Operations Research Techniques in Constraint Programming

Willem-Jan van Hoeve
Tepper School of Business, Carnegie Mellon University

ACP Summer School on Theory and Practice of Constraint Programming
September 24-28, 2012, Wrocław, Poland

Motivation

Benefits of CP
- Modeling power
- Inference methods
- Advanced search
- Exploits local structure

Benefits of OR
- Optimization algorithms
- Relaxation methods
- Duality theory
- Exploits global structure

Integrated methods can combine these complementary strengths
Can lead to several orders of magnitude of computational advantage

Some additional references

- Conference series CPAIOR
 - integration of techniques from CP, AI, and OR
 - http://www.andrew.cmu.edu/user/vanhoeve/cpaior/
 - online master classes/tutorials

- Tutorials by John Hooker
 - CP summer school 2011: ‘Integrating CP and mathematical programming’
 - http://ba.gsia.cmu.edu/jnh/slides.html
Outline

- Global constraint propagation
 - matching theory for *alldifferent*
 - network flow theory for *cardinality* constraint
- Integrating relaxations
 - Linear Programming relaxation
 - Lagrangean relaxation
- Decomposition methods
 - logic-based Benders
 - column generation

Matchings in graphs

- **Definition:** Let $G = (V, E)$ be a graph with vertex set V and edge set E. A matching in G is a subset of edges M such that no two edges in M share a vertex.
- A **maximum matching** is a matching of maximum size
- **Definition:** An M-augmenting path is a vertex-disjoint path with an odd number of edges whose endpoints are M-free
- **Theorem:** Either M is a maximum-size matching, or there exists an M-augmenting path

Finding a maximum matching

- The augmenting path theorem can be used to iteratively find a maximum matching in a graph G:
 - given M, find an M-augmenting path P
 - if P exists, augment M along P and repeat
 - otherwise, M is maximum
- For a **bipartite** graph $G = (V_1, V_2, E)$, an M-augmenting path can be found in $O(|E|)$ time
 - finding a maximum matching can then be done in $O(|V_1| \cdot |E|)$, as we need to compute at most $|V_1|$ paths (assume $|V_1| \leq |V_2|$)
 - this can be improved to $O(\sqrt{|V_1| \cdot |E|})$ time
 - [Hopcroft & Karp, 1973]
- For general graphs this is more complex, but still tractable
 - can be done in $O(\sqrt{|V| \cdot |E|})$ time
 - [Micali & Vazirani, 1980]
Alldifferent Propagation

• Goal: establish domain consistency on \textit{alldifferent}
 – Guarantee that each remaining domain value participates in at least one solution
 – Can we do this in polynomial time?

• We already saw that the decomposition is not sufficient to establish domain consistency

 \[x_1 \in \{a,b\}, x_2 \in \{a,b\}, x_3 \in \{a,b,c\} \]
 \[x_1 \neq x_2, x_2 \neq x_3, x_3 \neq x_3 \text{ \ versus \ } \text{alldifferent}(x_1,x_2,x_3) \]

Value Graph Representation

• Definition: The \textit{value graph} of a set of variables \(X\) is a bipartite graph \((X, D, E)\) where
 – node set \(X\) represents the variables
 – node set \(D\) represents the union of the variable domains
 – edge set \(E\) is \(\{ (x,d) \mid x \in X, d \in D(x) \} \)

• Example:

 \text{alldifferent}(x_1,x_2,x_3)
 \[x_1 \in \{a,b\} \]
 \[x_2 \in \{a,b\} \]
 \[x_3 \in \{b,c\} \]

From alldifferent to matchings

\textbf{Observation} [Régin, 1994]:
solution to \textit{alldifferent}(X) \iff
matching in value graph covering \(X\)

Example:

\[x_1 \in \{a,b\}, x_2 \in \{a,b\}, x_3 \in \{b,c\} \]
\text{alldifferent}(x_1,x_2,x_3)

Domain consistency for \textit{alldifferent}:
remove all edges (and corresponding domain values) that are not in any maximum matching
Filtering Algorithm

1. Verify consistency of the constraint
 - find maximum matching \(M \) in value graph
 - if \(M \) does not cover all variables: inconsistent
2. Verify consistency of each edge
 - for each edge \(e \) in value graph:
 - fix \(e \) in \(M \), and extend \(M \) to maximum matching
 - if \(M \) does not cover all variables: remove \(e \) from graph

Total runtime: \(O(\sqrt{|X| \cdot |E|^2}) \)
- Establishes domain consistency in polynomial time
- But not efficient in practice... can we do better?

A useful theorem

- **Theorem** [Petersen, 1891] [Berge, 1970]: Let \(G \) be graph and \(M \) a maximum matching in \(G \). An edge \(e \) belongs to a maximum-size matching if and only if
 - it either belongs to \(M \)
 - or to an even \(M \)-alternating path starting at an \(M \)-free vertex
 - or to an \(M \)-alternating circuit

A Better Filtering Algorithm

1. compute a maximum matching \(M \): covering all variables \(X \)
2. direct edges in \(M \) from \(X \) to \(D \), and edges not in \(M \) from \(D \) to \(X \)
3. compute the strongly connected components (SCCs)
4. edges in \(M \), edges within SCCs and edges on path starting from \(M \)-free vertices are all consistent
5. all other edges are not consistent and can be removed

- SCCs can be computed in \(O(|E|+|V|) \) time [Tarjan, 1972]
- consistent edges can be identified in \(O(|E|) \) time
- filtering in \(O(|E|) \) time
Important aspects

- Separation of consistency check \(O(\sqrt{|X| \cdot |E|}) \) and domain filtering \(O(|E|) \)
- Incremental algorithm
 - Maintain the graph structure during search
 - When \(k \) domain values have been removed, we can repair the matching in \(O(km) \) time
 - Note that these algorithms are typically invoked many times during search / constraint propagation, so being incremental is very important in practice

Network Flows

Let \(G=(V,A) \) be a directed graph with vertex set \(V \) and arc set \(A \). To each arc \(a \in A \) we assign a capacity function \([d(a),c(a)] \) and a weight function \(w(a) \).

