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Introduction

It is well known that freezing biological tissues can introduce
severe damage. Sometimes this damage is intentional and de-
sired, as is the case in cryosurgery. In other situations. such as
cryopreservation, this damage is an undesired byproduct. This
paper arises from efforts to quantify the development of me-
chanical stresses in freezing biological solutions and tissues and
to relate such stresses to tissue damage. While mechanical stress
is one mechanism of tissue destruction in cryobiology applica-
tions (Ishiguro and Rubinsky. 1994 Hunt et al.. 1994: Gao et
al., 1995), there are other mechanisms related to crystal growth
and to the kinetics of freezing at the cellular level (Meryman,
1974; Mazur, 1984; Taylor, 1987).

Mechanical stress development in this class of problems has
been analyzed by a number of researchers. Analyses of thermal
stress associated with cryopreservation and with water freezing
have been reported by Rubinsky et al. (1980) and Rubinsky
(1982), who modeled the frozen tissue as a linear elastic mate-
rial. An inverse-engineering analysis has been performed by
Lin et al. (1990) for the estimation of mechanical properties of
frozen water by comparison of predicted strains and experimen-
tal measurements. Expansion of the analysis to aqueous solu-
tions containing cryoprotectants has been reported by Gao et
al. (1995). Analysis of thermal stresses during cryosurgery has
been reported by Rabin and Steif (1996), assuming an elastic-
perfectly plastic model for the freezing tissue.

In this paper we reconsider the inward freezing of a body
and propose several alternative modeling assumptions. While
these assumptions are at odds with some of the analyses in the
literature, particularly those carried out by workers motivated
by cryobiological applications, we will argue the physical sensi-
bility of these assumptions. In particular, we propose: (i) that
the pressure in the core liquid region is important and cannot
be neglected; (ii) that the nonhydrostatic part of the stress in
the just-frozen region must be zero; and (iii) that the volume
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ture gradients and volume changes associated with phase transition. Consistent with
the target application of cryopreservation of biological solutions and tissues. the
material is modeled as elastic-perfectly plastic. Parametric studies using appropriate
material properties and typical cryopreservation protocols suggest that strains associ-
ated with phase transition lead 10 far higher stresses than those associated with
thermal expansion, with important implications for crvopreservation procedures.

strain associated with freezing cannot be neglected and. in fact,
appears to produce stresses that overwhelm stresses due to other
sources. We note that the first two assumptions have been well
appreciated by workers in the area of metal solidification and
casting (Boley and Weiner, 1963; Tien and Richmond. 1982;
Heinlein et al., 1986; Zabaras and Ruan, 1990: Zabaras et al.,
1991). The third assumption may not be significant in metal
solidification; however, in contrast to metals. aqueous solutions,
and presumably biological tissues, expand severely upon solidi-
fication.

The purpose of this paper, therefore, is primarily to present
a credible set of modeling assumptions, which are new to the
calculation of freezing solutions and tissues. and to show that
these assumptions radically change the accepted picture of stress
development during cryopreservation. We note that the solution
is based on the highly idealized spherically symmetric problem,
which, with respect to the nonsymmetric freezing problem,
likely leads to upper bounds on stresses and pressures. Never-
theless, the spherical symmetry simplifies the solution and
allows the analysis and discussion to focus on the new approach
to calculating mechanical stresses in freezing materials.

Analysis

The material domain under consideration is the sphere occu-
pying the region 0 < r < R, as illustrated in Fig. 1. The entire
domain is initially liquid at the phase transition temperature,
and a freezing front then starts to propagate inwards. The freez-
ing front location, h, as well as the temperature distribution,
are assumed to be determined purely by the heat transfer prob-
lem, which is discussed in the next section.

Solid Mechanics Problem. Within the material domain,
the usual field equations of continuum mechanics, specialized
to the spherically symmetric geometry, are assumed to prevail.
These equations include mechanical equilibrium

49 26 -an=0 (1
dr r
and the strain displacement relations
du u
P= = == 2
€ o &= (2)

where o is the stress, ¢ is the strain, and u is the radial displace-
ment.
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The constitutive relations are most conveniently expressed in
terms of deviatoric and hydrostatic components of stress and
strain. To that end, we define

o;=S; — po, (3)

and
€ =€, + %eé,, (4

where § is the deviatoric stress, p is the hydrostatic pressure,
¢’ is the deviatoric strain, and e is the volume strain.

