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Abstract
Purpose As a part of an ongoing project to develop com-
puterized training tools for cryosurgery, the objective of the
current study is twofold: to compile literature data on the like-
lihood of cancer tumor growth and its effect on the prostate
shape and to present a deformation scheme for a 3D organ
template in order to generate clinically relevant prostate mod-
els. The long-term objective of this study is to develop a
database of prostate models for computerized training.
Methods Cryosurgery is typically performed on patients
with localized prostate cancer found in stage T3 or earlier.
The distribution of key geometric features likely to be found
in the prostate at stage T3 is integrated into a 3D prostate
template by employing the extended free-form deformation
(EFFD) method. The applied scheme combines two steps:
pre-selecting a set of geometric parameter values and manip-
ulating the lattice control points until the prostate model
meets the desired criteria.
Results Examples for model generation are displayed, based
on two 3D prostate templates previously obtained from ultra-
sound imaging. These examples include selected cases with
unilateral and bilateral stage T3 tumor growth, suitable for
incorporation into a training database.
Conclusions EFFD is an efficient method for rapid genera-
tion of prostate models. The compiled criteria for model gen-
eration do not lead to a unique shape since the contours for
template deformation are randomly selected. Nevertheless,
these criteria do lead to shapes resembling cancer growth, as
various growth histories can lead to a tumor characterized by
the same key parameter values.
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Introduction

Cryosurgery is the destruction of undesired tissues by freez-
ing. Minimally invasive cryosurgery is often performed by
strategically placing an array of cryoprobes within a pre-
specified target region. In prostate cryosurgery, the target
region can be the entire gland or a portion of it [1]. Key to
cryosurgery success is the selection of a cryoprobe layout
that maximizes destruction to the target region while min-
imizing cryoinjury to surrounding healthy tissues. An ideal
cryoprobe layout would create a three-dimensional (3D) ther-
mal field such that a selected isotherm matches perfectly to
the outer surface of the target region. The selected isotherm
could be the onset of freezing—closely related to the visual-
ized frozen region by means of medical imaging, the lethal
temperature—a temperature threshold below which maxi-
mum destruction is achieved or any other clinically relevant
temperature [2].

Currently, cryoprobe placement is an art held by the cryo-
surgeon, based on the surgeon’s own experience and accepted
practices. Sub-optimal cryoprobe layout may leave areas in
the target region untreated, lead to cryoinjury to healthy sur-
rounding tissues, require an unnecessarily large number of
cryoprobes, increase the duration of the surgical procedure,
and increase the likelihood of post-cryosurgery complica-
tions, all of which affect the quality and cost of the medical
treatment [3]. While early sporadic studies have been pre-
sented to optimize the cryoprobe layout [4–6], those stud-
ies have been based on traditional optimization techniques,
where the associated computation cost prohibited reduction
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to clinical practice. More recently, two alternative optimiza-
tion techniques have been developed, known as force-field
analogy [7] and bubble-packing [8–10], which accelerated
the optimization process tremendously. Combined with an
efficient numerical technique to simulate the bioheat trans-
fer process of tissue freezing [11], computerized planning is
closer than ever before to become a clinical reality.

While improved computation techniques, optimization
methods, and computer hardware are likely to have an
impact on computerized planning, an extension of this line
of research can lead to computerized training and educa-
tion associated with cryosurgery [12–14]. One can envision
a virtual cryosurgery setup, where a trainee practices creat-
ing an optimal 3D thermal field to conform to a particular
organ shape at various stages of cancer. Such a comput-
erized tool may enable case studies of “what-if” scenarios
and even reevaluation of past clinical procedures via a cryo-
surgery database. A computerized training tool is expected
to shorten the clinician’s learning curve, while providing a
wider perspective on thermal effects and clinical practice.
It has become the mission of the current research team to
develop the building blocks necessary to make computerized
training of cryosurgery a practical reality.

