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ABSTRACT—Unlike the transient response of a fluid-
immersed thermocouple, and in contrast to common belief,
the time response of a solid-embedded thermocouple is far
from being similar to that of a first-order process. The cur-
rent study arises from efforts to characterize the transient re-
sponse of a solid-embedded thermocouple as a result of a
steplike temperature change of the measured domain. Re-
sults of this study suggest that the response function of
the thermocouple is nearly exponentially dependent on the
square root of Fourier number (dimensionless time). It fol-
lows that, with respect to fluid temperature measurements,
significantly faster time response is expected at the initiation
of the process on one hand, and much longer time is required
for reaching a steady-state temperature on the other hand. It
is shown that the thermal diffusivity of the thermocouple is re-
quired to be at least one order of magnitude higher than that
of the measured domain in order to obtain meaningful results
in transient measurements.
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Introduction

The applications of solid-embedded thermocouples for
temperature measurements are numerous. The transient re-
sponse of the thermocouple is a crucial parameter for thermal
design and analyses of rapid-response processes such as the
thermal effects associated with stress waves.1

The effect of thermal inertia plays an important role in the
uncertainty analysis of temperature measurements using ther-
mocouples. The thermal inertia effect causes some undesired
delay in the thermocouple response to a temperature change
of its surroundings. The magnitude of this delay depends on
the rate of change of the surrounding temperature, the geom-
etry of the thermocouple and the thermophysical properties
of both the thermocouple and the measured substance. The
delay in thermocouple response is a key parameter for the
analysis of uncertainty and, thus, for experimental design.

The time response of thermocouples in fluid temperature
measurements has been extensively studied and is widely re-
ported in the literature.2−4 The current study focuses on the
complementary analysis; that is, the time response of embed-
ded thermocouples in a solid domain. More specifically, the
current study arises from efforts to characterize the transient
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response of a solid-embedded thermocouple as a result of a
sudden temperature change of the measured domain, and to
compare it with the well studied, albeit somewhat similar, re-
sponse of thermocouples in a fluid domain. While this study
deals with one source of uncertainty in temperature measure-
ments (i.e., the deviation of the thermocouple’s temperature
from its surrounding temperature due to the effect of thermal
inertia), there are other sources that contribute to the uncer-
tainty interval, such as electrical amplifiers, analog-to-digital
converters, surrounding temperature compensation, the pres-
ence of electrical/magnetic fields, random ground currents
and so on.5−7

Mathematical Analysis

Fortunately, the heat transfer problem of a fluid-immersed
thermocouple has a closed-form solution for idealized condi-
tions. The availability of this solution has led to the concept
of the thermocouple time constant, which characterizes the
thermocouple’s time response. The value of the thermocou-
ple time constant has become the single most important pa-
rameter in thermocouple selection for experimental design of
rapid-response thermal systems. The well-studied response
of a fluid-immersed thermocouple is described in detail here,
followed by our new analysis for a solid-embedded thermo-
couple.

Analysis of a Fluid-immersed Thermocouple

The closed-form solution of a fluid-immersed thermocou-
ple corresponds to a sudden immersion of the thermocouple’s
junction and to a low thermal resistance to heat transfer by
conduction within the thermocouple’s cross section. The sud-
den immersion of the thermocouple is modeled as a steplike
temperature change of the surrounding temperature. The low
thermal resistance to heat transfer by conduction within the
thermocouple cross section is measured with respect to the
thermal resistance to heat transfer by convection of the sur-
rounding fluid. Biot numberBi is a dimensionless number
indicating the above thermal resistance ratio:

Bi ≡ hV

kA
, (1)

whereh is the heat transfer coefficient by convection,V is
the volume of the immersed portion of the thermocouple,k
is the thermal conductivity of the thermocouple andA is the
surface area of the thermocouple in contact with the fluid. In
a case where the Biot number is less than 0.1, one may as-
sume a low thermal resistance to heat transfer by conduction,
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which results in a uniform temperature distribution within the
thermocouple cross section. In this case, the thermocouple
can be modeled as what is known as a lumped heat capac-
ity system.8 Solving the energy balance equation for such a
system yields the transient response of the thermocouple:

T b − T∞
T0 − T∞

= exp

(
− hA

CV
t

)
, (2)

whereTb is the bulk (volume average) temperature of the
thermocouple,T0 is the initial temperature of the thermocou-
ple, T∞ is the surrounding temperature (fluid temperature),
C is the volumetric specific heat of the thermocouple andt
is the time.