Let \(s,t \in V \). A function \(f: A \to \mathbb{R} \) is called an \(s-t \) flow (or a flow) if

- \(f(a) \geq 0 \) for all \(a \in A \)
- \(\sum_{a \text{ enters } v} f(a) = \sum_{a \text{ leaves } v} f(a) \) for all \(v \in V \) (flow conservation)
- \(d(a) \leq f(a) \leq c(a) \) for all \(a \in A \)

Define the cost of flow \(f \) as \(\sum_{a \in A} w(a)f(a) \). A minimum-cost flow is a flow with minimum cost.

Example: Network flow for alldifferent

Fact: matching in bipartite graph \(\iff \) integer flow in directed bipartite graph

Step 1: direct edges from \(X \) to \(D(X) \)
Step 2: add a source \(s \) and sink \(t \)
Step 3: connect \(s \) to \(X \), and \(D(X) \) to \(t \)
Step 4: add special arc \((t,s)\)

all arcs have capacity \([0,1]\) and weight 0
except arc \((t,s)\) with capacity \([0, \min(|X|,|D(X)|)]\)
Cardinality constraints

- The global cardinality constraint restricts the number of times certain values can be taken in a solution.
- Example: We need to assign 75 employees to shifts. Each employee works one shift. For each shift, we have a lower and upper demand.

<table>
<thead>
<tr>
<th>Shift</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>10</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Max</td>
<td>14</td>
<td>14</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

\[D(x_i) = \{1, 2, 3, 4, 5, 6\} \text{ for } i = 1, 2, \ldots, 75 \]

\[\text{gcc}(x_1, \ldots, x_{75}, \text{min}, \text{max}) \]

Filtering for cardinality constraints

Definition: Let \(X \) be a set of variables with \(D(x) \subseteq V \) for all \(x \in X \) (for some set \(V \)). Let \(L \) and \(U \) be vectors of non-negative integers over \(V \) such that \(L(v) \leq U(v) \) for all \(v \in V \). The \(\text{gcc}(X, L, U) \) is defined as the conjunction

\[\land_{v \in V} \left(L(v) \leq \sum_{x \in X} (x=v) \leq U(v) \right) \]

Questions:
1. Can we determine in polynomial time whether the constraint is consistent (satisfiable)?
2. Can we establish domain consistency (remove all inconsistent domain values) in polynomial time?

Network representation

- **Observation** [Regin, 1996]: Solution to \(\text{gcc} \) is equivalent to particular network flow
 - similar to bipartite network for \(\text{alldifferent} \)
 - node set defined by variables and domain values, one source \(s \) and one sink \(t \)
 - define arc \((x,v)\) for all \(x \in X, v \in D(x) \) with capacity \([0,1]\)
 - define arcs from \(s \) to \(x \) for all \(x \in X \) with capacity \([1,1]\)
 - define arcs from \(v \) to \(t \) for all \(v \in V \) with capacity \([U(v),L(v)]\)
- Feasible flow corresponds to solution to \(\text{gcc} \)
- **Note:** If \(L(v)=0, U(v)=1 \) for all \(v \in V \) then \(\text{gcc} \) is equivalent to \(\text{alldifferent} \)
Filtering for cardinality constraints

- Determining consistency: compute network flow
 - Using Ford & Fulkerson's augmenting path algorithm, this can be done in $O(mn)$ time for n is number of variables, m is number of edges in the graph
 - Can be improved to $O(m\sqrt{n})$ [Quimper et al., 2004]

- Naive domain consistency
 - Fix flow of each arc to 1, and apply consistency check. Remove arc if no solution. $O(m^2\sqrt{n})$ time.

- More efficient algorithm: use residual network

Residual network

Given network $G=(V,A)$ and a flow f in G, the residual network G_f is defined as (V,A_f) where for all $a \in A$,
- $a \in A_f$ if $f(a) < c(a)$ with capacity $\max\{d(a) - f(a), 0\}$, $c(a) - f(a)$ and weight $w(a)$
- $a^{-1} \in A_f$ if $f(a) > d(a)$ with capacity $\{0, f(a) - d(a)\}$ and weight $-w(a)$

New capacities express how much more flow we can put on arc a or subtract from it (via a^{-1})
Example for GCC

\[\begin{align*}
D(x_1) &\quad D(x_2) &\quad D(x_3) &\quad D(x_4) &\quad D(x_5) \\
1 &\quad 1.2 &\quad 1.2 &\quad 2 &\quad 2.3 &\quad 3.4
\end{align*} \]

Benefits of residual network

- Fact from flow theory:

 Theorem 9. Let \(G \) be a graph and \(f \) a feasible flow in \(G \). An arc belongs to some feasible flow in \(G \) if and only if it belongs to \(f \) or both of its endpoints belong to the same SCC of the residual graph of \(G \) with respect to \(f \).

- We can compute all strongly connected components in \(O(m+n) \) time [Tarjan, 1972]

- Therefore, given a consistent gcc, domain consistency can be established in \(O(m) \) time

- Other benefits
 - maintain data structures and flow incrementally
 - compute initial network flow only once at the root of the search tree (similar to the alldifferent algorithm)

Optimization Constraints

- In the CP literature, ‘optimization’ constraints refer to constraints that represent a structure commonly identified with optimization
 - usually linked to the objective function (e.g., minimize cost)
 - sometimes standalone structure (budget limit, risk level, etc.)

