Science Behind Sudoku

Palash Badjatya
and
Vipul Singh
Single Position Technique

- A cell must be assigned a digit if in its row/ column/ block, that is the only position available to the digit.
3 in C6; 4 in R2
Single Candidate Technique

- If there is only one possible candidate for a cell, it must be assigned.
R1C5; then R6C5
Candidate Lines Technique

• If cells accepting a digit in a block are localized to a row (column), remove that digit from rest of the row (column)

• If cells accepting a digit in a row (column) are localized to a block, remove digit from rest of the block.
6 in B7 (localized to line)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
3 in C5 (localized to block)

<table>
<thead>
<tr>
<th>8 9</th>
<th>6 3</th>
<th>5 2</th>
<th>1 2</th>
<th>4 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 9</td>
<td>7 5</td>
<td>8 6</td>
<td>4 2 3</td>
<td>2 3 9</td>
</tr>
<tr>
<td>4 8 9</td>
<td>1 2</td>
<td>4 9</td>
<td>3 7</td>
<td>3 6 9</td>
</tr>
<tr>
<td>5 4 8</td>
<td>2 1 9</td>
<td>7 6 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 6</td>
<td>3 4 7</td>
<td>5 9 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 9 7</td>
<td>6 8 5</td>
<td>1 2 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 3 9</td>
<td>7 5</td>
<td>6 8 1 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 8 4</td>
<td>1 2 3</td>
<td>2 3 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 5 1</td>
<td>4 2 3</td>
<td>2 3 6 8 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3/18/2014
Multiple Lines Technique

- If two blocks at the same level have a digit confined to two lines, the third block must have the digit in the remaining line.
5 in B1 and B3
Naked Pair/Tuples Technique

• If for a group of k inter-dependent cells, the set of all candidates is of size k, remove those k digits from everywhere else in the line or block.

• Usually look for $k=2,3$.
\{1,4\} in C5 as well as B5
\{2, 7, 9\} in R2
Find a naked tuple in B9
Hidden Subsets Technique

• If for a group of k digits, the set of all locations in a block or line is of size k, remove all other candidates in those k locations.

• Duality with naked tuple technique.
C7 – \{7,9\} form hidden subset while \{4,6,8\} form naked tuple
R5 – find a hidden subset

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

3/18/2014 • 17
XWing Technique

- 1 digit : 2 cells/column for 2 columns

- If these 4 cells form vertices of a rectangle, remove the digit from other cells in those rows.
7 in C5 and C9

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>3</th>
<th>1</th>
<th>6</th>
<th>9</th>
<th>5</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>2</td>
<td></td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.1. Rule 4.1 at work. In gray, candidates that have been eliminated by other techniques.
Swordfish Technique

- Generalize XWing to k lines.
- Digit occurs in 2 cells/line for k lines.
- Edge-parallel path between the 2k cells.
Digit 1 in rows 4, 5, and 9
References

• Examples from “A to Z of Sudoku” by Narendra Jussien

• “Logical World of Puzzles”, blog by ex-National Champion Rohan Rao (~World Rank 15)