The exponentially decaying solution presented in eq (2) is
similar to a transient response of a first-order process whose
time constantτ is defined by

τ = CV

hA
. (3)

Accordingly, the thermocouple bulk temperature deviates by
36.8 percent from the new surrounding temperature after a
period equal to one time constant (the value ofe−1). It follows
that this deviation is 13.5 percent and 5 percent after two and
three time constants, respectively (the value ofe−2 ande−3,
respectively).

The concept of a time constant defined by a 63.2-percent
response to a steplike temperature change of the surround-
ings has become widely accepted by experimentalists (a 63.2-
percent response corresponds to a 36.8-percent deviation
from a steady-state condition). This time constant has be-
come a standard measure for the transient response of ther-
mocouples, and is often evaluated experimentally.4 The value
of the above time constant plays an important role in the un-
certainty analysis where, in the general case, the time constant
of the thermocouple has to be significantly smaller than the
typical time scale of events of the measured process. How-
ever, in the special case of a preknown transient response of
the thermocouple, meaningful temperature readings can be
obtained within shorter periods than the typical time constant
of the thermocouple.1

Analysis of a Solid-embedded Thermocouple

Unfortunately, the heat transfer solution of a solid-
embedded thermocouple has no closed-form solution on one
hand and has different characteristics from the solution pre-
sented in eq (2) on the other hand. The heat transfer in this
case is assumed to be governed solely by conduction and is
presented in a dimensionless form:

1

Foi

∂T ∗
i

∂t∗
= ∇2T ∗

i i =
{
T C Thermocouple
D Measured Domain

, (4)

wheret∗ is a dimensionless time,T ∗ is a dimensionless tem-
perature andFo is the Fourier number (also known as the
dimensionless time):

Foi = ait

R2
i =

{
T C Thermocouple
D Measured Domain

, (5)

whereα is the thermal diffusivity andR is a characteristic
length. The characteristic length corresponds to the direc-
tion of heat flow, which is either the radius of the thermo-
couple junction (modeled as a sphere) or the radius of the
thermocouple wire (modeled as an infinite cylinder).

Heat conduction with no thermal resistance to heat flow
is assumed at the thermocouple surface:

−kD

∂TD

∂r

∣∣∣∣
r=R

= −kT C

∂TT C

∂r

∣∣∣∣
r=R

, (6)

wherer is the radius.
For the purpose of the current analysis, an initial uniform

temperature distribution is assumed within both the mea-
sured domain and the thermocouple. A steplike tempera-
ture change from the temperatureT0 to the temperatureT1,
throughout the measured domain only, is assumed at the ini-
tiation of the process

T (r, t = 0) =
{
T0 r < R

T1 r > R
, (7)

and heat transfer by conduction is assumed to prevail freely
thereafter.

The steplike change of the domain temperature [eq (7)]
is an idealization of a very rapid heat generation process of
high intensity, which takes place for a short period of time.
The termshort period of timeis used here with respect to
the expected time response of the temperature sensor. Exam-
ples for such processes can be found in the literature dealing
with fracture formations,9 stress waves,1 freezing of biolog-
ical tissue during cryosurgery10 and so on. Furthermore, a
steplike temperature change of the measured domain leads
to the maximal time delay in thermocouple response and is
therefore analyzed.

The time response of the solid-embedded thermocouple
can be found implicitly by solving eqs (4)-(7) numerically.
Nevertheless, an analytical approximation of the above time
response is of great value. This approximation can be ap-
plied for measuring ultrarapid response processes for cases
in which the typical time constant of the process is of the
same order of magnitude as the thermocouple or even much
smaller. Then, the measured signal can be deconvolved with
respect to the impulse response of the sensor in order to as-
sess the original signal. Such a procedure has been applied
for infrared sensing9 and for embedded thermocouples.1 The
closed-form solution of the fluid-immersed thermocouple
[eq (2)] has motivated us to seek an approximation for the
time response of a solid-embedded thermocouple of the form

Tb − T1

T0 − T1
= exp

[
−B ×

(
αDt

R2

)n]
, (8)

whereTb is the bulk (volume average) temperature,T0 and
T1 are defined in eq (7) andB andn are empirical coefficients
(found from computer experiments). Obviously, eq (8) rep-
resents a first-order process forn = 1.

