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INTRODUCTION

One of the most important factors for single cells destruction or
survival is the cooling rate at freezing temperatures (McGrath,
1993). It was found experimentally that at very low, or
alternatively, at very high cooling rates, maximal cell destruction
is achieved. These cooling rates are of the order of a few, or
hundreds of Centigrade per minute, respectively, at both ends of
the spectrum (Orpwood, 1981). Analogous to the dependency of
single cells destruction in the freezing rates, and in order to
increase cryosurgical destruction, it was suggested that a special
protocol be followed to cool the tissue in order to force a pre-
specified cooling rate at the freezing front (Rubinsky and Shitzer,
1976). For the application of this approach, the time-dependent
temperature function at the outer surface (termed also the “forcing
function™) needs to be solved, which is the solution of an inverse
Stephan problem in biological tissue. Solutions of inverse Stephan
problems are available for one-dimensional cases in Cartesian
geometry only (Rubinsky and Shitzer, 1976, Rabin and Shitzer,
1994; Budman et al., 1995; Rabin and Shitzer, 1995).

An approximate solution of the inverse Stephan problem, subject
to a pre-specified cooling rate at the freezing front in Cartesian,
cylindrical and spherical coordinate systems, is presented. The
approximate solution combines a numerical solution in the
unfrozen region, including the subregion undergoing phase-
transition and an analytical solution in the frozen region. The
numerical solution in the unfrozen region is based on the enthalpy
approach. A newly defined Fourier number is applied for the
analysis of this problem, which resulted from the thermal
diffusivity of the frozen region and the latent heat effect of
freezing. The approximate solution assumes large Fourier numbers
when the time-dependent term in the heat balance equation can be
neglected.

ANALYSIS

The problem is assumed to be one-dimensional in semi-infinite
domain, where a radial heat flow is assumed in the cylindrical and
spherical cases. Two regions are defined for the present analysis:
the unfrozen region, which includes the sub-region undergoing
phase transition, u, and the frozen region, f. The solution is derived
under the following conditions: the thermal conductivity is a step-
like function across the freezing front, possessing two constants but
different values; the specific heat is a temperature dependent
effective property which includes the thermal effect of latent heat
at the phase-transition temperature range;, both metabolic heat
generation and blood perfusion are temperature dependent and
decay by freezing; blood temperature entering the cooled region is
constant; and, the initial temperature is a known arbitrary function.

The governing equation in the unfrozen region is assumed to be
the bio-heat equation:
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where n equals 0, 1 and 2 for Cartesian, cylindrical and spherical
coordinate systems, respectively. The only direction of heat flow
is n, which stands for x in Cartesian coordinate system, and for r in
cylindrical or spherical coordinate systems. The desired inverse
Stephan condition at the freezing front during the freezing process
is:
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Applying a freezing front tracing technique:
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the bio-heat equation is transformed into:
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the boundary condition at &’s origin is a known arbitrary forcing
function prior to first ice formation, and a constant temperature
thereafter (the lower boundary of phase-transition temperature
range). The interface location in Eq. (4) equals O prior to first ice
formation and is calculated by the transformed inverse Stephan
condition thereafter:
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Equation (4) and its boundary and initial conditions present a
well-defined mathematical problem in the unfrozen region, u, that
can be solved independently of the solution in the frozen region, f.
Numerical solution of Eq. (4) may be obtained by a modified
Crank-Nicholson technique in order to include metabolic heat
generation and blood perfusion terms (Rabin and Shitzer, 1994).

The mathematical analysis of the frozen region is addressed
next. It is assumed that metabolic activities and blood perfusion
decay by freezing, and therefore the bio-heat equation decays to an
ordinary heat balance equation by freezing. For further analysis
Fourier number is defined as:
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where 1 is the time required for a frozen region of a thickness s to
be formed. The definition of Fourier number here, Fo, differs from
the ordinary definition of dimensionless time parameter, as both the
nominator and the denominator are time dependent. It is noted that
Fo number tends to infinity at the initial moment, when s equals 0.

The dimensionless form of the heat balance equation in the
frozen region is:
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For typical thermophysical properties of soft biological tissues, Fo
is expected to be a very large number and therefore the transient
response of the frozen region can be neglected. The solution of the
heat balance equation in the frozen region for large Fo numbers,
and under boundary conditions of continuity in temperature and in
heat flux across the freezing font is:
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Finally, the sought after cryoprobe forcing function is obtained by
replacing x and r with O and the cryoprobe radius, respectively.

DISCUSSION

A validation test of the approximate solution was performed by
comparison with an exact solution of the inverse Stephan problem
in Cartesian coordinates (Rabin and Shitzer, 1995). Typical
thermophysical properties similar to those of water (thermal
diffusivity of 1.4-10”7 and 2-10*® in the unfrozen and frozen regions,
respectively), freezing temperature range as of soft tissue (-1 +
-8°C), and extremely high blood perfusion (11.1 s™) and metabolic
heat generation (20 kW/m®), were assumed for the purpose of that
test (Chato, 1985). The forcing function at the initiation stage of the
approximate solution was extracted from the exact solution. Results
for relatively low and relatively high freezing rates as viewed from
the frozen region are presented by Fig. 1.

