more, read this