- For any constraint, a weighted version can be obtained by applying a weight measure on the variable assignments, and restricting the total weight to be within a threshold
GCC with costs

- The classical weighted version of the gcc is obtained by associating a weight \(w(x,v) \) to each pair \(x \in X, v \in V \).
- Let \(z \) be a variable representing the total weight. Then
 \[
 \text{cost_gcc}(X, L, U, z, w) = \text{gcc}(X, L, U) \land \sum_{x \in X \& x=v} w(x,v) \leq z
 \]
- In other words, we restrict the solutions to those that have a weight at most \(\max(D(z)) \).

Domain filtering for weighted gcc

1. Determine consistency of the constraint
2. Remove all domain values from \(X \) that do not belong to a solution with weight \(\leq \max(D(z)) \)
3. Filter domain of \(z \)
 - i.e., increase \(\min(D(z)) \) to the minimum weight value over all solutions, if applicable

Determining consistency of cost_gcc

- Once again, we exploit the correspondence with a (weighted) network flow [Regin 1999, 2002]:
 A solution to cost_gcc corresponds to a weighted network flow with total weight \(\leq \max(D(z)) \)
- We can test consistency of the cost_gcc by computing a minimum-cost flow
Time complexity

- A minimum-cost flow can be found with the classical 'successive shortest paths' algorithm of Ford & Fulkerson
 - The flow is successively augmented along the shortest path in the residual network
 - Finding the shortest path takes $O(m + n \log n)$ time (for m edges, n variables)
 - In general, this yields a pseudo-polynomial algorithm, as it depends on the cost of the flow. However, we compute at most n shortest paths (one for each variable)
 - Overall running time is $O(n(m + n \log n))$ time
- Naive domain consistency in $O(nm(m + n \log n))$

Taking advantage of residual graph

Theorem (e.g., Ahuja et al., 1993)\]

For each arc (x, d) with d in $D(x)$ for which $f(x,d)=0$, we compute the shortest d-x path P in the residual graph

- If $\text{cost}(f) + \text{cost}(P) + \text{cost}(x,d) > \max(D(z))$, remove d from $D(x)$
 - Gives domain consistency in $O((m-n)(m + n \log n))$ time
 - Can be improved to $O(\min(n, |V|)(m + n \log n))$ time by computing all shortest paths from variable (or value) vertices in one shot

Domain consistency again

- For each arc (x, d) with d in $D(x)$ for which $f(x,d)=0$, we compute the shortest d-x path P in the residual graph
- Maintain flow incrementally. Upon k domain changes, update flow in $O(k(m + n \log n))$ time
Other optimization constraints

- Weighted network flows have been applied to several other global constraints
 - weighted alldifferent
 - soft alldifferent
 - soft cardinality constraint
 - soft regular constraint
 - cardinality constraints in weighted CSPs
 - ...

 see [v. H. “Over-Constrained Problems”, 2011] for an overview

- Very powerful and generic technique for handling global constraints

Outline

- Global constraint propagation
 - matching theory for alldifferent
 - network flow theory for cardinality constraint

- Integrating relaxations
 - Linear Programming relaxation
 - Lagrangean relaxation

- Decomposition methods
 - logic-based Benders
 - column generation

Integrating relaxations

- Linear Programming
 - duality
 - LP-based domain filtering
 - application: routing

- Lagrangean Relaxations
 - domain filtering
 - application: routing
Linear Programming

- LP model is restricted to linear constraints and continuous variables
- Linear programs can be written in the following standard form:

\[
\begin{align*}
\min & \quad c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \\
\text{subject to} & \quad a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n = b_1 \\
& \quad a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n = b_2 \\
& \quad \vdots \\
& \quad a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n = b_m \\
& \quad x_1, \ldots, x_n \geq 0
\end{align*}
\]

or, using matrix notation:

\[
\min \{ c^T x \mid Ax = 0, x \geq 0 \}
\]

Benefits of Linear Programming

- Solvable in polynomial time
 - very scalable (millions of variables and constraints)
- Many real-world applications can be modeled and solved using LP
 - from production planning to data mining
- LP models are very useful as relaxation for integer decision problems
 - LP relaxation can be strengthened by adding constraints (cuts) based on integrality
- Well-understood theoretical properties
 - e.g., duality theory

Solving LP models: Example

Maximize

8x_1 + 5x_2

Subject to

x_1 + x_2 \leq 10
4x_1 - x_2 \leq 0
x_1, x_2 \geq 0

Optimal Solution: x_1 = 2, x_2 = 8 with value 56
Solving LP models: Standard form

Maximize

\[8x_1 + 5x_2 \]

Subject to

\[x_1 + x_2 \leq 10 \]
\[4x_1 - x_2 \leq 0 \]
\[x_1, x_2 \geq 0 \]

Minimize

\[-8x_1 - 5x_2 \]

Subject to

\[x_1 + x_2 \leq 10 \]
\[4x_1 - x_2 \leq 0 \]
\[x_1, x_2 \geq 0 \]

Minimize

\[-8x_1 - 5x_2 \]

Subject to

\[x_1 + x_2 + x_3 = 10 \]
\[4x_1 - x_2 + x_4 = 0 \]
\[x_1, x_2, x_3, x_4 \geq 0 \]

\[\min \{ c^T x \mid Ax = b, x \geq 0 \} \]

(x_2 and x_4 are called 'slack' variables)

Algebraic analysis

- Rewrite \(Ax = b \) as \(A_B x_B + A_N x_N = b \), where \(A = [A_B \mid A_N] \)
- \(A_B \) is any set of \(m \) linearly independent columns of \(A \)
 - these form a basis for the space spanned by the columns
- We call \(x_B \) the basic variables and \(x_N \) the non-basic variables

- Solving \(Ax = b \) for \(x_B \) gives \(x_B = A_B^{-1} b - A_B^{-1} A_N x_N \)
- We obtain a basic solution by setting \(x_N = 0 \)
 - so, \(x_B = A_B^{-1} b \)
 - this is a basic feasible solution if \(x_B \geq 0 \)

Example

Minimize

\[-8x_1 - 5x_2 \]