Results and Discussion

The heat transfer problem by conduction of a solid-
embedded thermocouple is characterized by two dimension-
less parameters only, which are the Fourier numbers of both
the thermocouple and the measured domain [eq (4)]. There-
fore, the results can be well presented (in the mathematical
sense) as a function of ratio of these numbers and one of these
parameters independently. Since both regions have the same
characteristic length and time, the ratio of the Fourier num-
bers is simply the ratio of the thermal diffusivities:αT C/αD.
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The Order of Response

The heat transfer problem was solved using a finite dif-
ferences numerical scheme, which is described in detail in
Ref. 11. The coefficientsB and n of eq (8) were calcu-
lated based on the numerical solution results and using a
least squares approximation technique. The best-fit coeffi-
cients of eq (8), listed in Table 1, lead to a maximal error in
temperature estimation of no larger than 4 percent. The best
fit was evaluated up to 63.2 percent of the thermocouple re-
sponse. Some representative time response curves are shown
in Fig. 1.

From Table 1 and Fig. 1, it can be seen that the time re-
sponse of a solid-embedded thermocouple is by no means
similar to that of a first-order process. This transient response
is approximately exponentially dependent on the square root
of the dimensionless timeFo. It means that the short-term
response in such a process is much faster in relation to a first-
order process. This can easily be observed at the initiation,
when the rate of temperature change [i.e., the time deriva-
tive of eq (8)] has an infinite value forn of less than one.
On the other hand, the time required for reaching a steady-
state temperature is relatively longer than that in a first-order
process.

It can further be seen from Table 1 that the coefficients
B andn approach a constant value with the increase of the
thermal diffusivities ratio; say, greater than the order of 10.
This means that the transient response of the thermocouple
is solely governed byFoD in this case; for example, by
the radius of the thermocouple and the thermal diffusivity
of the measured domain [eq (8)]. This observation is at odds
with the commonly accepted assumption that the transient
response of a thermocouple is governed by its thermal diffu-
sivity and its radius, regardless of the thermal diffusivity of
the measured domain.1,12

The Time Constant

In analogy to a first-order process, we define the time
constantτ0 as the time at which the exponent value of eq (8)
equals one:

Fig. 1—The transient bulk temperature of the thermocouple
junction (modeled as a sphere) and the thermocouple wire
(modeled as an infinite cylinder)

τ0 = R2n

Bαn
D

. (9)

For the purpose of the current discussion, we define two ad-
ditional time constants that represent the instants at which
the center of the thermocouple and the outer surface of the
thermocouple experience 63.2-percent response,τ1 andτ2,
respectively.

Figure 2 shows the dimensionless timeFoD for the above
time constants. It can be seen from Fig. 2 that the difference
between the three time constants described above is rela-
tively small for a thermal diffusivity ratio of 10 and vanishes
with the increase of the thermal diffusivities ratio. It means
that for a high thermal diffusivities ratio, a uniform tempera-
ture distribution can be assumed within any cross section of
the thermocouple after a period equal to one time constant,
whether it isτ0, τ1 or τ2.

It can be seen from Fig. 2 that as the thermal diffusivities
ratio increases,FoD approaches a constant value that equals
0.0937 in the spherical case and 0.244 in the cylindrical case.
As has been pointed out earlier in the discussion, it can be
concluded that the time constant is solely dependent on the
thermal diffusivity of the measured domain for a high thermal
diffusivities ratio.