The liquid is assumed to be inviscid and therefore sustains
only a hydrostatic pressure p, which is related to the volume
strain according to

Pp=—«(e—e;) 0<r<h (5)
where « is the bulk modulus (= E/[3(] - 2v)]) and the thermal
strain is

T
en = f BdT (6)

where 3 is the thermal expansion coefficient.

The mechanical behavior of frozen biological tissues is very
complex and not well understood. In the case of cryopreserva-
tion, it is common to employ cryoprotectants; these cause the
unfrozen tissue to partly vitrify (become glassy) rather than
freeze (transform to a crystalline solid). Vitrified material is
likely to experience time-dependent deformation due to relax-
ation processes. Here, we ignore vitrification presuming solidi-
fication without cryoprotectants. There is evidence that the solid
material, at least under compression and without cryoprotec-
tants, deforms elastically until a critical level of stress at which
point a pseudo-plasticity occurs, associated with the formation
of microcracks (Rabin, et al., 1996). Therefore, we will con-
sider two possible constitutive relations for the solid: either an
elastic model or an elastic-perfectly plastic model.

A critical step in formulating the constitutive relation for the
solid is to recognize that arbitrary deviatoric (volume preserv-
ing) strains could have occurred in the liquid state prior to
solidification. The strains from which one calculates the devia-
toric stress must be the total accumulated strains since the begin-
ning of the contemplated process minus the strains accumulated
up to the instant just after solidification. In the case of an elastic
solid, the deviatoric stress can be written as

S; = 2G(ejj — €j*) hy<r<R (@)
Where ¢ * is the deviatoric strain just after solidification, and
G is the shear modulus (=E/[2(1 + v)]). Consistent with the
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assumption of isotropy, we have presumed the thermal strains
to have zero deviatoric part.
The hydrostatic pressure in the solid is given by

P =—kl[(e—es) ~Ae] hy<r<R (8)

where Ae is the volumetric strain upon freezing. The bulk mod-
ulus in the solid, «, is assumed to be equal to the value in the
liquid; more discussion of this assumption will be given below.
As noted above, the volume strain upon freezing does not seem
to have been incorporated previously, at least the context of
cryobiology.

The boundary conditions consist of zero radial stress on the
outer surface,

g.(R) =0, 9)

and continuity of radial stress and displacement at the freezing
front, respectively,

o, (b)), = o,(h)].. (10)

and
év(h/)ll =€»(h/)i: (1)

where the indexes | and 2 indicate the unfrozen and frozen
regions, respectively. The displacement continuity in Eq. (11)
has been rewritten in terms of the hoop strain using the strain-
displacement relations.

The forgoing equations are readily solved as follows. The liquid
is initially at the phase transition temperature and. thus, the thermal
strains in the liquid region are zero. The solution in liquid can be
written in terms of the uniform liquid pressure p,:

P
u=-—=—r
3k

0<r<h,. (12)
It will be useful for the ensuing analysis to recast the condi-
tion of radial stress continuity as a condition on the radial

strains; by combining Egs. (5). (8), (10). and (11). one finds
&(h)l: = e.(hp)], + Ae. (13)

To derive an equation governing the displacement in the solid

domain, it is necessary to evaluate the quantity €, *. which for
the case of spherical symmetry corresponds to €, ~ ¢,. From
Egs. (11)-(13), the difference (¢, ~ ¢,)* is found to be simply

(&, — €)* = &,(h)|; ~ el hy)]; = Ae. (14)

We recapitulate the significance of this term: the liquid under-
goes a deviatoric strain equal to Ae prior to becoming solid.
and, as reflected in Eq. (7). this strain should not be counted
in determining the deviatoric stresses in the solidified material.
It is now possible to express S, and p in terms of the radial
displacement, u, and the various other known quantities and
substitute into the equation of equilibrium: the result is

el (] eeal) -]

+‘—‘g[u'—5—Ae]=o. (15)
r

r

The solution of this equation is

3K L f earidr

“Taerwr,

4GAe r 1 B,
2uae A I Byr+ 2
+4G+3xr[ln<h,) 3]+ T

h<r<R (16)
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where the integration constant B, is calculated from boundary
condition (10), by expressing the hydrostatic pressure in the
solid in terms of the displacement, while taking in account zero
deviatoric stress in the solid region at the freezing front,

B,=1(Ae-&).

3 K an

The integration constant B, is determined from condition (11),
by comparing Egs. (12) and (16) at the freezing front,

h}kAe

By = — .
: 4G + 3k

(18)

Note that the previous solutions related to cryobiology do not
meet the assumption of zero deviatoric stress at the freezing
front.