Subject to

\[x_1 + x_2 + x_3 = 10 \]
\[4x_1 - x_2 + x_4 = 0 \]
\[x_1, x_2, x_3, x_4 \geq 0 \]
Optimality condition

- Recall solution: \(x_B = A_B^{-1}b - A_B^{-1}A_N x_N \)
- Express objective \(c_B x_B + c_N x_N \) in terms of non-basic variables:
 \[c_B A_B^{-1}b + (c_N - c_B A_B^{-1}A_N) x_N \]
 vector of reduced costs
- Since \(x_N \geq 0 \), basic solution \((x_B, 0) \) is optimal if reduced costs are nonnegative
- (In fact, the Simplex method moves from one basic solution to another improving one until all reduced costs are nonnegative)

LP Duality

Every (primal) LP model has an associated dual model:

(P) \[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]

(D) \[
\begin{align*}
\max & \quad \lambda^T b \\
\text{s.t.} & \quad \lambda^T A \leq c \\
& \quad \lambda \geq 0
\end{align*}
\]

- Each constraint in (P) has an associated dual variable in (D)
- these are also called the shadow prices of the constraints
- The dual of the dual is the primal
- Every feasible solution to an LP gives a bound on its dual
- If (P) is feasible, then optimum(P) = optimum(D)
 (this is called strong duality)

LP dual for standard form

(P) \[
\begin{align*}
\min & \quad c_B^T x_B + c_N^T x_N \\
\text{s.t.} & \quad A_B x_B + A_N x_N = b \\
& \quad x_B, x_N \geq 0
\end{align*}
\]

(D) \[
\begin{align*}
\max & \quad \lambda^T b \\
\text{s.t.} & \quad \lambda^T A_B \leq c_B \quad (x_B) \\
& \quad \lambda^T A_N \leq c_N \quad (x_N) \\
& \quad \lambda \text{ free}
\end{align*}
\]

If \((x_B, 0) \) solves the primal, then \(\lambda^T = c_B A_B^{-1} \) solves the dual

Recall: reduced cost vector is
\[c_N - c_B A_B^{-1}A_N = c_N - \lambda^T A_N \]
In other words, the reduced cost for \(x_i \) is
\[\bar{c}_i = c_i - \sum_j \lambda_j a_{ij} \]
Economic Interpretation

- **Reduced costs**
 - by definition, represents the marginal change in the objective if variable enters the basis
 - changing \(x_i \) by \(\Delta \) will change objective by at least \(c^T \Delta \)

- **Shadow prices**
 - by dual perspective, represents the marginal change in the objective if the RHS changes
 - changing \(b_j \) by \(\Delta \) will change objective by at least \(\lambda \Delta \)

\[
\begin{align*}
\textbf{(P)} & \quad \min & c^T x \\
\text{s.t.} & \quad Ax \geq b \\
& \quad x \geq 0 \\
\end{align*}
\]

\[
\begin{align*}
\textbf{(D)} & \quad \max & \lambda^T b \\
\text{s.t.} & \quad \lambda^T A \leq c \\
& \quad \lambda \geq 0 \\
\end{align*}
\]

Graphical representation of shadow price

What happens if we increase the RHS of \(x_1 + x_2 \leq 10 \) with 1 unit to \(x_1 + x_2 \leq 11 \)?

- Basis remains optimal
- Objective decreases by 5.6 to value -61.6

So, the shadow price of this constraint is -5.6

LP-based domain filtering

- Suppose we have a LP relaxation available for our problem
 \[
 \min \{ c^T x \mid Ax = b, x \geq 0 \}
 \]

- Can we establish 'LP bounds consistency' on the domains of the variables?

 For each variable \(x_i \):
 - change objective to \(\min x_i \) and solve LP: lower bound \(\text{LB}_i \)
 - change objective to \(\max x_i \) and solve LP: upper bound \(\text{UB}_i \)

 \[x_i \in [\text{LB}_i, \text{UB}_i] \]

- Very time-consuming (although it can pay off, e.g., in nonlinear programming problems)
LP-based domain filtering

• Instead of min/max of each variable, exploit reduced costs as more efficient approximation
 [Focacci, Lodi, and Milano, 1999, 2002]

• In the following, we assume for simplicity an ‘optimization constraint’ of the form:

\[
\text{opt. } \mathcal{L}(x_1, \ldots, x_n, z, c) = \{(d_1, \ldots, d_n) \in C(x_1, \ldots, x_n) : \\
\forall i \in D(x_i), d \in D(z), \sum_{i=1}^{n} c_{i,d_i} \leq d\}.
\]

Creating an LP relaxation

• Create mapping between linear model and CP model by introducing binary variables \(y_{ij} \) for all \(i \in \{1, \ldots, n\} \) and \(j \in D(x_i) \) such that

\[
x_i = j \Leftrightarrow y_{ij} = 1 \\
x_i \neq j \Leftrightarrow y_{ij} = 0
\]

• To ensure that each variable \(x_i \) is assigned a value, we add the following constraints to the linear model:

\[
\sum_{j \in D(x_i)} y_{ij} = 1 \text{ for } i = 1, \ldots, n
\]

• The objective is naturally stated as

\[
\sum_{i=1}^{n} \sum_{j \in D(x_i)} c_{ij} y_{ij}
\]

LP relaxation (cont’d)

• The next task is to represent the actual constraint, and this depends on the combinatorial structure

• For example, if the constraint contains a permutation structure (such as the \textit{alldifferent}), we can add the constraints:

\[
\sum_{i=1}^{n} y_{ij} \leq 1 \text{ for all } j \in \bigcup_{i=1}^{n} D(x_i)
\]

• (Note that specific cuts known from MIP may be added to strengthen the LP)

• After the linear model is stated, we obtain the natural LP relaxation by removing the integrality condition on \(y_{ij} \):

\[
0 \leq y_{ij} \leq 1 \text{ for } i \in \{1, \ldots, n\}, j \in D(x_i)
\]
Reduced-cost based filtering

