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ABSTRACT

The extent of injury of biological tissues by freezing is influenced
by many factors such as the cooling rate, the thawing rate, the minimal
temperature achieved, the number of repeated freezing thawing cycles,
and the presence of cryoprotectants. The mechanisms of cryo-
destruction may generally be separated into two groups; the first is
related to the freezing process within the phase transition temperature
range (typically between 0 and -22°C), while the second group is
related to further destruction after phase transition has completed.
Destruction mechanisms of the first group are related to heat transfer,
mass transfer, and chemical equilibrium in the intracellular and
extracellular solutions. Destruction mechanisms after the phase
transition has been completed are related to mechanical stresses in the
frozen state. Mechanical stresses develop when changes in density
occur nonuniformly in the tissue, a consequence of the presence of
temperature gradients. The current presentation gives an up-to-date
report on ongoing research to model the freezing of biological tissues
and to measure their physical properties. The mechanical boundary
condition at the freezing front is emphasized in this presentation, and
examples for typical cases of cryosurgery and cryopreservation are
discussed.

INTRODUCTION

It is well known that freezing biological tissues can introduce
severe damage. Sometimes this damage is intentional and desired, as
in cryosurgery. In other situations, such as cryopreservation, this
damage is an undesired byproduct. Mechanical stresses that develop
during the freezing of biological solutions and tissues have been
identified as one cause of tissue damage. In attempting to simulate
cryosurgery and cryopreservation, mechanical stress development has
been analyzed by a number of researchers (Rubinsky et al., 1980;
Rubinsky, 1982; Lin et al., 1990; Gao et al., 1995; Rabin and Steif,
1996). While mechanical stress is one mechanism of tissue destruction
in cryobiology applications (Ishiguro and Rubinsky, 1994; Hunt et al.,
1994; Gao et al., 1995; Rabin et al., 1996, 1997, 1998), there are other
destruction mechanisms related to crystal growth and to mass transfer
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at the cellular level (Meryman, 1974; Mazur, 1984).

Unfortunately, predictions of mechanical stresses are inconsistent
with one important observation of tissue destruction: in
cryopreservation applications, severe fractures often form at the early
stages of thawing and not as commonly expected during freezing
(Pegg, 1996). Comparable observations in the context of cryosurgical
applications have also been reported (Rabin and Steif, 1999). This
inconsistency has prompted us to re-examine the assumptions
underlying the models of freezing tissues presented to date. It is our
belief, now, that behavior at the freezing front has not been properly
modeled heretofore. Specifically, the deviatoric stress should be zero
at an advancing freezing front. Any (volume preserving) strain that
occurs while the material is still in the liquid state cannot contribute to
the deviatoric stress. Therefore, material which has just solidified at an
expanding freezing front, must start with zero deviatoric stress. We
note that the zero deviatoric stress condition at the freezing front has
been well appreciated by workers in the area of metal solidification
and casting (Boley and Weiner, 1963; Zabaras et al., 1991).

Following this new approach for thermal stress modeling of
freezing tissues, a typical cryopreservation procedure has recently
been analyzed by simulating an inward freezing of a sphere, and a
closed-form solution for this model has been derived. (Rabin and Steif,
1998). This analysis included the condition of zero deviatoric stresses
at the freezing front; that condition, together with a proper accounting
for the hydrostatic pressure that develops in the contained liquid
region, resulted in dramatically different stress distributions during
freezing than had previously been found.

The outward freezing problem simulative of cryosurgical
procedures has also been analyzed, and a closed-form solution for this
model has been derived. Results show that the stress distributions
during the thawing stage are very different than those during freezing.
Furthermore, it is shown that significant stresses remain in the frozen
region during thawing, even in the absence of significant temperature
gradients. The distributions are qualitatively consistent with limited
cracking at the cryoprobe surface during freezing and large scale
cracking during thawing, which were observed during validation
testing of cryoprobes in water and gelatin solutions (Rabin and Steif
1999).
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MATHEMATICAL MODELING

The underlying assumption is that the temperature field is
independent of the solid mechanics problem. Hence the bioheat
transfer problem is solved first, the thermal strains are calculated next,
and the resulted mechanical stresses are calculated last.