The solution now depends only on the liquid pressure p,, via
constant B,. This quantity is determined by setting the radial
stress equal to zero at the sphere outer surface, Eq. (9), which
leads to

= - A6k —3-fke ridr
P 4G + 3« | R} A, "

o

fin(E)-G))

Final forms for the deviatoric stress and hydrostatic pressure in
the solid region are, respectively,

1 4Gk 3J" )
Si==zSi= o | =2 | euridr + e,
2% 4G+3x[ P, AT

3
+ Ae(-h—" - 1)] (20)
p

and

4Gk r
=-——\es—30eln|— + p). 21
P 4G + 3k [e;, € n(h_,)] P (21

It is worth noting that the solution depends linearly both on the
phase transition volume strain, Ae, and on the thermal strain.
en. In the results and discussion presented below, two typical
cases related to cryopreservation will be considered in order to
study in a quantative manner the effects of the phase transition
volume strain and of the thermal strain.

The solution assuming an elastic-perfectly plastic response
in the solid turns out to be quite simple, assuming the Mises
yield condition (Hill, 1950) specialized to spherical symmetry,

lo, = oal =31S,| = o, (22)

where o, is the yield strength. As will be seen in the results
and discussion section, the deviatoric stress S, is maximal at
the outer boundary, which is therefore where plasticity initiates.
As the process continues, the plastic front, h,, which separates
the zones of elastic and plastic deformations, moves inwards
from the outer surface, Fig. 1. Under the assumption that the
flow stress remains constant independent of the pressure, one
finds the stress distribution in the plastic zone to be fully deter-
mined by equilibrium, Eq. (1), by the yield condition, Eq. (22),
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and by the stress-free condition on the outer boundary, Eq. (9).
Specifically, the pressure in the plastic region is given by

p= 20,.[In (-?) - %] h, <r<R.

The location of the plastic front is also readily determined: the
previous solution for the deviatoric stress in the elastic zone,
Eg. (20), which was independent of the pressure in the liquid,
pi, remains valid. Thus, the location of the plastic front h, is
that position r at which the absolute value of S, from Eq. (20)
just reaches the yield value of 20,/3. The elastic-plastic inter-
face merely progresses inwards as the freezing front moves
inwards.

The pressure in the elastic zone is fully determined once the
pressure in the liquid is known. The liquid pressure is chosen
so as to match the pressure at the plastic front coming from the
elastic side, Eq. (21), with the pressure from the plastic side,
Eq. (23); the resulting equation is

eafn(g)

4Gk h
40k 3pem () — e |, (24
T 36 + 3 [3 ¢ "(h_,) ""] (24)

Heat Transfer Problem. A perturbation solution of the
inward freezing sphere. initially at the phase-change tempera-
ture and subject to a step-like change of the outer surface tem-
perature, has been given by Riley et al. (1974). The perturbation
variable is the Stefan number, F, which is the ratio of sensible
heat to latent heat for the phase-change process. With the fol-
lowing dimensionless variables and parameters

(23)

R — h r a1 -T)
= — =—=: F=——;
=R TR L
= gf—f:; = T-Tx . (25)
R* T, —Tx

the dimensionless temperature distribution, ¢. is given by
p=UzmU -0 FU-0) [1 _(l—é)']

n 6gn(1 - n) n

_FPa-n i, 1=ty
Cn(l—n)’{36[] ( U )]
+‘3l'2;")[1—(':’§)4]}+0(r’) (26)

where C is the specific heat, L is the latent heat. and « is the
thermal diffusivity. The dependancy of the freezing front loca-
tion on time is given implicitly by

nZFZ

—— + O(FY).
45(l—n)+ "

(27)

The perturbation solution given here is accurate up to the third
order, which provides a very good approximation for the pur-
pose of the current study. This approximation is fairly good
until the ratio of freezing front location to sphere radius, h/R,
reaches the value of 0.2 (when more than 99 percent of the
sphere volume has already changed phase ). A modified solution
has been derived by Riley et al. (1974 ) for the end of the phase-
change process, a short period during which the freezing front
approaches the origin.
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Material Properties. It is widely assumed that soft biologi-
cal tissues have physical properties similar to those of aqueous
solutions. Recent experiments (Rabin et al., 1996) have shown
that frozen tissues loaded in compression in cryogenic tempera-
tures respond roughly like an elastic-perfectly plastic solid, with
the plasticity apparently stemming from distributed microcrack-
ing (Rabin et al., 1997a). The thermal expansion was found
(Rabin et al., 1997b) to be similar to that of water with the
coefficient of thermal expansion being almost a linear function
of temperature. These observations motivate the adoption of an
elastic-perfectly plastic model for the frozen material, with the
thermal expansion coefficient varying linearly with temperature.
Since data is not available on the mechanical properties of
biological tissues within the phase transition temperature range,
we will assume that the behavior is similar to that of a pure
material (freezing at a single temperature ).