Beyond adequate computer resources, computerized train-
ing necessitates three key elements: a simulator of the pro-
cedure, a tutor to provide feedback on specific simulated
cases, and a database to store case-specific information. The
mainstay of the above key elements is the availability of high-
quality organ models of candidates for cryosurgery [15]—the
objective of the current study. The long-term goal in this line
of study is to develop a database representative of the patient
population undergoing cryosurgery. One approach to repre-
sent an abnormal growth of a prostate due to cancer tumors
is by selecting a normal prostate model—a template—and
deforming it to correspond with the progression of the dis-
ease. The challenges associated with generating a prostate
model from a template originate from the intrinsic asymme-
try of the organ and the variability in growth patterns exhib-
ited in the population of prostate cancer patients. The current
study is aimed at developing a computational technique for
deforming a template model using extended free-form defor-
mation (EFFD), while proposing a systematic approach for
generating a database that is reflective of the prostate cryo-
surgery patient population.

Prostate cancer and tumor growth

Cancer staging is one of the primary prognostic measures
used to determine an appropriate course of treatment. Pros-
tate cancer is most often staged using the TNM classification
system [16], which characterizes the severity of cancer based
on the extent of the primary tumor (stage T), lymph nodes

involvement (stage N), and metastasis (stage M). The T stage
is further divided into four sub-stages: T1 and T2 correspond
to cancer confined to the prostate gland; T3 corresponds to
cancer tumors that have extended through the prostatic cap-
sule and/or into the seminal vesicles, but have not spread
into nearby tissue or organ; and T4 corresponds to cancer
tumors that have spread into adjacent tissues. Cancer is con-
sidered to be localized if it is at stage T3 or lower and has not
metastasized to local (N0) or distant lymph nodes (M0). The
distribution of geometric features that are commonly found
in the prostate at T3-stage cancer is presented below, where
cryosurgery is typically performed on patients with stage T3
cancer or earlier [1,17,18].

The approach proposed in this study for determining crit-
ical tumor characteristics is based on surface changes caused
by cancer penetrating through the prostatic capsule. Never-
theless, cancer confined within the capsule has the poten-
tial to alter prostate geometry, even in the early stages of
cancer as T1 and T2. Tumors typically grow by invad-
ing adjacent tissue, which can replace glandular tissue, dis-
place glandular tissue, or a combination of both [19], where
glandular tissue displacement may also affect the prostate
shape. Furthermore, prostate cancer can be multifocal, which
presents a challenge in analyzing cancer-related prostate con-
tour changes, as the overall shape of the organ may be affected
by different deformation mechanisms at various locations.

Tumor size and location are the primary considerations for
prognosis and subsequent selection of treatment. However,
little attention has been paid to determining the relationship
between tumor growth type and prostate shape changes. To
the best of our knowledge, since prostate cancer treatments
are mostly focused on excision, resection, or destruction of
the tissue in situ, the effects of cancer growth type on the
prostate shape have never been studied before. In a multi-
focal cancer, the primary tumor (i.e., the largest tumor) is
most frequently used to define the cancer stage. About 80 %
of non-primary tumors are of small volume (defined as less
than 0.5 cc) and low grade (cells poorly resemble cancer cells
according to the Gleason score), indicating that most of the
non-primary tumors may not call for clinical intervention
[20]. Relative to the average volume of the candidate pros-
tate for cryosurgery (about 35 cc), those tumors would have
negligible effects on the prostate shape.

It is noted that describing prostate geometry changes
solely based on cancer growth is challenging as prostate
cancer is often diagnosed in older men, with two-thirds of
the cases above 65 years old [21]. This may further compli-
cate the analysis of prostate shape changes since the prostate
tends to enlarge with age naturally, but may also enlarge as
it becomes more susceptible to other prostatic diseases such
as benign hyperplasia [22]. In the current study, character-
ization of critical geometric features that affect a T3-stage
prostate is based upon the assumption that only the primary
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Fig. 1 Sectioned prostate template used in the current study to identify
areas of cancer growth: a an isometric view and b top view showing the
neurovascular bundle and superior and inferior pedicle. The notation

on the x-axis refers to the patient’s left and right, as it would be viewed
by the clinician

tumor experiences extra-capsular extension (ECE). Here, the
T3-stage cancer can be further classified as unilateral ECE,
bilateral ECE, or spread into the seminal vesicles [23]. Only
unilateral ECE and bilateral ECE are considered in the cur-
rent study, since cryosurgery is routinely performed on pros-
tates in which cancer is confined to the gland.