Heat Transfer Problem

Two cases are considered here, the first is typical for
cryopreservation and the second is typical for cryosurgery. Heat
transfer during cryosurgery is assumed to be governed by the classical
bioheat equation:

A 1)+ (T-14)

ot

where 7 is the temperature, H is the volumetric enthalpy, & is thermal
conductivity, W, is the production of the blood perfusion and its
volumetric specific heat, and 7} is the blood temperature. The initial
temperature distribution is assumed uniform and equal to the blood
perfusion temperature. In the cryopreservation case, heat transfer is
assumed to be governed solely by conduction, where the blood
perfusion term of Eq. (1) is set to zero.

The heat transfer problem is solved numerically in both cases for
typical thermophysical properties of frozen biological tissues, using
the numerical scheme and parameters presented by Rabin and Shitzer
(1998).

(M

Solid Mechanics Problem

The key physical quantities in the solid mechanics analysis, the
displacements, strains and stresses, are functions of position and time,
just as the temperature. We will be particularly careful in defining
displacements and strains so as to permit a proper accounting for the
stresses which develop in the solid region. Initially, the entire domain
is liquid. This state, prior to cooling, is the initial state (at time ¢ = 0)
from which all displacements and strains are measured. Let a material
point, which is initially at the point r, be located at the point »” at time
t. Hence, r’ is a function of r and of z. The radial displacement, u, is
defined as the change of radial position of a material element, that is:

u(r,t)=r'(r,t)—r )

Notice that all points are liquid at time # = 0, while a point may be
either liquid or solid at time ¢.

Before defining the relations between stresses and strains (the
constitutive relations), one important point needs to be made regarding
the strains. Consider a point » which at time ¢’ has become solid. For
the purposes of defining the stresses, what is its strain? Say that this
element remained liquid up to the time 7", at which time it solidified. In
the time period 0 < ¢ < t*, this element has strained, yet as a fluid, this
strain can occur without stresses. Or, more precisely, strains involving
no volume change (deviatoric strains) occur without stress, while any
change in volume will require a pressure change (inversely
proportional to the compressibility of the fluid). Only the straining that
occur in the period 1" <7<t is to be included in assessing the stress
at ¢’. Hence, it will be necessary to keep track of the strain at which
each element solidifies; only strain occurring thereafter contributes to
deviatoric stress (the stress with the pressure subtracted off).

This background indicates the necessity of separating the stress
components into two parts, the deviatoric stress S;; and the hydrostatic
pressure p, in the standard fashion:
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ciji=Si—Pdj (3)

Likewise the strains must be split into deviatoric e;; and hydrostatic e
parts according to:

gy~ ejt—eody “)
3

Since the strain-rate time the fluid viscosity is negligible
compared to elastic stresses, the unfrozen region can sustain
hydrostatic pressure only. This pressure has to be essential uniform,
otherwise rapid flow would occur.

Consider now the solid region. As pointed out above, it is
necessary to keep track of how much straining occurs after
solidification. With that idea in hand, though, it is still necessary to
choose an appropriate stress-strain relation for the solid. We take the
tissue to behave elastically. From the above considerations, we can
express the deviatoric stresses in terms of the deviatoric strains as
follows:

*
Sij = 2G(e,-j—e,~j) ®)
where G is the shear modulus, and e,j* is the *deviatoric strain of the
material element just after solidification; e; is a function of the
position . Notice that the total strain at a point r may change with time
as the procedure continues, while the quantity e,j* has a single value at
the point r.

Notice that the material is assumed to be isotropic; consistent
with this assumption, the thermal strains have zero deviatoric part (the
thermal expansion is equal in all directions). The hydrostatic pressure
in the solid is given by:

p=-k(e—em) (6)

where « is the bulk modulus. The thermal strain, e, is the integral
with respect to temperature of the linear thermal expansion coefficient.

Finally, the mechanical equilibrium equation in a quasi-steady
state is applied:

V-o=0 (7

For the cryopreservation case, we assume there to be an upper
limit to the range of elasticity. Thereafter, an elastic-perfectly plastic
model is assumed, in the form of the Mises yield condition:

o —o6|=0,

@®)

The limited elasticity, or plasticity effect, is found to have a major role
in the stress development in the case of cryopreservation. However,
for the cryosurgery case, the solution is developed for a linear elastic
material, where the plasticity was found to have a minor effect.
Applying the appropriate boundary conditions, closed-form
solutions for both typical cases of cryopreservation and of cryosurgery
have been generated based on Egs. (2)-(8). More detail for the
mathematical manipulations is given in Rabin and Steif (1998,1999).