There are at least nine known different pure water ice phases
(Fletcher, 1970). Ice / is the most relevant ice phase for the
current study; this is the only phase in which water expands
upon freezing. Solidification of ice / takes place between pres-
sures of 5 kPa and 207 MPa, while the phase transition tempera-
ture decreases monotonously from 0.01°C to —22°C, respec-
tively. At higher pressures water contracts upon freezing and
the freezing temperature increases continually with pressure (up
to at least 4.4 GPa and 440°C). Due to lack of relevant data
for biological materials, the volume strain upon phase transition
is assumed constant, and equal to that of water at standard
conditions of temperature and pressure, that is, Ae = 0.0907.
Other physical properties are assumed to be constant and uni-
formly distributed in each phase; relevant physical properties
values for water, soft frozen biological tissues, and the chosen
values for the current study, are listed in Table 1.

The assumption of equal bulk moduli in the liquid and solid
phases is largely one of convenience. There is much uncertainty
regarding the bulk modulus of ice, although if inferred from
measured elastic moduli and a reasonable value of Poisson’s
ratio, it may be up to four times that of water at standard
conditions. Choosing differing bulk moduli substantially com-
plicates the constitutive description as well as the solution, since
the strain difference at phase change (¢, — €,)* will no longer
be constant. Since rather strong qualitative conclusions are ar-
rived at in this paper, we believed it unwise to introduce a
second-order effect based on rather uncertain physical proper-
ties.

Finally, we note that biological tissues are composite materi-
als which may have different physical properties in different
orientations. The simplified analysis presented here presumes a
homogeneous material only, which can be identified with, say,
the average property values. The modeling of a biological tissue
as a composite material is beyond the scope of this paper.

Table 1 Typical properties of polycrystalline ice water and soft frozen
biological tissues

Polycristalline Frozen Biological Current Study
Ice Water Tissues
@ 101.3 kPa

Poisson’s Ratio, v 0.31-0.36 - 0.33

(Fletcher, 1970)
Volume Strain 0.0907 @ 0°C - 0.0907
of Phase Transition, Ae (Sohnel and

Novotny, 1995)
Thermal Expansion B,=56.3-10* P, =65-10* Py=60-10*
Coefficient: B, +P, T B.=2.53-107 B,=2.89-107 B,=2.5-107
(1°C) -180°C<T<0°C -180°C<T<-20°C

(Powell, 1958) | (Rabin et al., 1997b)
Elastic Modulus, E 89-99@-5°C | 14-132@ -196°C 10
|0Pa| (Fletcher, 1970) (Rabin et al., 1996)
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Fig. 2 Temperature distribution in case A, where a step-like tempera-
ture function is imposed at the sphere outer surface (AT = -79°C)

Results and Discussion

Since the solution for the elastic response in the solid depends
independently on the two *‘driving forces,"" that is, the thermal
expansion in the solid state and the volume expansion due to
phase transition. we consider these separately. Case A corre-
sponds to neglecting the volume expansion due to phase transi-
tion and accounting for a temperature history which is the conse-
quence of immersion in dry ice, i.e.. a step-like temperature
function is imposed at the sphere outer surface having a magni-
tude of —79°C. Case B. which approximates a typical cryopres-
ervation protocol. corresponds to maintaining the material at
nearly the phase transition temperature and allowing the phase
transition to occur. presuming the volume strain is that which
occurs at standard atmospheric pressure. i.e.. Ae = 0.0907.

