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ABSTRACT—Unlike the transient response of a fluid-
immersed thermocouple, and in contrast to common belief,
the time response of a solid-embedded thermocouple is far
from being similar to that of a first-order process. The cur-
rent study arises from efforts to characterize the transient re-
sponse of a solid-embedded thermocouple as a result of a
steplike temperature change of the measured domain. Re-
sults of this study suggest that the response function of
the thermocouple is nearly exponentially dependent on the
square root of Fourier number (dimensionless time). It fol-
lows that, with respect to fluid temperature measurements,
significantly faster time response is expected at the initiation
of the process on one hand, and much longer time is required
for reaching a steady-state temperature on the other hand. It
is shown that the thermal diffusivity of the thermocouple is re-
quired to be at least one order of magnitude higher than that
of the measured domain in order to obtain meaningful results
in transient measurements.
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Introduction

response of a solid-embedded thermocouple as a result of a
sudden temperature change of the measured domain, and to
compare it with the well studied, albeit somewhat similar, re-
sponse of thermocouples in a fluid domain. While this study
deals with one source of uncertainty in temperature measure-
ments (i.e., the deviation of the thermocouple’s temperature
from its surrounding temperature due to the effect of thermal
inertia), there are other sources that contribute to the uncer-
tainty interval, such as electrical amplifiers, analog-to-digital
converters, surrounding temperature compensation, the pres-
ence of electrical/magnetic fields, random ground currents
and so o’

Mathematical Analysis

Fortunately, the heat transfer problem of a fluid-immersed
thermocouple has a closed-form solution for idealized condi-
tions. The availability of this solution has led to the concept
of the thermocouple time constant, which characterizes the
thermocouple’s time response. The value of the thermocou-
ple time constant has become the single most important pa-
rameter in thermocouple selection for experimental design of

The applications of solid-embedded thermocouples forapig-response thermal systems. The well-studied response

temperature measurements are numerous. The transient (- fluid-immersed thermocouple is described in detail here,

sponse ofthe thermocouple_ is a crucial parameter for thermab)owed by our new analysis for a solid-embedded thermo-
design and analyses of rapid-response processes such as é'&%lple.

thermal effects associated with stress waves.
The effect of thermal inertia plays an important role in the Analysis of a Fluid-immersed Thermocouple
uncertainty analysis of temperature measurements using ther- ) o
mocouples. The thermal inertia effect causes some undesired The closed-form solution of a fluid-immersed thermocou-
delay in the thermocouple response to a temperature chang#€ corresponds to a sudden immersion of the thermocouple’s
of its surroundings. The magnitude of this delay depends oftinction and to a low thermal resistance to heat transfer by
the rate of change of the surrounding temperature, the geon§@nduction within the thermocouple’s cross section. The sud-
etry of the thermocouple and the thermophysical propertiege” immersion of the thermocouple_ls modeled as a steplike
of both the thermocouple and the measured substance. THMperature change of the surrounding temperature. The low
delay in thermocouple response is a key parameter for ththermal resistance to hee_lt trz_;msfer by condgctlon within the
analysis of uncertainty and, thus, for experimental design. thermocouple cross section is measured with respect to the
The time response of thermocouples in fluid temperaturéhermal resistance to heat transfer by convection of the sur-
measurements has been extensively studied and is widely rEeunding fluid. Biot numbei is a dimensionless number
ported in the literaturé=4 The current study focuses on the indicating the above thermal resistance ratio:
complementary analysis; that is, the time response of embed- . hV
ded thermocouples in a solid domain. More specifically, the Bi = A’ 1)

current study arises from efforts to characterize the transient . - P
whereh is the heat transfer coefficient by convectidnjs

the volume of the immersed portion of the thermocouple,
_ _ , ~is the thermal conductivity of the thermocouple ahis the
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a case where the Biot number is less than 0.1, one may as-
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which results in a uniform temperature distribution withinthe  Heat conduction with no thermal resistance to heat flow
thermocouple cross section. In this case, the thermocouple assumed at the thermocouple surface:
can be modeled as what is known as a lumped heat capac-

ity system® Solving the energy balance equation for such a —kp dTp = —kye dTrc (6)
system yields the transient response of the thermocouple: or |,_g or |_g

Th—Te _hA wherer is the radius.

— =exp| ———1¢, (2) . - .