HTD-Vol. 363/BED-Vol. 44

Advances in Heat and Mass Transfer in Biotechnology -1999

MATERIAL PROPERTIES

There are at least 9 known different pure water ice phases
(Fletcher, 1970). Ice I is the most relevant ice phase for the current
study; this is the only phase in which water expands upon freezing.
Solidification of ice I takes place between pressures of 5 kPa and 207
MPa, while the phase transition temperature decreases monotonically
from 0.01°C to -22°C, respectively. At higher pressures water
contracts upon freezing and the freezing temperature increases
continually with pressure (up to at least 4.4 GPa and 440°C). Due to
lack of relevant data for biological materials, the volume strain upon
phase transition is assumed constant, and equal to that of water at
standard conditions of temperature and pressure, that is, de= 0.0907.
Other physical properties are assumed to be constant and uniformly
distributed in each phase; relevant physical properties values for water,
soft frozen biological tissues, and the chosen values for the current
study, are listed in Table 1.

The assumption of equal bulk moduli in the liquid and solid
phases is largely one of convenience. There is much uncertainty
regarding the bulk modulus of ice, although if inferred from measured
elastic moduli and a reasonable value of Poisson's ratio, it may be up
to four times that of water at standard conditions. Choosing diftering
bulk moduli substantially complicates the constitutive description as
well as the solution, since the strain difference at phase change (g-&y)"
will no longer be constant. Since rather strong qualitative conclusions
are arrived at in this paper, we believed it unwise to introduce a second
order effect based on rather uncertain physical properties.

Finally, we note that biological tissues are composite materials
which may have different physical properties in different orientations.
The simplified analysis presented here presumes a homogeneous
material only, which can be identified with, say, the average property
values. The modeling of a biological tissue as a composite material is
beyond the scope of this presentation.

Table 1: Typical properties of polycrystalline ice water and soft
frozen biological tissues

Polycrystalline Frozen Current
Ice Water Biological Study
@ 101.3 kPa Tissues
Poisson’s 0.31-0.36 } 033
Ratio, v (Fletcher, 1970) )
Volume Strain 0.0907 @ 0°C
of Phase (Sohnel and - 0.0907
Transition, Ae Novotny, 1995)
Thermal B,=56.3x10° B1=65x10°
Expansion B>=2.53x107 B,=2.89x107 B1=60x10"
Coefficient: -180<T<0°C -180<T<-20°C B,=2.5x107
B+, T [1/°C] (Powell, 1958) (Rabin et al., 1998)
f/iifitil(l:us . 89-99@-5°C | 14-132@-196°C 10
[GPal ’ (Fletcher, 1970) (Rabin et al., 1996)

RESULTS AND DISCUSSION

A Cryopreservation Case

Since the solution for the elastic response in the solid depends
independently and linearly on the two “driving forces”, that is, the
thermal expansion in the solid state and the volume expansion due to
phase transition, we consider these separately. Case A corresponds to
neglecting the volume expansion due to phase transition and
accounting for a temperature history which is the consequence of
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immersion in dry ice, i.e., a step-like temperature function is imposed
at the sphere outer surface having a magnitude of -79°C (Fig. 1). Case
B, which approximates a typical cryopreservation protocol,
corresponds to maintaining the material at nearly the phase transition
temperature and allowing the phase transition to occur, presuming the
volume strain is that which occurs at standard atmospheric pressure,
i.e., 4e =0.0907 (Fig. 2).
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Figure 1: Deviatoric stress distribution for cryopreservation case
A, where no phase transition volume changes are included
(4e=0; AT=79°C); where s is the freezing front and R is the
sphere radius.
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Figure 2: Deviatoric stress distribution for cryopreservation case
B (4e=0.0907; AT=0); where s is the freezing front and R is the
sphere radius. The dashed line represents the extreme deviatoric
stress in the case of an elastic-perfectly plastic model and a yield
strain of 0.005.
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For physical properties similar to those of water, it can be seen
that the effect of volume expansion upon phase transition is much
more significant than the effect of thermal expansion in generating
stresses, in a typical cryopreservation protocol. Assuming a yield
strain of 0.005 (Rabin et al., 1996) it can be seen that a plastic zone is
likely to occupy most of the frozen region after the completion of the
freezing process. It follows that the attendant potential for tissue
destruction are unavoidable regardless of how slowly the freezing is
carried out, provided there is a substantial expansion associated with
phase transition. It is noted that the phase transition temperature may
significantly decrease during the cryopreservation process, due to the
elevated hydrostatic pressure in the unfrozen region.