It has been observed that 68 % of cancer tumors are found
in the peripheral zone of the prostate [24], which correlates
with about 70 % of the prostate total volume [25]. Since the
majority of tumors are found in the peripheral zone, clinical
data used in the current study are restricted to cancer origi-
nating from this area, whereas follow-on studies are planned
to address the remainder of the prostate. With reference
to Fig. 1, peripheral-zone cancers typically spread laterally
(x–y plane) along the nerve branches toward the posterolat-
eral capsule, and vertically (z-direction) toward the superior
pedicle along the base [26]. Therefore, shape changes in the
current study are further restricted to the posterior mid-region
and the base.

McNeal and Haillot [27] investigated 571 prostates
removed during radical prostatectomy to evaluate cancer
growth patterns relative to cancer volume. Each prostate was
dyed, preserved (fixed in formaldehyde), and then cut into
3-mm-thick slices along the transverse plane. Each slice was
examined by means of microscopy to trace tumor and rel-
evant prostate boundaries. Tumors were sorted by zone of
origin and by tumor volume. Measurements related to tumor
location (sub-capsular invasion) within the transverse plane,
percent of prostate base and apex replaced by cancer, extent
of tumor capsular penetration, and tumor volume were cal-
culated using computer planimetry. Each measurement was
taken on the transverse plane.

The results presented by McNeal and Halliot [27] do not
fully describe the geometric effects of cancer on the pros-
tate surface, but provide the values for key parameter listed

above, as cancer tumors may take arbitrary shapes. Sub-cap-
sular invasion relative to tumor volume are summarized sep-
arately from tumor extension at the prostate base relative
to tumor volume. However, the combined effects of tumor
sub-capsular invasion and tumor extension at the base rel-
ative to the tumor volume have not been specified. Based
on that study, it follows that one may predict the percentage
of tumors of a specific volume that occur at a specific loca-
tion, but may not know the likelihood of all possible tumor
volumes occurring at the same location. Additionally, the
location of tumor extension on the transverse plane has not
been clearly assessed.

Figure 2 displays the statistical distribution of extra-cap-
sular extension (ECE) based on tumor volume and tumor
location, as compiled in the current work from the study of
McNeal and Halliot [26], while integrating the topographi-
cal anatomy of periprostatic and capsular nerves, as quanti-
fied by Ganzer et al. [28]. The compiled data presented in
Fig. 2 serve as the mainstay in developing a strategy to con-
struct a database for candidate prostates for cryosurgery (up
to T3-stage cancer). Selection of model parameters for dem-
onstration purposes in the current study is presented below,
whereas database construction is a task left to be performed
in concert with the tutoring code development [12,14].

For demonstration purposes, two healthy prostate tem-
plates are used in the current study that represent the average
and the maximum prostate volume of cryosurgery patients,
35 and 50 cc, respectively. McNeal and Haillot [27] found that
ECE was more prevalent in tumors larger than 4 cc; therefore,
this study assumes that a prostate at T3-stage cancer is likely
to have tumors larger than 4 cc. For those tumors, ECE was
observed primarily at the base of the prostate and was most
frequently associated with cancer spread extensively along
extra-prostatic nerves of the superior pedicle (see Fig. 1b).
Consistent with the specific volume information presented in
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Fig. 2 Statistical distribution of extra-capsular extension (ECE) based on tumor volume and tumor location selected in the current study for
database generation; data were compiled from [27,28]

[27], three representative tumor volumes are selected in the
current study: 7, 10, and 14 cc. The relative distribution of
each of those representative tumor volumes in the stage T3
cancer patient population is unknown, as there is no direct
correlation between tumor volume and cancer staging. In the
absence of more specific information, the model presented in
this study does not assume higher likelihood of finding any
particular tumor volume in stage T3 cancer. Furthermore, the
primary concern in constructing a prostate model for cryosur-
gery planning is capturing surface changes that result from
the extra-capsular tumor extension, and therefore the actual
tumor volume is of lower importance since majority of the
tumor lies within the prostate.

Location and extent of prostatic capsular extension are
further attributed to each representative tumor volume, as
displayed in Fig. 2. Tumor location is determined by its sub-
capsular invasion, which can be either unilateral or bilateral.
Unilateral tumors are characterized by tumor sub-capsular
invasion extending to and slightly beyond the midline. For
these tumors, ECE remains on the lobe of origin. Bilateral
tumors are further divided into two groups: asymmetric ECE
and symmetric ECE. Asymmetric ECE extends past the mid-
line, but is primarily on the lobe of origin. Symmetric ECE
is defined by tumor extension beyond the prostatic capsule
on both lobes. For each tumor volume, 22, 26, and 52 %
of occurrences were found to have unilateral ECE, bilateral-
asymmetric ECE, and bilateral-symmetric ECE, respectively
[27,28]. Both sub-capsular invasion and extra-prostatic nerve
distribution were used to tabulate the ECE location percent-

ages because cancer tends to spread along the extra-prostatic
nerves.