To — To CcvV For the purpose of the current analysis, an initial uniform

temperature distribution is assumed within both the mea-
sured domain and the thermocouple. A steplike tempera-
ture change from the temperatufgto the temperaturéi,
throughout the measured domain only, is assumed at the ini-
tiation of the process

where T}, is the bulk (volume average) temperature of the
thermocoupleTy is the initial temperature of the thermocou-
ple, T is the surrounding temperature (fluid temperature)
C is the volumetric specific heat of the thermocouple and

is the time.
The exponentially decaying solution presented in eq (2) is
- . . To r <R
similar to a transient response of a first-order process whose T(r,t =0) = T R’ @)
time constant is defined by 1 r=

cv and heat transfer by conduction is assumed to prevail freely
Y=9A (3)  thereafter.
The steplike change of the domain temperature [eq (7)]
an idealization of a very rapid heat generation process of
gh intensity, which takes place for a short period of time.
he termshort period of timds used here with respect to
e expected time response of the temperature sensor. Exam-

Accordingly, the thermocouple bulk temperature deviates b){s
36.8 percent from the new surrounding temperature after fi
period equal to one time constant (the value'd). Itfollows

that this deviation is 13.5 percent and 5 percent after two an

; i -3
three time constants, respectively (the valuedfande™?, ples for such processes can be found in the literature dealing

respectively). with fracture formation$, stress waves freezing of biolog-

The concept of a time constant defined by a 63.2—percer§aI tissue during cryosurgelyand so on. Furthermore, a

response 1o a steplike temperature change of the surroun teplike temperature change of the measured domain leads

ings has become widely accepted by experimentalists (a 63. o the maximal time delay in thermocouple response and is
percent response corresponds to a 36.8-percent dev'at'?ﬁ‘erefore analyzed

from a steady-state condition). This time constant has be- The time response of the solid-embedded thermocouple
come a standard measure for the transient response of th%r

; : an be found implicitly by solving eqs (4)-(7) numerically.
mocouples, and is often evaluated experimentelige value Nevertheless, an analytical approximation of the above time

of the above time constant plays an important role in the un-

certainty analysis where, in the general case, the time constaifFor > is of great value. This approximation can be ap-
y y ' geners ’ ied for measuring ultrarapid response processes for cases
of the thermocouple has to be significantly smaller than the

typical time scale of events of the measured process. How.. which the typical time constant of the process is of the
yp P ’ same order of magnitude as the thermocouple or even much

ever, in the special case of a preknown transient response @f. 1o Then, the measured signal can be deconvolved with
the thermocouple, meaningful temperature readings can %spect to the impulse response of the sensor in order to as-

obtained within shorter periods than the typical time constan ess the original signal. Such a procedure has been applied

of the thermocouplé. for infrared sensingand for embedded thermocoupleBhe
Analysis of a Solid-embedded Thermocouple closed-form solution of the fluid-immersed thermocouple
[eq (2)] has motivated us to seek an approximation for the
Unfortunately, the heat transfer solution of a solid-time response of a solid-embedded thermocouple of the form
embedded thermocouple has no closed-form solution on one

hand and has different characteristics from the solution pre- Iy —T1 exol —B x (%21 " ®)
sented in eq (2) on the other hand. The heat transfer in this To—T1 P R2 ’

case is assumed to be governed solely by conduction and is

presented in a dimensionless form: WheI'ETb is the bulk (volume average) temperattﬂ’@,and

. Ty are defined in eq (7) anBlandn are empirical coefficients
iai — V2T* = TC Thermocouple @) (found from computer experiments). Obviously, eq (8) rep-
Fo; ot* ! D  Measured Domain resents a first-order process foe= 1.

wheret* is a dimensionless tim&;* is a dimensionless tem-
perature andfo is the Fourier number (also known as the
dimensionless time):

Results and Discussion

The heat transfer problem by conduction of a solid-
ait TC Thermocouple embedded thermocouple is characterized by two dimension-
w2 = { (5)  less parameters only, which are the Fourier numbers of both
the thermocouple and the measured domain [eq (4)]. There-
wherea is the thermal diffusivity andR is a characteristic fore, the results can be well presented (in the mathematical
length. The characteristic length corresponds to the direcsense) as a function of ratio of these numbers and one of these
tion of heat flow, which is either the radius of the thermo- parameters independently. Since both regions have the same
couple junction (modeled as a sphere) or the radius of theharacteristic length and time, the ratio of the Fourier num-
thermocouple wire (modeled as an infinite cylinder). bers is simply the ratio of the thermal diffusivitiesy ¢ /ap.