- The output of the LP solution is an optimal solution value z^*, a (fractional) value for each variable y_{ij}, and an associated reduced cost \bar{c}_{ij}.
- Recall that \bar{c}_{ij} represents the marginal change in the objective value when variable y_{ij} is forced in the solution.
- But y_{ij} represents $x_i = j$.
- Reduced-cost based filtering:

 if $z^* + \bar{c}_{ij} > \max D(z_i)$ then $D(x_i) \leftarrow D(x_i) \setminus \{j\}$

 (This is a well-known technique in OR, called 'variable fixing')

Pros and Cons

- Potential drawbacks:
 - The filtering power depends directly on the quality of the LP relaxation, and it may be hard to find an effective relaxation.
 - Solving a LP using the simplex method may take much more time than propagating the constraint using combinatorial filtering algorithm.
- Potential benefits:
 - It's very generic; it works for any LP relaxation of a single constraint, a combination of constraints, or for the entire problem.
 - New insights in LP solving can have immediate impact.
 - For several constraint types, there exist fast and incremental combinatorial techniques to solve the LP relaxation.
 - This type optimality-based filtering complements nicely the feasibility-based filtering of CP; several applications cannot be solved with CP otherwise.

Example Application: TSP

- CP model
- LP relaxation
 - Assignment Problem
- Impact of reduced-cost based filtering

Graph $G = (V,E)$ with vertex set V and edge set E

$|V| = n$

Let distance between i and j be represented by 'weight' function $w(i,j)$.
CP models for the TSP

- Permutation model
 - variable pos_i represents the i-th city to be visited
 - (can introduce dummy node pos_{n+1} = pos_1)
 \[
 \begin{align*}
 \min & \quad \sum_i w(pos_i, pos_{i+1}) \\
 \text{s.t.} & \quad \text{alldifferent}(pos_1, \ldots, pos_n) \\
 \end{align*}
 \]
 both models decouple the objective and the circuit

- Successor model
 - variable next_i represents the immediate successor of city i
 \[
 \begin{align*}
 \min & \quad \sum_i w(i, next_i) \\
 \text{s.t.} & \quad \text{alldifferent}(next_1, \ldots, next_n) \\
 & \quad \text{path}(next_1, \ldots, next_n) \quad \text{(Hamiltonian Path, not always supported by the CP solver)}
 \end{align*}
 \]

More CP models

- Combined model (still decoupled)
 \[
 \begin{align*}
 \min & \quad \sum_{i \in V} w(i, next_i) \\
 \text{s.t.} & \quad \text{alldifferent}(next_1, \ldots, next_n) \\
 & \quad \text{alldifferent}(pos_1, \ldots, pos_n) \\
 & \quad pos_j = next_{pos_j-1} \quad \forall j \in \{2, \ldots, n\} \\
 & \quad pos_1 = 1
 \end{align*}
 \]

- Integrated model
 \[
 \begin{align*}
 \min & \quad z \\
 \text{s.t.} & \quad \text{alldifferent}(next_1, \ldots, next_n) \\
 & \quad \text{WeightedPath}(next, w, z) \quad \text{[Focacci et al., 1999, 2002]}
 \end{align*}
 \]
 (Note: most CP solvers do not support this constraint)

Relaxations for TSP

- An integrated model using \text{WeightedPath}(next, w, z) allows to apply an LP relaxation and perform reduced-cost based filtering

- Observe that the TSP is a combination of two constraints
 - The degree of each node is 2
 - The solution is connected (no sub tours)

- Relaxations:
 - relax connectedness: \text{Assignment Problem}
 - relax degree constraints: 1-Tree Relaxation
Benefits of AP relaxation

- Continuous relaxation provides integer solutions (total unimodularity)
- Specialized $O(n^3)$ algorithm (Hungarian method)
- Incremental $O(n^2)$ running time
- Reduced costs come for free
- Works well on asymmetric TSP

Assignment Problem (see introduction)

Binary variable y_{ij} represents whether the tour goes from i to j

\[
\begin{align*}
\min \; z &= \sum_{(i,j) \in E} w_{ij} y_{ij} \\
\text{s.t.} & \quad \sum_{j \in V} y_{ij} = 1, \forall j \in V \\
& \quad \sum_{i \in V} y_{ij} = 1, \forall i \in V \\
& \quad 0 \leq y_{ij} \leq 1, \forall i, j \in V
\end{align*}
\]

Computational results for TSP-TW

<table>
<thead>
<tr>
<th>Instance</th>
<th>Dyn.Prog.</th>
<th>Branch&Cut</th>
<th>CP+LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>n</td>
<td>time</td>
<td>time</td>
</tr>
<tr>
<td>rbg201.2</td>
<td>21</td>
<td>9.60</td>
<td>0.22</td>
</tr>
<tr>
<td>rbg201.3</td>
<td>21</td>
<td>9.60</td>
<td>27.15</td>
</tr>
<tr>
<td>rbg201.4</td>
<td>21</td>
<td>11.52</td>
<td>5.82</td>
</tr>
<tr>
<td>rbg201.5</td>
<td>21</td>
<td>127.97</td>
<td>6.83</td>
</tr>
<tr>
<td>rbg201.6</td>
<td>21</td>
<td>161.66</td>
<td>1.38</td>
</tr>
<tr>
<td>rbg201.7</td>
<td>21</td>
<td>N.A.</td>
<td>4.30</td>
</tr>
<tr>
<td>rbg201.8</td>
<td>21</td>
<td>N.A.</td>
<td>17.49</td>
</tr>
<tr>
<td>rbg201.9</td>
<td>21</td>
<td>N.A.</td>
<td>26.12</td>
</tr>
<tr>
<td>rbg031a</td>
<td>36</td>
<td>18.63</td>
<td>0.98</td>
</tr>
<tr>
<td>rbg031a.3</td>
<td>37</td>
<td>7.67</td>
<td>1.83</td>
</tr>
<tr>
<td>rbg031a.4</td>
<td>40</td>
<td>8.64</td>
<td>423.23</td>
</tr>
<tr>
<td>rbg031a.5</td>
<td>42</td>
<td>20.98</td>
<td>751.42</td>
</tr>
<tr>
<td>rbg031a.6</td>
<td>43</td>
<td>24.57</td>
<td>N.A.</td>
</tr>
<tr>
<td>rbg031a.7</td>
<td>44</td>
<td>47.38</td>
<td>N.A.</td>
</tr>
<tr>
<td>rbg020a</td>
<td>52</td>
<td>N.A.</td>
<td>18.82</td>
</tr>
<tr>
<td>rbg067a</td>
<td>69</td>
<td>29.11</td>
<td>5.95</td>
</tr>
<tr>
<td>rbg123</td>
<td>152</td>
<td>37.90</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Langrangean Relaxation for LP