For peripheral zone cancer, three base ECE configura-
tions are possible: (1) left or right unilateral, (2) left or right
bilateral-asymmetric, or (3) bilateral-symmetric. Tumors are
equally likely to originate from the left or the right lobe [29].
Each ECE configuration at each location is associated with a
transverse span along the prostate perimeter, based on extra-
prostatic nerve distribution. Ganzer et al. [28] took transverse
slices of prostate specimens, which were removed during
non-nerve-sparing radical prostatectomy and dissected them
into 12 evenly spaced sections in order to determine the extent
of extra-prostatic nerve surface area within each section. The
same sectioning scheme has been adopted in the current study
to match each ECE configuration with a transverse span. Each
span is composed of a set of sections that encompass the
prostate perimeter with respect to the tumor location, where
extra-prostatic nerves are likely to be found. It follows that
for each ECE configuration, the corresponding transverse
span defines the area along the prostate surface where ECE
is likely to be found.

Figure 3 displays a transverse cross section (x–y plane) of
the prostate template divided into 12 sections. The transverse
spans coupled with left unilateral and bilateral-asymmetric
ECE configuration are associated with section numbers
2–6 and 2–8, respectively; right unilateral and bilateral-
asymmetric ECE configuration are associated with section
numbers 7–11 and 5–11, respectively. Sections 2–11 are asso-
ciated with the transverse span of bilateral-symmetric ECE

123



Int J CARS

Fig. 3 Transverse sectioning of the prostate, where S represents
regions along prostate base with highest extra-prostatic nerve density,
found in the posterolateral ends of the prostate as displayed in Fig. 1

configurations. The section pair labeled with S represents the
region with the highest concentration of nerves to surface
area, which correlates with 84.1 % of the total extra-prostatic
nerve surface area [28]. Based on the ECE location, tumors
are likely to penetrate the capsule wall along the transverse
span with maximum extension in region S.

For each ECE location, the likelihood that a tumor will
extend beyond the prostate capsule are 48 and 52 % for
extensions of 0–3 mm and 3–10 mm, respectively [27]. The
percentage of 7, 10, and 14 cc tumors calculated to extend
0–3 and 3–10 mm beyond the prostate capsule for each ECE
location is presented in Fig. 2. Based on the data summa-
rized above, critical tumor features—ECE location and ECE
length—were selected for the development of a prostate-
model database for cryosurgery candidates.

Computational technique

This study applies extended free-form deformation (EFFD)
on a 3D prostate template, using a modified computational
technique [30]. The EFFD method is an extension of Sed-
erburg’s free-form deformation (FFD) method [31], where
the deformation is applied to the space in which an object is
embedded, rather than directly to the object.

Numerous studies have developed computational methods
that apply FFD to a template object, to create patient-specific
3D anatomical models based on a set of 2D medical images
such as those obtained from CT, MRI, SPECT, and X-ray
[32–35]. In these studies, FFD is applied through an optimi-
zation process to minimize either the distance or the cross-
sectional area difference between contours found on the 2D

images and the deformed model contour. Little attention has
been paid to integrating clinical data into modeling of the
prostate in order to create the exact shape of the cancerous
prostate. In the current study, we attempt to generate realistic
geometric models that are likely to be encountered by clini-
cians in typical cases of prostate cryosurgery. The current
study uses EFFD and can be viewed as an extension of our
pervious exploratory study [13], which employed the basic
FFD method. Furthermore, our previous study [13] did not
incorporate ECE nerve distribution to determine the likeli-
hood of lateral tumor ECE location, nor did it include criteria
for successful deformation.