The Cross-sectional Temperature Distribution

It is typically assumed that the thermocouple junction,
or, alternatively, the cross section of the thermocouple wires,
possesses a uniform temperature distribution (in analogy with
a low Biot number of the fluid-immersed thermocouple case).
This assumption is convenient for the analysis of the See-
beck effect within the thermocouple, which is the effect of
the electrical potential gradient generated by a temperature
gradient in an open electrical circuit. In the case of a uni-
form temperature distribution within the cross section of the

Fig. 2—Fourier number at which a 63.2-percent response to
a steplike temperature change is calculated, where τ0, τ1 and
τ2 correspond to the bulk temperature, the temperature at the
center of the thermocouple and the outer surface temperature,
respectively
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TABLE 1—BEST-FIT COEFFICIENTS B AND n OF THE RESPONSE FUNCTION [eq (8)]
Cylindrical Case Spherical Case

aT C/aD B n B n

1 1.582 0.56 2.799 0.61
10 1.724 0.45 3.193 0.52

100 1.821 0.45 3.209 0.5
300 1.830 0.45 3.229 0.5

1000 1.833 0.45 3.236 0.5

thermocouple wires, the electrical potential between the ther-
mocouple wires is nearly linearly dependent on the temper-
ature difference between the thermocouple junction and the
point at which the electrical potential is measured. However,
in the case of a nonuniform temperature distribution within
the cross section of the thermocouple wires, the correlation
between the measured electrical potential and the above tem-
perature difference is not well defined. Contrary to previous
analyses,2−4,6,7 the current study does not rely on the as-
sumption of a uniform temperature distribution within the
cross section of the thermocouple wires. Instead, the radial
temperature distribution within the thermocouple is numeri-
cally solved.

It has been concluded from Fig. 2 that the temperature
distribution within the thermocouple cross section can be
assumed uniform for a high thermal diffusivities ratio and
after one time constant. To gain a better understanding of
the process, Figs. 3 and 4 show the radial temperature distri-
bution at various points in time for the spherical case (which
yields the minimal time constants with respect to the cylindri-
cal case). Figure 3 shows the temperature distribution every
FoT C = 0.1 for a thermal diffusivity ratio of one. It can be
seen from Fig. 3 that the temperature distribution within the
thermocouple cross section cannot be treated as uniform, and
thus the correlation of the temperature field with measured
electric potential is not clear in this case. The electrical poten-
tial readings in this case are not straightforwardly related to
the thermocouple average temperature. It can be concluded
that a thermal diffusivities ratio of the order of one or less is
not appropriate for transient response measurements.

By contrast, an almost uniform temperature distribution
within the thermocouple cross section can be observed in
Fig. 4, along most of the transient response, for the case of
a thermal diffusivity ratio of 300 (e.g., measuring a polymer
specimen using a copper-constantan thermocouple). Note
that the significant temperature gradients are all in the mea-
sured domain in this case. This observation also supports the
conclusion previously determined: the transient response is
dominated by the measured domain for a high thermal diffu-
sivities ratio.

The volume affected by the presence of the thermocou-
ple is addressed next. Figures 3 and 4 show that there are
no significant temperature changes at a distance greater than
three times the thermocouple radius for the spherical geom-
etry. Thus, the measured region can be treated as an infinite
domain from heat transfer considerations once it has a radius
greater than three times the thermocouple radius (a radius 3
times as large bounds a volume 27 times as large).

Numerical Examples

EXAMPLE 1

Assume an experimental setup for measuring the temper-
ature elevation associated with induction heating of a large

Fig. 3—Radial temperature distribution for the case
of αT C/αD = 1; representative curves are shown in
FoT C = 0.1 increments

chunk of 1.2-percent carbon steel using a copper-constantan
thermocouple. Induction heating is a volumetric heating pro-
cess that is derived by the presence of a magnetic material
within a transient magnetic field. The thermal diffusivities of
the copper wire of the thermocouple and of the carbon steel
are about 1.1×10−4 m2/s and 1.15×10−5 m2/s, respectively,
which yields a thermal diffusivities ratio of about 10. Figure 2
shows relatively uniform temperature distribution within the
thermocouple cross section after one time constant, where
the time constants for a sphere and an infinite cylinder com-
ply with FoD = 0.1 andFoD = 0.25 (based on the bulk
temperature), respectively. Using a thin wire thermocouple
having a diameter of 0.5 mm, the time constant is found to be
τ0 = 5.4×10−4 s andτ0 = 1.4×10−3 s, or 0.54 and 1.4 ms,
for the sphere and the infinite cylinder cases, respectively.