Fo; = .
o D Measured Domain
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The Order of Response R
0= .
The heat transfer problem was solved using a finite dif- Baj,
ferences numerical scheme, which is described in detail i
Ref. 11. The coefficient8 andn of eq (8) were calcu-
lated based on the numerical solution results and using

(9)

I%or the purpose of the current discussion, we define two ad-
itional time constants that represent the instants at which

least squares approximation technique. The best-fit coef‘ff-he center Olf the thermocogxsplze and the outer surf&(ljce of the
cients of eq (8), listed in Table 1, lead to a maximal error int€fMmocouple experience 63.2-percent responsandty,

temperature estimation of no larger than 4 percent. The beSgSPectively.

fit was evaluated up to 63.2 percent of the thermocouple re- Figure 2 shows the dimensionless time, for the apove
gvrﬂe constants. It can be seen from Fig. 2 that the difference
etw

sponse. Some representative time response curves are sho . : -
ionig 1 P P between the three time constants described above is rela-
- tively small for a thermal diffusivity ratio of 10 and vanishes

From Table 1 and Fig. 1, it can be seen that the time re-". ; e .
sponse of a solid-embedded thermocouple is by no mearfith the increase of the thermal diffusivities ratio. It means
at for a high thermal diffusivities ratio, a uniform tempera-

similar to that of a first-order process. This transient respons A - .
b b re distribution can be assumed within any cross section of

is approximately exponentially dependent on the square rocf‘ﬁ X "
of the dimensionless tim&o. It means that the short-term € thermocouple after a period equal to one time constant,
S\{\!hether itistg, 1 Or To.

response in such a process is much faster in relation to a fir

order process. This can easily be observed at the initiation, |t €an be seenfrom Fig. 2 that as the thermal diffusivities
ratio increasest’op approaches a constant value that equals

when the rate of temperature change [i.¢., the time deriv 0.0937 in the spherical case and 0.244 in the cylindrical case.

tive of eq (8)] has an infinite value for of less than one. : Do . L
On the other hand, the time required for reaching a steadﬁs has been pointed out earlier in the discussion, it can be

state temperature is relatively longer than that in a first-ordefoncluded that the time constant is solely dependent on the
process. hermal diffusivity of the measured domain for a high thermal

It can further be seen from Table 1 that the coefficient<ITusivities ratio.
B andn approach a constant value with the increase of therpe cross-sectional Temperature Distribution
thermal diffusivities ratio; say, greater than the order of 10.
This means that the transient response of the thermocouple It is typically assumed that the thermocouple junction,
is solely governed byFop in this case; for example, by or, alternatively, the cross section of the thermocouple wires,
the radius of the thermocouple and the thermal diffusivitypossesses a uniformtemperature distribution (in analogy with
of the measured domain [eq (8)]. This observation is at odda low Biot number of the fluid-immersed thermocouple case).
with the commonly accepted assumption that the transierThis assumption is convenient for the analysis of the See-
response of a thermocouple is governed by its thermal diffubeck effect within the thermocouple, which is the effect of
sivity and its radius, regardless of the thermal diffusivity of the electrical potential gradient generated by a temperature
the measured domait gradient in an open electrical circuit. In the case of a uni-
The Time Constant form temperature distribution within the cross section of the
In analogy to a first-order process, we define the time
constantg as the time at which the exponent value of eq (8)
equals one:

T,-1

arc
%p

Fig. 2—Fourier number at which a 63.2-percent response to
Fop, =D a steplike temperature change is calculated, where 1q, T1 and
R? T2 correspond to the bulk temperature, the temperature at the
Fig. 1—The transient bulk temperature of the thermocouple center o_fthethermocouple and the outer surface temperature,
junction (modeled as a sphere) and the thermocouple wire respectively
(modeled as an infinite cylinder)
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TABLE 1—BEST-FIT COEFFICIENTS B AND n OF THE RESPONSE FUNCTION [eq (8)]

Cylindrical Case Spherical Case
arc/ap B n B n
1 1.582 0.56 2.799 0.61
10 1.724 0.45 3.193 0.52
100 1.821 0.45 3.209 0.5
300 1.830 0.45 3.229 0.5
1000 1.833 0.45 3.236 0.5

thermocouple wires, the electrical potential between the thel
mocouple wires is nearly linearly dependent on the temper
ature difference between the thermocouple junction and th
point at which the electrical potential is measured. However
in the case of a nonuniform temperature distribution within
the cross section of the thermocouple wires, the correlatio
between the measured electrical potential and the above ter
perature difference is not well defined. Contrary to previous
analyse®457 the current study does not rely on the as-
sumption of a uniform temperature distribution within the
cross section of the thermocouple wires. Instead, the radi:
temperature distribution within the thermocouple is numeri-
cally solved.

It has been concluded from Fig. 2 that the temperature
distribution within the thermocouple cross section can be
assumed uniform for a high thermal diffusivities ratio and
after one time constant. To gain a better understanding ¢ N A RS R i
the process, Figs. 3 and 4 show the radial temperature distr 0 05 1 15 2 25 3
bution at various points in time for the spherical case (whict
yields the minimal time constants with respect to the cylindri- Radius, /R
cal case). Figure 3 shows the temperature distribution ever¥ig 3—Radial temperature distribution for the case
Forc = 0.1 for a thermal diffusivity ratio of one. It can be .OLTC Jap = 1 representative curves are shown in
seen from Fig. 3 that the temperature distribution within theg,,,. - — 0.1 increments
thermocouple cross section cannot be treated as uniform, and
thus the correlation of the temperature field with measured
electric potential is not clear in this case. The electrical poten-
tial readings in this case are not straightforwardly related to
the thermocouple average temperature. It can be conclud
that a thermal diffusivities ratio of the order of one or less is
not appropriate for transient response measurements.