Move subset (or all) of constraints into the objective with 'penalty' multipliers μ:

\[
\begin{align*}
\min \; c^T x & \quad \rightarrow \quad L(\mu) = \min \; c^T x + \mu^T (b_2 - A_2 x) \\
\text{s.t.} & \quad A_1 x = b_1 \\
& \quad A_2 x = b_2 \\
& \quad x \geq 0
\end{align*}
\]

Weak duality: for any choice of μ, Lagrangean $L(\mu)$ provides a lower bound on the original LP

Goal: find optimal μ (providing the best bound) via

\[
\max_{\mu \geq 0} L(\mu)
\]
Motivation for using Lagrangeans

- Lagrangean relaxations can be applied to nonlinear programming problems (NLPs), LPs, and in the context of integer programming
- Lagrangean relaxation can provide better bounds than LP relaxation
- The Lagrangean dual generalizes LP duality
- It provides domain filtering analogous to that based on LP duality
- Lagrangean relaxation can dualize ‘difficult’ constraints
 - Can exploit the problem structure, e.g., the Lagrangean relaxation may decouple, or $L(\mu)$ may be very fast to solve combinatorially
- Next application: Lagrangean relaxation for TSP

Recall: Relaxations for TSP

- An integrated model using WeightedPath(next, w, z) allows to apply an LP relaxation and perform reduced-cost based filtering
- Observe that the TSP is a combination of two constraints
 - The degree of each node is 2
 - The solution is connected (no sub tours)
- Relaxations:
 - relax connectedness: Assignment Problem
 - relax degree constraints: 1-Tree Relaxation

The 1-Tree Relaxation for TSP

- Held and Karp [1970, 1971] proposed a lower bound based on a relaxation of the degree constraints
- A minimum spanning tree gives such a relaxation
- A 1-tree is a stronger relaxation, which can be obtained by:
 - Choosing any node v (which is called the 1-node)
 - Building a minimum spanning tree T on $G = (\mathcal{V}(v), E)$
 - Adding the smallest two edges linking v to T
- For n vertices, a 1-tree contains n edges

P.S. an MST can be found in $O(m \alpha(m,n))$ time
The Held and Karp bound for TSP

The 1-tree can be tightened through the use of Lagrangean relaxation by relaxing the degree constraints in the TSP model:

Let binary variable x_e represent whether edge e is used

\[
\min \sum_{e \in E} w(e)x_e \\
\text{s.t.} \sum_{e \in \mathcal{E}(i)} x_e = 2 \quad \forall i \in V \\
\sum_{i,j \in S, i < j} x_{(i,j)} \leq |S| - 1 \quad \forall S \subset V, |S| \geq 3 \\
x_e \in \{0, 1\} \quad \forall e \in E
\]

Lagrangean relaxation with multipliers π (penalties for node degree violation):

\[
\min \sum_{e \in E} w(e)x_e + \sum_{i \in V \setminus \{1\}} \pi_i \left(2 - \sum_{e \in \mathcal{E}(i)} x_e \right) \\
\text{s.t.} \quad \sum_{i,j \in S, i < j} x_{(i,j)} \leq |S| - 1 \quad \forall S \subset V \setminus \{1\}, |S| \geq 3 \\
\sum_{e \in \mathcal{E}(i)} x_e = 2 \quad \forall i \in V \setminus \{1\} \\
\sum_{e \in E} x_e = |V| \\
x_e \in \{0, 1\}
\]

How to find the best penalties π?
- In general, subgradient optimization
- But here we can exploit a combinatorial interpretation
- No need to solve LP

Held-Karp iteration

- Solve 1-tree w.r.t. updated edge weights $w'(e) = w(e) - \pi_i - \pi_j$
- Optimal 1-tree T gives lower bound: $\text{cost}(T) + 2 \sum \pi_i$
- If T is not a tour, then we iteratively update the penalties as $\pi_i = (2 \cdot \deg(i)) \beta$ (step size β different per iteration) and repeat

$w(2,4) = w(2,4) - \pi_2 - \pi_1$
How can we exploit 1-tree in CP?