The FFD method is presented here in brief, for the com-
pleteness of presentation. With reference to Fig. 4a, a local
coordinate system is imposed on a parallelepiped region
which can be used to describe any point X in the unit volume
by:

X = X0 + sS + tT + uU (1)

where X0 is the origin of the local coordinate system; S, T ,
U are unit vectors of the local coordinate system; and s, t ,
and u are given by:

(s, t, u) =
(

T × U · (X − X0)

T × U · S
,

S × U · (X − X0)

S × U · T
,

S × T · (X − X0)

S × T · U

)
(2)

where s, t , and u are in the range of 0 and 1.
A set of control points, Pi jk , are imposed on the parallel-

epiped region, where l, m, and n are the number of subdivi-
sions along each of the unit vectors S, T , and U , respectively:

Pi jk = X0 + i

l
S + j

m
T + k

n
U (3)

The control points are moved, and the displaced object ver-
tices are determined using the trivariate Bézier function:

X f f d (s, t, u) =
n∑

i=0

m∑
j=0

l∑
k=0

Pi jk Bn
i (s) Bm

j (t) Bl
k(u) (4)

where Bn
i (s) is the Bernstein polynomial given by:

Bn
i (s) =

(
n
i

)
si (1 − s)n−i (5)

Although FFD is a powerful modeling technique, its main
disadvantage is that the types of deformation that can be
created are restricted by the parallelepiped shape of the lat-
tice. The FFD method discussed in this paper refers to the
case where the entire object is embedded in a single control
grid and the FFD deforms the object globally; here, one con-
trol point movement affects the entire surface of the object.
By contrast, EFFD allows the user to create localized defor-
mations of an arbitrary shape on the object surface [36].
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Fig. 4 Tetrahedral lattice is formed by merging two sets of points on the parallelepiped lattice. Circle is an unchanged control point. Square and
triangle control points are merged

Non-parallelepiped lattices can be designed specifically for
the deformation desired. The EFFD lattice is comprised of
multiple FFD lattice structures. The object is embedded in the
EFFD lattice, and deformation is passed only onto the object
surface that lies within the individual FFD lattices associated
with the displaced control point.

A spherical EFFD lattice composed of tetrahedral lattices
was selected to deform the prostate-model template. A tetra-
hedral lattice is obtained by merging two sets of points of a
parallelepiped lattice, as shown in Fig. 4. The primary chal-
lenge with implementing EFFD is calculating the parameter-
ized coordinates (s, t, u) of the object in a non-parallelepiped
space. Coquillart used a Newton approximation to calculate
the coordinate [36]. MacCracken and Joy presented a FFD
technique, which uses arbitrary lattices, namely, Catmull-
Clark subdivision volumes [37]; but the lattice space defini-
tion is time-consuming and difficult, requiring a great deal
of CPU time and memory. Xiao used a projection technique
to calculate the parameterized coordinates in a cylindrical
space [38]. The projection method has been modified in the
current study to calculate the (s*, t*, u*) coordinates in a tet-
rahedral lattice, an intermediate step in obtaining the (s, t, u)
coordinates. The coordinate mapping process in the current
study is described in the following steps:

1. Determine the center point of the triangle (tetrahedron
face) that lies on the S*T* plane.

2. The line that connects the center point to the tetrahedron
corner point in the center of the spherical EFFD lattice
can be defined. The point can be projected onto this line.
Calculate u from the ratio between the entire line length
and the length obtained by the projected point.

3. Determine the triangle parallel to the S*T* plane, formed
at the u coordinate of the point. Define the base and
height of the triangle to be parallel to S* and T* axes,
respectively.

4. Determine the width of the triangle at the point. Calcu-
late s from the ratio between the width and the length
obtained by projecting the point onto the width.

5. Project the point onto the triangle height. Calculate t from
the ratio between the length of the height and the length
obtained by the projected point.

Using the projection method, the object vertices (s*, t*,
u*) encompassed by the tetrahedron are mapped onto a rect-
angular solid, forming one-half of the parallelepiped lat-
tice. The (s, t, u) coordinates are obtained by calculating
the parameterized coordinates with respect to the entire par-
allelepiped lattice. Each control point moved is translated
onto the parallelepiped lattice. The Bézier function can then
be applied to determine the displaced object vertices in the
parallelepiped space. The final deformed object vertices are
obtained by mapping the displaced object vertices, calculated
in the parallelepiped space, back onto the tetrahedron.

The spherical lattice is composed of 80 tetrahedrons and
has 42 control points. Each tetrahedron is defined by 64
points; however, only 3 of the 4 corner control points are used
to manipulate the object surface. The EFFD lattice is formed
by merging the matching control points on neighboring tet-
rahedrons. Each control point moved on the EFFD lattice
displaces adjacent control points within the corresponding
lattice, as shown in Fig. 5. This maintains a smooth con-
tour between surface deformations made from neighboring
control points of the EFFD lattice.