A Cryosurgical Case
Parametric studies were performed for a spherical cryoprobe

with radius 2.5 mm for a freezing period of up to 20 min. The
cryoprobe was assumed to be stainless steel, having an average
thermal expansion coefficient of 2x107° °C™!. Typical thermophysical
properties of the biological tissues were assumed (Rabin and Steif,
1999).
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Figure 3: Circumferential strain at various time instants during
freezing and thawing of a cryosurgical procedure, where the
solidus front advances in 1 mm increment between every two
consecutive time instants.

The distributions in the total circumferential stress (normalized
by the elasticity modulus) are depicted in Fig. 3 for a number of
positions of the solidus front. Similarly, the deviatoric stress
components are shown in Fig. 4. The dashed curves correspond to
freezing, and the solid curves correspond to thawing. There is a rather
dramatic difference between freezing and thawing; the stress oy
increases nearly instantaneously from zero to the value of 2x107°E
after thawing commences, when the solidus front has reached 9 mm.
These differences can be attributed to the now proper accounting for
the strain that contributes to stress in the solid phase. As required by
this theory, both stresses are zero at the solidus front during freezing.
By contrast, only the radial stress, g;, is zero at the solidus front during
thawing. The radial stress is always compressive, while the
circumferential stress, oy, can be compressive or tensile.

186

ASME 1999

From these distributions one can draw only qualitative
conclusions regarding failure, since departures from idealized elastic
behavior will eventually occur. For example, the material can deform
plastically with micro-cracks appearing (as found from compression
testing of frozen tissues by Rabin et al., 1996; 1997); under tensile
stresses, one expects macroscopic cracks to form. In either case, the
stress distributions will depart from those predicted here once
plasticity or cracking occur. With this caution in mind, one can see
from the plot of oy that cracks, should they appear during freezing,
will do so near the probe. Since the tensile stress drops off rapidly with
radius, these cracks should be confined to the probe region. This is
observed qualitatively in our experiments. On the other hand, once
thawing initiates there is a rapid rise in the tensile stress in the
circumferential direction, which quickly becomes maximum near the
solidus front. Since the tensile stresses do not drop off rapidly with
radius (they are substantial over much of the frozen region, in contrast
to freezing), one would not be surprised to find cracks throughout the
frozen region; again, this was observed. The radial stress, however, is
always compressive but its magnitude increases significantly during
thawing. Note that the rapid change in deviatoric stress distribution at
the beginning of thawing is associated with extremely high strain
rates; the strength of the frozen material is expected to decrease with
increase in the strain rate.
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Figure 4: Deviatoric stress components during freezing and
thawing at various time instants of a cryosurgical procedure,
where the solidus front advances in 1 mm increment between
every two consecutive time instants.

SUMMARY AND CONCLUSIONS

A new approach for thermal stress modeling of freezing
biological tissues has been presented. The major difference between
the new model and the previous ones is that strains involving no
volume changes (deviatoric strains) are assumed to occur without
stress prior to freezing, while any change in volume requires a
pressure change (inversely proportional to the compressibility of the
fluid). Hence, it is necessary to keep track of the strain at which each
unit volume solidifies; only strain occurring thereafter contributes to
deviatoric stress (the stress with the pressure subtracted off).
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For physical properties similar to those of water and a typical
cryopreservation protocol, parametric studies have shown that the
effect of volume expansion upon phase transition is much more
significant than the effect of thermal expansion in generating stresses.
It has been shown that a plastic zone is likely to occupy most of the
frozen region after the completion of the freezing process. It follows
that the attendant potential for tissue destruction are unavoidable
regardless of how slowly the freezing is carried out, provided there is a
substantial expansion associated with phase transition and no
opportunity for stresses to release.

A parametric study has been performed for typical parameters
and conditions of cryosurgery around a spherical cryoprobe. Results
have shown that the stress distributions during the thawing stage are
very different than those during freezing. Furthermore, it is shown that
significant stresses remain in the frozen region during thawing. The
distributions are qualitatively consistent with limited cracking at the
cryoprobe surface during freezing and large scale cracking during
thawing.
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