- We need to reason on the graph structure
 - manipulate the graph, remove costly edges, etc.
- Not easily done with ‘next’ and ‘pos’ variables
 - e.g., how can we enforce that a given edge e=(i,j) is mandatory?
 - (next = j or next = i) ?
 - \(pos_i = i \Rightarrow (pos_{i+1} = j) \) or \(pos_{i+1} = j) \) ?
- Ideally, we want to have access to the graph rather than local successor/predecessor information
 - modify definition of global constraint

One more CP model for the TSP

Integrated model based on graph representation

\[
\begin{align*}
\min & \quad z \\
\text{s.t.} & \quad \text{weighted-circuit}(X, G, z)
\end{align*}
\]

- \(G=\{V,E,w\} \) is the graph with vertex set \(V \), edge set \(E \), weights \(w \)
- \(X \) is a set variable representing the set of edges that will form the circuit
 - Domain \(D(X) = \{ (X) \cup \{U\} \} \), with fixed cardinality \(|V| \) in this case
 - Lower bound \(LX \) is set of mandatory edges
 - Upper bound \(UX \) is set of possible edges
- \(z \) is a variable representing the total edge weight
Domain Filtering

- Given constraint
 \[\text{weighted-circuit}(X, G=(V,E,w), z) \]
- Apply the 1-tree relaxation to
 - remove sub-optimal edges from \(U(X) \)
 - force mandatory edges into \(L(X) \)
 - update bounds of \(z \)
- For simplicity, the presentation of the algorithms are restricted to \(G = (V \setminus \{1\}, E) \)

Removing non-tree edges

- The marginal cost of a non-tree edge \(e \) is the additional cost of forcing \(e \) in the solution:
 \[c'_e = \text{cost}(T(e)) - \text{cost}(T) \]
- Given a current best solution UB, edge \(e \) can be removed if
 \[\text{cost}(T(e)) > UB, \text{ or } c'_e + \text{cost}(T) > UB \]

Replacement cost of
- \((1,2)\) is \(4 - 2 = 2\)
- \((6,7)\) is \(5 - 5 = 0\)

Computing marginal costs

Basic algorithm for computing marginal edge costs:
- For each non-tree edge \(e=(i,j) \)
 - find the unique i-j path \(P_e \) in the tree
 - the marginal cost of \(e \) is \(c_e = \max(c_a \mid a \in P_e) \)

Complexity: \(O(mn)\), since \(P_e \) can be found in \(O(n)\) time by DFS

Can be further improved to \(O(m + n + n \log n)\) [Regin, 2008]
Impact of edge filtering

Forcing tree edges

- The replacement cost of a tree edge e is the additional cost when e is removed from the tree:
 \[c'_e = \text{cost}(T \setminus e) - \text{cost}(T) \]
- Given a current best solution UB, edge e is mandatory if $\text{cost}(T \setminus e) > UB$, or $c'_e + \text{cost}(T) > UB$

replacement cost of (1,4)?
we need to find the cheapest edge to reconnect: 3 - 1 = 2

Computing replacement costs

1. Compute minimum spanning tree T in G
2. Mark all edges in T as ‘unmarked’
3. Consider non-tree edges, ordered by non-decreasing weight:
 - For non-tree edge (i,j), traverse the i-j path in T
 - Mark all unmarked edges e on this path, and assign $c'_e = c_{ij} - c_e$
4. Basic time complexity $O(mn)$, or, at no extra cost if performed together with the computation of marginal costs

<table>
<thead>
<tr>
<th>non-tree edge</th>
<th>mark edge</th>
<th>replacement cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3,4)</td>
<td>(1,2)</td>
<td>3 - 2 = 1</td>
</tr>
<tr>
<td>(1,4)</td>
<td>(2,4)</td>
<td>4 - 2 = 2</td>
</tr>
<tr>
<td>(1,3)</td>
<td></td>
<td>3 - 2 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(edge (1,4) already marked)</td>
</tr>
</tbody>
</table>
Improving the time complexity

- We can improve this complexity by 'contracting' the marked edges (that is, we merge the extremities of the edge)
 - First, root the minimum spanning tree
 - Apply Tarjan's 'path compression' technique during the algorithm
 - This leads to a time complexity of $O(m \alpha(m,n))$
Outline

• Global constraint propagation
 – matching theory for *alldifferent*
 – network flow theory for *cardinality* constraint

• Integrating relaxations
 – Linear Programming relaxation
 – Lagrangean relaxation

• *Decomposition methods*
 – logic-based Benders
 – column generation

Motivation

• Many practical applications are composed of several subproblems
 – *facility location*: assign orders to facilities with minimum cost, but respect facility constraints
 – *vehicle routing*: assign pick-up locations to trucks, while respecting constraints on truck (capacity, driver time, …)

• By solving subproblems separately we can
 – be more scalable (decrease solving time)
 – exploit the subproblem structure

• OR-based decomposition methods can preserve optimality

Motivation for integrated approach

Example: *airline crew rostering*

• Crew members are assigned a schedule from a huge list of possible schedules
 – this is a ‘set covering’ problem: relatively easy for IP/LP

• New schedules are added to the list as needed
 – many challenging scheduling constraints – difficult for MIP, but doable for CP

• *Integrated OR/CP decompositions* broaden the applicability to more complex and larger applications
Benders Decomposition

Benders decomposition can be applied to problems of the form:

\[\min \ v = f(x, y) \quad \text{s.t.} \quad S(x, y) \in D_x, y \in D_y \]

When fixing variables \(x \), the resulting problem may become much simpler:

\[\min \ f(x) \quad \text{s.t.} \quad S(x) \in D_x \]

Example: multi-machine scheduling
- variables \(x \) assign tasks to machines
- variables \(y \) give feasible/optimal schedules per machine
- when fixing \(x \), the problem decouples into independent single-machine scheduling problems on \(y \)

Benders Decomposition (cont’d)

Iterative process
- Master problem: search over variables \(x \)
 - optimal solution \(x^k \) in iteration \(k \)
- Subproblems: search over variables \(y \), given fixed \(x^k \)
 - optimal objective value \(v^k \)
- Add Benders cut to master problem
 \[v \geq B_k(x) \quad \text{such that } B_k(x^k) = v^k \]

Bounding
- Master is relaxation: gives lower bound
- Subproblem is restriction: gives upper bound
- Process repeats until the bounds meet

Logic-based Benders

- Original Benders decomposition applies to LP and NLP problems
 - Based on duality theory to obtain Benders cuts
- However, the concept is more general
 - Logic-based Benders: generalizes LP-based Benders to other types of inference methods, using 'inference duality'
 - In particular, CP can be applied to solve the subproblems
 - Also allows additional types of 'feasibility' cuts (nogoods)

[Jain & Grossmann, 2001] [Hooker & Ottoson, 2003]
Example: Task-Facility Allocation

Benders Scheme

Pros and Cons

- Benefits of Logic-based Benders
 - reported orders of magnitude improvements in solving time
 [Jain & Grossmann, 2001], [Hooker, 2007]
 - CP models very suitable for more complex subproblems such as scheduling, rostering, etc.