The temperature distribution for case A is shown in Fig. 2.
where the corresponding Stephen number for pure water ice
equals 0.27. As mentioned above. this solution is valid until the
freezing front reaches 20 percent of the sphere radius (when
more than 99 percent of the sphere volume is frozen). The
deviatoric stresses and hydrostatic pressures for this case are
shown in Figs. 3 and 4. respectively. Note first that the hydro-
static pressure in the liquid is by no means zero. and that it
increases as the freezing process proceeds. Not surprisingly.
this is at odds with the assumption that the pressure in the liquid
is zero, as has been suggested previously for the analysis of a
similar problem (Rubinsky et al.. 1980). A second clear distinc-
tion between the current solution and previously reported solu-
tions, most of which are for cryobiology applications (Rubinsky
et al., 1980; Rubinsky, 1982; Lin et al., 1990; Gao et al.. 1995;
Rabin and Steif, 1996), is that the deviatoric stress here is
zero at the freezing front (and increases monotonously as one
approaches the sphere outer surface). This stems from the as-
sumption that the deviatoric stress must be zero in recently
solidified material, since no straining has yet occurred in the
solid state. Finally, it is important to point to the magnitude of
the predicted deviatoric stress: it is maximum at the initiation
of the process, when the step-like temperature function is im-
posed at the sphere outer surface. This stress decreases with
time, as the freezing front propagates inwards. The strains to
initiate plasticity are in the order of 0.005 in frozen biological
tissues (tested in compression; Rabin et al., 1996) and are not
expected to exceed this value in polycrystalline water ice at low
strain rates (Fletcher, 1970). It appears, in conclusion, that
relative little plasticity would occur, if at all, during a sudden
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Fig. 3 Deviatoric stress distribution for case A, where no phase transi-
tion vol h are included

cool down to dry ice temperatures. when volume straining due
to phase transition is prevented. In practice, the stresses are
expected to be somewhat lower in magnitude at the initiation
of the process than those presented in Fig. 3. The idealized
boundary condition of a step change in temperature produces
infinite gradients initially, while in practice a finite time is nec-
essary to bring the surface down to the lower temperature.
Consider now case B featuring only volume strain due to
phase transition and no temperature gradients. With a linear
elastic model for the solid, the stresses reach enormous values
(Fig. 5); this might be expected given the rather large imposed
strain associated with phase transition. Clearly, the linear elastic
model for case B is unrealistic, considering a typical yield strain
in the order on 0.005. The deviatoric stress, as in case A, varies
from zero at the freezing front to a maximum at the sphere
outer surface. This allows one to use the elastic-plastic solution
derived above. The deviatoric strains for the case of an elastic-
perfectly plastic solid is also presented in Fig. 5, assuming a
yield strain of 0.005. The deviatoric stresses in the plastic zone
are represented by the dashed line in Fig. 5. Note that almost
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Fig. 4 Hydrostatic pressure distribution for case A
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an elastic-perfectly plastic model and a yield strain of 0.005.

the entire frozen region experiences plastic deformations as the
freezing front approaches the origin.

The hydrostatic pressures for the more realistic case of elas-
tic-plastic deformations are shown in Fig. 6. The analysis pres-
ent in this study is valid for solidification of ice I only, which
is the only case of volume expansion upon freezing. Taking
into account the maximal hydrostatic pressure of ice /. i.e. 207
MPa, and assuming a typical elastic modulus of 10 GPa, one
can see from Fig. 6 that the solution is not valid as the freezing
front approaches the origin due to the high pressure magnitude.
It was found that the hydrostatic pressure in this case reaches
207 MPa when the ratio of freezing front location to sphere
radius reaches the value of 0.1 approximately, i.c.. when 99.9
percent of the sphere volume is frozen. although the size of this
region increases with the yield strength. The sequence of events
after this late stage is unclear.

Finally, in case B freezing was assumed to occur when the
temperature was held at the freezing point. However. it was

T 4
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e F 020 e T N E
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5 t N [ 1 ! I . ]
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Fig.8 Hydrostatic pressure distribution for case 8, assuming an elastic-
perfectly plastic model and yieid strain of 0.005 (Ae = 0.0807; AT = 0)
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demonstrated that the hydrostatic pressures in the liquid may
reach the critical pressure which corresponds to a transition
temperature of —22°C. For this reason the imposed surface
temperature will need to be reduced accordingly (but slowly)
to complete freezing the sphere.

Summary and Conclusions

A closed-form solution for the thermal stresses in an inward
solidifying sphere has been presented. The formulation accounts
for thermal expansion associated with temperature gradients and
volume changes associated with phase transition. The frozen
medium is modeled as an elastic-perfectly plastic.

For physical properties similar to those of water, parametric
studies have shown that the effect of volume expansion upon
phase transition is much more significant than the effect of
thermal expansion in generating stresses, at least in a typical
cryopreservation protocol. It has been shown that a plastic zone
is likely to occupy most of the frozen region after the completion
of the freezing process. It follows that the attendant potential
for tissue destruction is unavoidable regardless of how slowly
the freezing is carried out, provided there is a substantial expan-
sion associated with phase transition. Finally, the phase transi-
tion temperature may significantly decrease during the cryopres-
ervation process, due to the elevated hydrostatic pressure in the
unfrozen region.
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