The template 3D prostate shape is represented as a closed
shell of a polygonal mesh, consisting of a set of vertices and
a set of triangular faces. It is important that there be no gap
or overlap between faces. Any gap or overlap will make it
impossible to create a quality mesh for finite-element-based
cryosurgery simulations. Also, the resolution of the template
prostate should be sufficiently fine so that small features of its
shape will still be visible after the template prostate geometry
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Fig. 5 Control point movement within each tetrahedral lattice. a A
section of the spherical extended free-form deformation (EFFD) lattice
with surface control points. Large black dots represent the control points
available for manipulation, and small black dots represent the remain-

ing control points within each tetrahedral lattice. b EFFD is carried out
for each control point movement by displacing the neighboring control
points (gray dots) an equal amount within each tetrahedral lattice

is deformed. The current template polygonal model consists
of 581 vertices and 1,158 triangular polygons.

Deformations are carried out on a GUI, allowing the user
to manually displace control points and instantaneously view
the applied deformation on the template model. Figure 6
displays the basic framework of the code used to gener-
ate deformed prostate models along with the required user
inputs. Deformation criteria used to generate prostate mod-
els are consistent with Fig. 2. Deformation is restricted to
the posterior base and mid-region; therefore, only control
points normal to these regions are moved. Starting from the
distal end of the prostate template, the apex is defined to be
9 mm thick, mid-region is 18 mm thick, and the remaining
volume is the base [27]. Both templates of 35 and 50 cc are
sectioned in the same manner. For each deformed model, the
volume, maximum ECE length and location are calculated.
The ECE length is defined as the distance between the trans-
verse template contour and deformed model contour. Given
the iterative process of correlating linear movements of con-
trol point with volume deformation, successful deformation
is considered when the deformed model meets the criteria
listed in Fig. 6.

Results and discussion

The study of key parameters of tumor ECE presented by
McNeal and Haillot [27] is unique and comprehensive, but
provides only key geometrical features relevant to the current
study: the location of the maximum extension, its magnitude,

and the plane on which its maximum extension was mea-
sured (always in the transverse direction). This informa-
tion is extremely significant for prostate cryosurgery, as the
trans-rectal ultrasound (TRUS) transducer, commonly used
to monitor prostate cryosurgery, provides raw imaging infor-
mation on the same plane. Further qualitative information by
McNeal and Haillot [27] suggests that the pattern of tumor
growth correlates very well with the neural system of the
gland. The topographical anatomy of periprostatic and cap-
sular nerves have been thoroughly studied by Ganzer et al.
[28], which enables us to link the tumor growth patterns with
specific areas of the prostate, as summarized in Fig. 2.

When presenting a computational technique for geometri-
cal representation of an organ, a comparison of results with a
“ground truth” model would be highly commendable. Unfor-
tunately, the actual shape of prostate tumors is not available in
the literature. Not surprisingly, the actual shape of the extra-
capsular portion of the tumor is not reported in the literature;
typical of cancer growth, the tumor contour may take virtu-
ally an infinite number of shapes. Hence, a “ground truth”
model for the deformed ECE is nonexistent. Accordingly,
one of the modeling objectives in the current study is to meet
the experimental pathology parameters measured by McNeal
and Haillot [27], while taking into account the likelihood of
finding a tumor in specific areas of the prostate (Fig. 2). The
credibility of the captured ECE in the deformed models can
be evaluated by consultation with imaging experts, urolo-
gists, pathologists, or oncology experts, as routinely done
by the current research team. More discussion on the topic
is included at the end of the current section, along with an
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Fig. 6 A flow chart for the process of creating a prostate model from
a prostate template

outlook on how the developed model may be integrated with
cryosurgery training.

