
Deep Learning Traction Force Microscopy   

Software Installation  

1. MATLAB and its Deep Learning Toolbox.  MATLAB must be version 2019a or newer with the 

support for 3D convolution deep learning layer.  

2. ImageJ or Fiji. 

3. Iterative particle image velocimetry plugin for ImageJ, from 

https://sites.google.com/site/qingzongtseng/piv.  Need to install system-dependent library file, 

OpenCV and javacv, as described in the sections of Downloads and Installation of the web page.  

See also the tutorial at https://sites.google.com/site/qingzongtseng/piv/tuto  

4. Files for deep learning traction force microscopy from https://github.com/yuliwang8177/DL-

TFM  

Procedure 

1. Plate cells on polyacrylamide substrates embedded with 0.2 µm diameter fluorescent beads.  To 

prepare the substrate, see Polyacrylamide Sheets as Cell Culture Substrates at 

https://yuliwang.bme.cmu.edu/Methods/Materials/Artificial%20Materials/PAASubstrates.pdf.  

Density of the beads should be one bead per 5x5 to 10x10 pixels under a 40x objective lens. 

2. Acquire a bead image underneath a cell using a 40x objective lens.  The image should be focused 

near the surface of the substrate.  The cell should be entirely within the imaging.  Also acquire a 

phase contrast image of the cell that shows cell border clearly.   

3. Without changing the position of the sample, remove the cells (e.g., with trypsin solution), and 

acquire a bead image after moving the cell and its traction forces.   

4. Place the two bead images in a stack in ImageJ (Image->Stacks->Images to Stack.  The first slice 

of the stack should be the bead image after cell removal. 

5. Align the two bead images as much as possible based on a motif of beads far away from the cell.  

See for example https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin/tuto2  

6. Crop the two bead images at identical locations to a square shape of NxN pixels where N must be 

a multiple of 104, 160 or 256.  The cell should be entirely within the cropped area with a margin 

of 10-20 pixels all around.  The multiplication factor should be between 5 and 10.  If this is not 

possible due to the limited number of camera pixels, then crop the image to a multiple of 52, 80, 

or 128 pixels. 

7. Crop the phase contrast image in the same way without including it in the stack.  Using the 

polygon selections tool of ImageJ, trace cell border in the phase contrast image as a single closed 

polygon.  Save the trace as "XY Coordinates …", to generate a text file with X coordinates 

occupying the first column and Y coordinates occupying the second column. 

8. Run ImageJ Plugins -> PIV -> iterative PIV (Basic).  See the attached example for setting 

parameters.  PIV3 interrogation window size should be 2x the multiplication factor in step #6.  

PIV2 interrogation window size should be 2x PIV3 interrogation window size, and PIV1 

interrogation window size should be 2x PIV2 interrogation window size.  Search window size 

should be 2x to x the corresponding PIV interrogation size. 

9. Run the function pivToDspl in the piv-fttc folder of the package, in the format of dspl = 

pivToDspl (pivFn, sz, spacing) where pivFn is the file generated by the above plugin, sz is N for 

an NxN output array of PIV, spacing is the multiplication factor in step #6.  An (N/spacing) 

(N/spacing) x 2 dense array should be created in the Workspace, where the first plane carries X 

components of the displacement and second plane carries Y components.  
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10. Run the function txtToBrd to generate the array for cell border, in the format of [brdx, brdy] = 

txtToBrd (brdFn, sz, spacing), where brdFn is the file of cell border generated in step #7, sz is the 

size N of NxN image used for tracing, spacing is the multiplication factor in step #6. 

11. Run the function filtDspl in the main folder, in the format of dsplFilt = filtDspl(dspl, brdx, brdy, 

15, 3, 9, 3.5), where dspl is the tensor generated by step #9, brdx and brdy are border coordinates 

generated by step #10.  The last four arguments control the noise filtration behavior and may be 

optimized by trial and error.  The first argument (15) is the distance from cell border separating 

the near and far field.  The second and third arguments (3, 9) specify the orders of median filter 

for filtering the near and far displacement fields.  The last argument is a filtration threshold for 

the gradient of displacements, applied throughout the displacement field.  If a displacement 

vector shows a drastic change relative to neighboring displacements, then it will be replaced with 

the average of neighboring vectors. 

12. If the displacement field from #9 is at half size (52x52, 80x80, or 128x20 pixels), then generate 

full-size field from the output of step #11, using MATLAB interp2 function.  See the short 

program 80To160.m as an example for generating 160x160 displacement field from a 80x80 

field.  Also generate the corresponding border coordinates by repeating step #10, using a spacing 

that is half that in step #6. 

13. Run the function predictTrac in the main folder, in the format of trac = predictTrac(dspl, E), 

where dspl is the filtered displacement field from step #12, E is Young's modulus of the substrate.  

The output, trac, is a tensor of traction stress field of the same size as displacement tensor, where 

the first plane carries X components of the stress and second plane carries Y components. 

14. Traction stress field may be visualized using the plotTrac function in the main folder, in the 

format of plotTrac(trac,brdx,brdy,scale,thinning), where trac is the traction tensor generated by 

step #13, brdx and brdy are border coordinates generated by step #10 or 12.  The argument 

"scale" controls the lengths of vectors and thinning allows a lower density to be plotted than 

plotting at every pixel. 