-7
To-T

unk of 1.2-percent carbon steel using a copper-constantan
ermocouple. Induction heating is a volumetric heating pro-
cess that is derived by the presence of a magnetic material
By contrast, an almost uniform temperature distributionWithm atransient magnetic field. The thermal diffusivities of

within the thermocouple cross section can be observed ifhe copper wire OI th2e thermocouple gn% of the Ca”?"” steel
Fig. 4, along most of the transient response, for the case Gi'€ about 11x10™" m“/s and 115x 10> m-/s, respectively,
a thermal diffusivity ratio of 300 (e.g., measuring a polymerWh'Ch yields athermal diffusivities ratio of about 10. Figure 2
specimen using a copper-constantan thermocouple). Noghows relatively uniform temperature d|s_,tr|but|on within the
that the significant temperature gradients are all in the medhermocouple cross section after one time constant, where
sured domain in this case. This observation also supports tH8€ time constants for a sphere and an infinite cylinder com-
conclusion previously determined: the transient response iRlY With Fop = 0.1 andFop = 0.25 (based on the bulk
dominated by the measured domain for a high thermal diffulémperature), respectively. Using a thin wire thermocouple
sivities ratio. having a diameter of 0.5 mm, the time constant is found to be
The volume affected by the presence of the thermocouo = 94 10~*sandro = 1.4 x 1(_)73 s,or0.54and 1.4 ms,
ple is addressed next. Figures 3 and 4 show that there af@r the sphere and the infinite cylinder cases, respectively.
no significant temperature changes at a distance greater than FOr comparison purposes, the same thermocouple is now
three times the thermocouple radius for the spherical geon@SSUmed to measure the temperature of air in natural convec-
etry. Thus, the measured region can be treated as an infinit®n and of boiling water in a containe€(= 3.43 x 10°
domain from heat transfer considerations once it has a radiUdJ/m*-°C for copper). Representative values of 15 and
greater than three times the thermocouple radius (a radius 2,000 W/nt-°C are assumed for the heat transfer coeffi-

times as large bounds a volume 27 times as large). cient by convection in these cases, respectively. Assuming a
spherical geometry, the time constant is found to be 19 s for
Numerical Examples the natural convection case and 19 ms for the boiling water
case. Assuming a cylindrical geometry, the same constants
EXAMPLE 1 are found to be 29 s and 29 ms, respectively. It can be seen

_ _ that the time constant of a copper-constantan thermocouple
Assume an experimental setup for measuring the tempein boiling water is at least one order of magnitude larger than
ature elevation associated with induction heating of a largehat of a steel embedded thermocouple.
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It was found that in cases where the thermal diffusivity of
the thermocouple is at least one order of magnitude higher
than that of the measured domain, (1) the temperature dis-
tribution within the cross section of the thermocouple wires
can be taken as uniform from heat transfer considerations af-
ter one time constant; (2) the transient response is governed
by the thermocouple radius and the thermal diffusivity of
the measured domain, regardless of the thermal diffusivity of
the thermocouple; (3) the approximation of the thermocou-
ple wires as infinite cylinders leads to somewhat longer time
constants than those in the case of approximating the thermo-
couple junction as a sphere; (4) the measured domain can be
treated as infinite from heat transfer considerations when its
radius is larger than three times the thermocouple radius. In
summary, the thermal diffusivity of the thermocouple needs
to be at least one order of magnitude higher than that of the
measured domain in order to monitor adequately its transient
response.
Unlike the transient response of a fluid-immersed thermo-
Radius, r/R couple, and in contrast to common belief, the time response

. . N of a solid-embedded thermocouple is far from being simi-
S'Tgc /20 zag(')% (t;%rggleﬁ%fmﬂzgﬁf;gg pg)l;nizf SS:S;] eolj lar to 'tha't of a first-order process. An approxmated response
using a copper-constantan thermocouple) functionis suggested ba_lsed_on nume_rlcal solution results and
a least squares approximation technique. It has been found
that the response function is nearly exponentially dependent
on the square root of the Fourier number of the measured

domain. It follows that, with respect to fluid temperature

Assume an experimental setup for measuring the heating:easg.rements' a much faster time response is expected at
effect of a stress wave within a polymer specimen using 41€ initiation of the process on one hand, and a much longer
copper-constantan thermocoupl@he thermal diffusivities time period is required for reaching a steady state on the other
of the copper wire of the thermocouple and of the polymerhand'

are about 1. x 10-*m?/s and 36 x 10~/ m?/s, respectively,
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