As described in the “Prostate cancer and tumor growth”
section, two deformed models are presented in this section
to demonstrate the application of the mathematical model,
using a graphical user interface created with Matlab. The
template for deformation has been developed in a previ-
ous study focusing on computerized planning of cryosurgery
[8]; these templates have been created from 3D ultrasound
data. Figure 7 displays a deformed model with right unilate-
ral ECE. A 35cc template model was deformed to a volume
of 36.8 cc. The selected ECE for this deformation was in
the range of 3–10 mm (Fig. 2), where emax, defined as the
maximum distance between deformed contour and template
contour on any transverse plane, received a value of 5.3 mm.
Figure 7b displays the transverse cross section of the pros-
tate at emax. The highlighted region represents the maximum
transverse span for the selected tumor location. The total ECE
is confined to the transverse span specified for right unilate-
ral ECE, with emax located in the lateral region. Figure 7c
shows that emax is located at the base of the prostate model,
at z = 17 mm.

Figure 8 displays a deformed model with symmetric ECE
for the selected base ECE range of 0–3 mm. A 35cc template
model was deformed to a volume of 36.9 cc. Figure 8c con-
firms that emax, 2.5 mm, is located at the base, at z = 11 mm.
The total ECE is located within the maximum transverse span
for the tumor location selected, and emax is stationed in the
lateral regions, as shown in Fig. 8b.

Figure 9 displays three examples of deformed models rep-
resenting worst-case scenarios for prostate cryosurgery, hav-
ing maximum ECE, emax, of 10 mm (Fig. 2). In general, the
overall complexity of the prostate geometry increases with
the extension size, making the cryosurgery procedure more
challenging. The models in Fig. 9a, c exhibit left unilate-
ral ECE and right bilateral-asymmetric ECE, respectively.

Fig. 7 An example of a prostate model created by the Tutor, following
the flow chart illustrated in Fig. 6: a 3D view of right unilateral ECE, b
transverse contour on a cross section at a depth of 17 mm, and c radial

contour defined as the cross section perpendicular to the transverse plane
along the maximum ECE
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Fig. 8 An example of a prostate model created by the Tutor: a 3D view of symmetric ECE, b transverse contour on a cross section at a depth of
11 mm, and c radial contour defined as the cross section perpendicular to the transverse plane along the maximum ECE

Both were created using an initial template volume of 50 cc,
eventually leading to deformed volumes of 51.9 and 52.2 cc,
respectively. The model displayed in Fig. 9e was created from
a 35cc template, eventually resulting in a volume of 38cc,
after demonstrating a bilateral-symmetric ECE.

These models were generated by first selecting the desired
deformation parameters—base ECE range and ECE loca-
tion—and then manipulating the lattice control points until
the deformed prostate-model ECE length and transverse span
fell within the selected range. It is noted that the selected cri-
teria for deformation do not lead to a unique deformed body.
Interestingly, different cancer growth histories may also lead
to a similar outcome of a specific size but different local fea-
tures. Hence, a random deformation approach is selected to
guide database construction, which is consistent with that of
tumor growth. Randomized parameters are emax, transverse
span and of the deformed region, and contour of the deformed
region.

While the general technique used to deform the template
model is well established, an original contribution in this
research is in integration of prostate geometry with prostate
cancer growth pattern and tailoring the deformation tech-
nique to generate the specific prostate models. The objective
in the current study is to replicate the experimental results,
with an emphasis on tumors at T3-stage cancer, by using
the computational technique outlined above in the particular
plane that the experimental data were measured. As dis-
cussed in the previous section, similar computational tech-
niques [32–35] have been developed to generate 3D models
of anatomical structures, using datasets composed of multi-
ple 2D medical images containing cross sections of the tar-
get structure. In these studies, deformation is guided by an
optimization process that aims at minimizing the distance or
cross-sectional area difference between the 2D image con-
tour and the model contour at the corresponding plane. In
the current study, such detailed information is not available,

and therefore, optimization is not integrated into the current
modeling process. In the current study, the problem is under-
constrained, and there is an infinite number of deformation
patterns that could give the same distance or cross-sectional
area difference. Hence, there is no guarantee that any other
method from the literature will produce superior results for
the purpose of quantitative comparison.

Lastly, an outlook on the integration of the proposed
method with thermal surgery training is briefly discussed.
A key difficulty in cryosurgery simulations and training is
the lack of a credible target region to be destroyed by freez-
ing [15]. This difficulty is not unique to cryosurgery sim-
ulations and training, but common in the training of other
minimally invasive energy-based therapies, such as brachy-
therapy (local radiation therapy using radiation seeds), local
hyperthermia by means of laser probes, thermal ablation by
means of high-frequency ultrasound (HIFU), and the emerg-
ing application of hyperthermia using nanoparticles in an
alternating magnetic field.