For comparison purposes, the same thermocouple is now
assumed to measure the temperature of air in natural convec-
tion and of boiling water in a container (C = 3.43 × 106

MJ/m3-◦C for copper). Representative values of 15 and
15,000 W/m2-◦C are assumed for the heat transfer coeffi-
cient by convection in these cases, respectively. Assuming a
spherical geometry, the time constant is found to be 19 s for
the natural convection case and 19 ms for the boiling water
case. Assuming a cylindrical geometry, the same constants
are found to be 29 s and 29 ms, respectively. It can be seen
that the time constant of a copper-constantan thermocouple
in boiling water is at least one order of magnitude larger than
that of a steel embedded thermocouple.
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Fig. 4—Radial temperature distribution for the case of
αT C/αD = 300(typical when measuring a polymer specimen
using a copper-constantan thermocouple)

EXAMPLE 2

Assume an experimental setup for measuring the heating
effect of a stress wave within a polymer specimen using a
copper-constantan thermocouple.1 The thermal diffusivities
of the copper wire of the thermocouple and of the polymer
are about 1.1×10−4 m2/s and 3.6×10−7 m2/s, respectively,
which yields a thermal diffusivities ratio of about 300. Under
these conditions, the time constant of an infinite cylinder
complies withFoD = 0.0937 (Fig. 2). Using an extremely
thin wire thermocouple having a diameter of 0.1 mm, one
finds the time constant to beτ = 6.5 × 10−4 s, or 0.65 ms.

One of the basic assumptions for the current analysis is
that the duration of heating at the initiation of the process is
much shorter than the typical time duration of the thermocou-
ple response. The duration of heating associated with stress
waves is of the order of 0.01 to 0.1 ms, which is much shorter
than that of the time constant of the thermocouple. Therefore,
the heating period in this example can be modeled as a step-
like temperature change of the measured domain with respect
to the time response of the thermocouple. Nevertheless, and
as previously mentioned, when actual signals are analyzed,
the situation is not that of a prescribed temperature step for
which the response time will indicate its experimental ade-
quacy; rather, actual signals are those that are obtained by
convoluting the true signal with the response of the sensor to
the unit impulse function. In this paper, we examine not only
the time constant of the sensor but also the response function
itself, which can be used to determine the actual time evolu-
tion of the measured signal by deconvolution procedures.

Summary and Conclusions

The time response of a solid-embedded thermocouple was
analyzed based on a finite differences heat transfer numeri-
cal solution. The analysis is given for a steplike temperature
change of the measured domain that results in the most ex-
treme case of time delay for a solid-embedded thermocouple.

It was found that in cases where the thermal diffusivity of
the thermocouple is at least one order of magnitude higher
than that of the measured domain, (1) the temperature dis-
tribution within the cross section of the thermocouple wires
can be taken as uniform from heat transfer considerations af-
ter one time constant; (2) the transient response is governed
by the thermocouple radius and the thermal diffusivity of
the measured domain, regardless of the thermal diffusivity of
the thermocouple; (3) the approximation of the thermocou-
ple wires as infinite cylinders leads to somewhat longer time
constants than those in the case of approximating the thermo-
couple junction as a sphere; (4) the measured domain can be
treated as infinite from heat transfer considerations when its
radius is larger than three times the thermocouple radius. In
summary, the thermal diffusivity of the thermocouple needs
to be at least one order of magnitude higher than that of the
measured domain in order to monitor adequately its transient
response.

Unlike the transient response of a fluid-immersed thermo-
couple, and in contrast to common belief, the time response
of a solid-embedded thermocouple is far from being simi-
lar to that of a first-order process. An approximated response
function is suggested based on numerical solution results and
a least squares approximation technique. It has been found
that the response function is nearly exponentially dependent
on the square root of the Fourier number of the measured
domain. It follows that, with respect to fluid temperature
measurements, a much faster time response is expected at
the initiation of the process on one hand, and a much longer
time period is required for reaching a steady state on the other
hand.
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