The agreement between the exact and the approximate solutions
in the temperature distribution of the unfrozen region was found to
be in the order of 10°°C for 0.025 mm space and 0.1 s time
intervals. The agreement in the unfrozen region becomes better as
time and space intervals decrease. A very good agreement was also
found in the frozen region at the beginning of the freezing process,
which becomes worse with the time as Fo number decreases. As
the forcing function reaches -100°C, Fo number is reduced to 5 and
4.5 for the freezing rates of 10°C/min and 100°C/min, respectively.
At that point the temperature differences between the approximate
and the exact solution in the frozen region were found to be within
10% and 9%, respectively.

By neglecting the time-dependent term in the heat balance
equation (7), the transient response of the heat released from the
frozen region is neglected. It follows that the approximate solution
assumes that less energy is needed to be absorbed from the tissue,
and therefore the actual freezing rates at the interface will be lower
then the pre-specified value H. This difference starts from zero and
increases with time.

A demonstration of the approximate solution in cylindrical and
spherical cases is addressed next. For demonstration purposes,
typical thermophysical properties of soft tissues (thermal
diffusivity of 1.4:107 and 1.1-10° in the unfrozen and frozen
regions, respectively), (Rabin and Shitzer, 1995), and linear
temperature-dependent  blood perfusion and metabolic heat
generation were assumed, all starting from the extreme values
presented above. Figure 2 presents the forcing functions for various
cryoprobe diameters in Cartesian, cylindrical and spherical
geometries. As can be expected from energy considerations, the
cooling rate at the cryoprobe surface in the spherical case is much



higher than in the cylindrical case, and that in turn is much higher
than in the Cartesian case. In general, Fo number decreases as the
diameter of the cryoprobe increases, and is much smaller in
cylindrical cases than in Cartesian cases, and even smaller in
spherical cases. Therefore, the approximation of the temperature
distribution in the frozen region, and as a result of the forcing
function, becomes better in cylindrical cases, and much better in
spherical cases. Furthermore, the approximation becomes better as
the cryoprobe diameter decreases.

1t is customary to assume that the transient response in the frozen
region for small Stephan numbers, St, can be neglected, where
Stephan number is defined as the ratio of sensitive energy
released/absorbed to the latent heat. However, St number does not
include the transient response behavior of the medium as reflected
through the thermal diffusivity. All solutions in Fig. 2 have the
same St numbers but very different Fo numbers. Therefore it is
strongly suggested that the newly defined Fo number be used as a
quality indicator of the transient response negligence in the frozen
region.

SUMMARY

An approximate solution for the inverse Stephan problem in
Cartesian, cylindrical and spherical coordinate systems is
presented. The temperature distribution in the unfrozen region,
including the subregion undergoing phase-transition, the interface
location and the interface velocity, are solved numerically. The
temperature distribution in the frozen region is approximated by
neglecting the time dependent term in the heat balance equation. A
newly defined Fo number is introduced as a quality indicator of the
approximation.

Very good agreement for cryosurgical applications of low
freezing rates was found between an existing exact solution and the
approximate solution. This agreement is strongly dependent on Fo
number. The approximate solution is expected to be more accurate
in the cylindrical geometry than in the Cartesian geometry and
even more accurate in spherical geometry. The freezing rates that
will actually be caused by application of the approximate solution
will be less than the pre-specified freezing rate H, as Fo number
decreases.
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Fig. 1: Comparison of the temperature distribution between the

approximate solution and an exact solution (Rabin and
Shitzer, 1995), in Cartesian coordinates.
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Fig. 2:  Forcing function in Cartesian, cylindrical and spherical
cases subject to a constant freezing rate of 10°C/min, for
typical thermophysical properties of soft tissue, and
maximal blood perfusion and metabolic heat generation.



NOMENCLATURE

C  specific heat, J/m*-°C

d cryoprobe diameter, m

Fo  Fourier number

cooling rate at the freezing front, °C/s
thermal conductivity, W/m-°C
coordinate system number, Cartesian=0, cylindrical=1,
spherical=2

r radial coordinate, m

] interface location, m

$ freezing front velocity, m/s

t

t

= o~ o

time, s

dimensionless time, t/T

temperature, °C

dimensionless temperature, (T-T, /AT .,
X Cartesian coordinate, m

w,  blood perfusion, 1/s

Qme  metabolic heat generation, W/m?

Greek
o thermal diffusivity, m%/s

il coordinate in the direction of heat flow, m

1"  dimensionless coordinate, 1/s

13 transformed coordinate of the frozen region, m, Eq. (3)

T the time required for a frozen region of a thickness s to
form, s

Indexes

b blood

f frozen

max maximal
mf  lower boundary of phase-transition temperature range
u unfrozen