While the development of a training software is a major
challenge, far extending the scope of the current study, three
relevant key issues are inherent to the minimally invasive
energy-based therapies listed above: (i) identifying the guid-
ing principles to treat a typical target region (the prostate
base case in the current study), (ii) exploring how the target
region may evolve with the progression of the disease, and
(iii) evaluating how changes in the target-region shape with
the progression of the disease may affect the practice of the
specific minimally invasive procedure.

While many criteria affect the success of minimally inva-
sive cryosurgery, it is typically associated with matching
some planning isotherm with the target-region shape, such as
the onset of freezing, completion of freezing, or the so-called
lethal temperature—a temperature threshold below which
maximum destruction is achieved. In brachytherapy, a radi-
ation dose region is typically matched with the target-region
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Fig. 9 Selected case study results. Case I represents a deformed 50 cc
prostate template with left unilateral ECE: a top view and b correspond-
ing transverse cross section at maximum ECE. Case II represents a
deformed 50 cc prostate template with right bilateral-asymmetric ECE:

c top view and d corresponding transverse cross section at maximum
ECE. Case III represents a deformed 35 cc prostate template with sym-
metric bilateral-asymmetric ECE: e top view and f corresponding trans-
verse cross section at maximum ECE
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shape. Similarly, a thermal dose region is typically matched
with the target-region shape in hyperthermic applications.
Surgical planning of all of the above applications relies on
computer simulations.

The computational method proposed in the current study
can be integrated into computerized training in three pri-
mary ways: (i) to enable a “walk-through” demonstration of
changes in the gland with the progression of the disease, (ii)
to enable demonstration of how changes in the target-region
shape affect changes in the energy sources layout (cryop-
robes in the case of cryosurgery for example), and (iii) to
create a database of prostate models having the same statis-
tical distribution of candidates for the particular thermal sur-
gery. For the latter application, automation can be employed
in creating template deformations. For the latter two applica-
tions, computer-generated surgical planning [3,7–15] can be
compared with interactive trainee operation, where the dif-
ferences are automatically quantified, while the entire pro-
cess is monitored by an experienced clinician. Either way,
medical training is not perceived as an independent study,
and the presence of an experienced surgeon should provide
additional feedback on the virtual operation, including the
credibility of the computer- generated shapes.

Conclusions

This study presents a review of critical geometric varia-
tions commonly found in patients with prostate cancer, with
emphasis on T3-stage cancer, which represents the candi-
date population for prostate cryosurgery. The cancer growth
pattern was characterized to provide basic guidelines for
deforming a prostate template to develop clinically relevant
3D prostate models, in efforts to establish a training database
representative of the patient population undergoing cryo-
surgery. The EFFD method was demonstrated as an effec-
tive computational technique for generating these prostate
models.

The current study focuses on key geometrical features rel-
evant to the extension of cancer tumors through the prostate
capsule: the location of the maximum extension, its magni-
tude, the spread of the tumor on the prostate surface, and
the plane on which its maximum extension was measured.
This information is extremely significant for prostate cryo-
surgery, as the TRUS transducer commonly used in prostate
cryosurgery provides raw imaging information on the same
plane. Consistent with the random nature of the progression
of the disease, the actual shape of the extended portion of
the cancer tumor is not reported. Hence, a “ground truth”
model for the deformed ECE is nonexistent. Integrating this
random behavior, while maintaining the key geometrical fea-
tures listed above, is perceived as a plausible approach to
describe cancer tumor growth. Nevertheless, the creditabil-

ity of the generated ECE has been discussed with clinicians
in the course of the current study and will be evaluated in
future applications by a mentor/experienced clinician.

It is essential to recognize that the deformation process
involved in generating realistic prostate models has multi-
ple facets. The deformation approach presented in this study
addresses the localized changes that occur as a result of
cancer on the prostate surface. However, in order to fully elu-
cidate the variable shape of the prostate, which naturally dif-
fers from patient to patient, deformation must also be applied
more broadly to include the entire prostate surface. Follow-
up studies are planned to expand the current deformation
approach in the global irregularities of prostate shape and to
broaden the template base used in the current study for dem-
onstration purposes. Demonstrations in the current study are
based on two prostate templates, where more templates will
be included in the actual process of database construction.
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