- Potential drawbacks
 - finding good Benders cuts for specific application may be challenging
 - feasible solution may be found only at the very end of the iterative process
Column Generation

- One of the most important techniques for solving very large scale linear programming problems
 - perhaps too many variables to load in memory

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]

- Delayed column generation (or variable generation):
 - start with subset of variables ("restricted master problem")
 - iteratively add variables to model until optimality condition is met

Column Generation (cont’d)

Delayed column generation:
- Solve for subset of variables \(S \) (assume feasible)
- This gives shadow prices \(\lambda \) for the constraints
- Use reduced costs to price the variables not in \(S \)
 \[
 \tilde{c}_i = c_i - \sum j \lambda_j a_{ij}
 \]
- If \(\tilde{c}_i < 0 \), variable \(x_i \) may improve the solution:
 - add \(x_i \) to \(S \) and repeat
- Otherwise, we are optimal (since all reduced costs are nonnegative)

How can we find the best variable to add?

Pricing Problem

- Solve optimization problem to find the variable (column) with the minimum reduced cost:
 \[
 \begin{align*}
 \min & \quad c^T x \\
 \text{s.t.} & \quad Ax \geq b \\
 & \quad x \geq 0
 \end{align*}
 \]
 \[
 \begin{align*}
 \min & \quad c^T x \\
 \text{s.t.} & \quad Ax \geq b \\
 & \quad x \geq 0
 \end{align*}
 \]

- In many cases, columns of \(A \) can be described using a set of (complicated) constraints
- Remarks:
 - any negative reduced cost column suffices (need not be optimal)
 - CP can be suitable method for solving pricing problem
Application: Capacitated Vehicle Routing

- Set of clients V, depot d
- Set of trucks (unlimited, equal)
- Parameters:
 - distance matrix D
 - load w_j for each client j in V (unsplitable)
 - truck capacity Q
- Goal:
 - find an allocation of clients to trucks
 - and a route for each truck
 - respecting all constraints
 - with minimum total distance

Problem Formulation: Restricted Master

- Let R be (small) set of feasible individual truck routes
 - parameter $a_{rj} = 1$ if client j is on route $r \in R$
 - parameter c_r represent the length of route $r \in R$
- Let binary variable x_r represent whether we use route $r \in R$
- Set covering formulation:

\[
\begin{align*}
\min & \quad \sum_{r \in R} c_r x_r \\
\text{s.t.} & \quad \sum_{r \in R} a_{rj} x_r \geq 1 \quad \forall j \in V \\
& \quad 0 \leq x_r \leq 1 \quad \forall r \in R
\end{align*}
\]

- shadow price λ_j for all j
- continuous LP relaxation

Pricing Problem

- Truck route similar to TSP, but
 - not all locations need to be visited
 - there is a capacity constraint on the trucks
- We can solve this problem in different ways
 - shortest path problem in a layered graph
 - single machine scheduling problem
Pricing as shortest path

Binary variable y_{ijk}: travel from location i to j in step k

Constraints:
- variables y_{ijk} must represent a path from and to the depot
- we can visit each location at most once
- total load cannot exceed capacity Q

This model can be solved by IP (or dedicated algorithms)

Benefit of using CP

- We can use CP to solve the pricing problem:
 - represent the constrained shortest path as CP model,
 - or we can view the pricing problem as a single machine scheduling problem
- A major advantage is that CP allows to add many more side constraints:
 - time window constraints for the clients
 - precedence relations due to stacking requirements
 - union regulations for the drivers
 - ...
- In such cases, other methods such as IP may no longer be applicable

From TSP to machine scheduling

- Vehicle corresponds to 'machine' or 'resource'
- Visiting a location corresponds to 'activity'

- Sequence-dependent setup times
 - Executing activity j after activity i induces setup time D_{ij} (distance)
 - Minimize 'makespan' (or sum of the setup times)
 - Activities cannot overlap (disjunctive resource)
CP Model

- **Activities**:
 - Optional activity \(\text{visit}[j] \) for each client \(j \) (duration: 0)
 - \(\text{StartAtDepot} \)
 - \(\text{EndAtDepot} \)

- **Transition times** between two activities \(i \) and \(j \)
 - \(T_{i,j} = D(i,j) - \lambda_i \)

CP Model (cont'd)

\[
\begin{align*}
\text{minimize} & \quad \text{EndAtDepot}.\text{end} - \sum_j \lambda_j(\text{Visit}[j].\text{present}) \\
\text{s.t.} & \quad \text{DisjunctiveResource} \\
& \quad \text{Activities:} \quad \text{Visit}[j], \text{StartAtDepot}, \text{EndAtDepot} \\
& \quad \text{Transition:} \quad T_{i,j} \\
& \quad \text{First:} \quad \text{StartAtDepot} \\
& \quad \text{Last:} \quad \text{EndAtDepot} \\
& \quad \sum_j w_j(\text{Visit}[j].\text{present}) \leq Q
\end{align*}
\]

- Observe that this model naturally allows to add time windows (on Visit[j]) precedence relations, etc

Discussion

- **Benefits of column generation**
 - A small number of variables may suffice to prove optimality of a problem with exponentially many variables
 - Complicated constraints can be moved to subproblem
 - Can stop at any time and have feasible solution (not the case with Benders)

- **Potential drawbacks / challenges**
 - LP-based column generation still fractional: need branch-and-price method to be exact (can be challenging)
 - For degenerate LPs, shadow prices may be non-informative
 - Difficult to replace single columns: need sets of new columns which are hard to find simultaneously